A non-associative baker-campbell-hausdorff formula
- Mostovoy, J. 1
- Pérez-Izquierdo, J.M. 2
- Shestakov, I.P. 3
-
1
Instituto Politécnico Nacional
info
-
2
Universidad de La Rioja
info
-
3
Universidade de São Paulo
info
ISSN: 0002-9939
Año de publicación: 2017
Volumen: 145
Número: 12
Páginas: 5109-5122
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Proceedings of the American Mathematical Society
Proyectos relacionados
2014/00067/001
Resumen
We address the problem of constructing the non-associative version of the Dynkin form of the Baker-Campbell-Hausdorff formula; that is, expressing log(exp(x) exp(y)), where x and y are non-associative variables, in terms of the Shestakov-Umirbaev primitive operations. In particular, we obtain a recursive expression for the Magnus expansion of the Baker-Campbell-Hausdorff series and an explicit formula in degrees smaller than 5. Our main tool is a non-associative version of the Dynkin-Specht-Wever Lemma. A construction of Bernouilli numbers in terms of binary trees is also recovered. © 2017 American Mathematical Society.