Molecular diversity and conjugal transferability of class 2 integrons among escherichia coli isolates from food, animal and human sources

  1. Alonso C.A. 1
  2. Cortés-Cortés G 3
  3. Maamar E 4
  4. Massó M 2
  5. Rocha-Gracia R.D.C 3
  6. Torres C 1
  7. Centrón D 2
  8. Quiroga M.P. 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad de Buenos Aires
    info

    Universidad de Buenos Aires

    Buenos Aires, Argentina

    ROR https://ror.org/0081fs513

  3. 3 Benemérita Universidad Autónoma de Puebla
    info

    Benemérita Universidad Autónoma de Puebla

    Heróica Puebla de Zaragoza, México

    ROR https://ror.org/03p2z7827

  4. 4 Université de Tunis El Manar
    info

    Université de Tunis El Manar

    Túnez, Túnez

    ROR https://ror.org/029cgt552

Revista:
International Journal of Antimicrobial Agents

ISSN: 0924-8579

Año de publicación: 2018

Tipo: Artículo

DOI: 10.1016/J.IJANTIMICAG.2018.02.001 PMID: 29428457 SCOPUS: 2-s2.0-85048486252 GOOGLE SCHOLAR

Otras publicaciones en: International Journal of Antimicrobial Agents

Repositorio institucional: lock_openAcceso abierto Postprint

Resumen

Integrons are genetic platforms able to excise, integrate and express antibiotic resistance gene cassettes. Here, we investigate the complete genetic organization, genetic environment, location and conjugative transferability of a collection of class 2 integrons carried by E. coli strains from different sources (poultry/pork-meat, animals, and humans). PCR cartography was conducted to determine the genetic arrangement of the integrons, their physical linkage to Tn7 and the chromosomal insertion at attTn7 site. Clonal relatedness of specific isolates was determined by MLST and OD-PCR. Transferability of class 2 integrons was tested by conjugation and the resulting transconjugants were characterized by antimicrobial resistance genotyping, S1-PFGE and replicon typing. Although a limited diversity of gene cassettes was shown, a high percentage of novel structures was identified due to the integration of insertion sequences at different sites (IS3/IS4/IS5/IS21 families). The insertion of an IS10 in the attI2 site of a class 2 integron, between Pc2B and Pc2C promoters, was likely mediated by a site-specific transposition event. Chromosomal insertion of the integrons at attTn7 was confirmed in 80% of the isolates. Conjugation experiments demonstrated that 29% of class 2 integrons could be mobilized to E. coli CHS26, demonstrating that they can be located in conjugative/mobilizable elements at a low frequency. Reported structures evidence how class 2 integrons have evolved by the activity of integron integrases and the invasion of ISs. Since most of them are chromosomally located, the dispersion is predominantly vertical, although conjugation events also contribute to the spread of class 2 integrons among bacterial communities.

Información de financiación

This study was partially supported by grants UBACYT Programación 2014–2017 and ANPCyT PICT2015-3610 to MPQ (Argentina); the project SAF2016-76571-R of the Agencia Estatal de Investigación (AEI) of Spain; and the Fondo Europeo de Desarrollo Regional (FEDER).

Financiadores

Referencias bibliográficas

  • Alcalá, L., Alonso, C.A., Simón, C., González-Esteban, C., Orós, J., Rezusta, A., Wild birds, frequent carriers of extended-spectrum β-lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 types (2016) Microb Ecol, 72, pp. 861-869
  • Barlow, R.S., Gobius, K.S., Diverse class 2 integrons in bacteria from beef cattle sources (2006) J Antimicrob Chemother, 58, pp. 1133-1138
  • Chantziaras, I., Boyen, F., Callens, B., Dewulf, J., Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries (2014) J Antimicrob Chemother, 69, pp. 827-834
  • Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Resistance integrons: class 1, 2 and 3 integrons (2015) Ann Clin Microbiol Antimicrob, 14, p. 45
  • Escudero, J.A., Loot, C., Nivina, A., Mazel, D., The integron: adaptation on demand (2015) Microbiol Spectr, 3
  • Cortés-Cortés, G., Lozano-Zarain, P., Torres, C., Castañeda, M., Sánchez, G.M., Alonso, C.A., Detection and molecular characterization of Escherichia coli strains producers of extended-spectrum and CMY-2 type beta-lactamases, isolated from turtles in Mexico (2016) Vector Borne Zoonotic Dis, 16, pp. 595-603
  • Gay, N.J., Tybulewicz, V.L., Walker, J.E., Insertion of transposon Tn7 into the Escherichia coli glmS transcriptional terminator (1986) Biochem J, 234, pp. 111-117
  • Kadlec, K., Schwarz, S., Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study (2008) J Antimicrob Chemother, 62, pp. 469-473
  • Performance Standards for Antimicrobial Susceptibility Testing. Twenty fifth informational supplement. CLSI document M100-S25 (2015), National Committee for Clinical Laboratory Standards Wayne, PA
  • Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K.L., Threlfal EJ. Identification of plasmids by PCR-based replicon typing (2005) J Microbiol Methods, 63, pp. 219-228
  • Ahmed, A.M., Nakano, H., Shimamoto, T., Molecular characterization of integrons in non-typhoid Salmonella serovars isolated in Japan: description of an unusual class 2 integron (2005) J Antimicrob Chemother, 55, pp. 371-374
  • Hansson, K., Sundström, L., Pelletier, A., Roy, P.H., IntI2 integron integrase in Tn7 (2002) J Bacteriol, 184, pp. 1712-1721
  • Partridge, S.R., Hall, R.M., Correctly identifying the streptothricin resistance gene cassette (2005) J Clin Microbiol, 43, pp. 4298-4300
  • Tetu, S.G., Holmes, A.J., A family of insertion sequences that impacts integrons by specific targeting of gene cassette recombination sites, the IS1111-attC group (2008) J Bacteriol, 190, pp. 4959-4970
  • Briski, L., Mazel, D., Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron (2003) Antimicrob Agents Chemother, 47, pp. 3326-3331
  • Shallcross, L.J., Davies, D.S., Antibiotic overuse: a key driver of antimicrobial resistance (2014) Br J Gen Pract, 64, pp. 604-605
  • Rowe-Magnus, D.A., Guerout, A.M., Mazel, D., Bacterial resistance evolution by recruitment of super-integron gene cassettes (2002) Mol Microbiol, 43, pp. 1657-1669
  • Ramírez, M.S., Piñeiro, S., Centrón, D., Novel insights about class 2 integrons from experimental and genomic epidemiology (2010) Antimicrob Agents Chemother, 54, pp. 699-706
  • Parks, A.R., Peters, J.E., Tn7 elements: engendering diversity from chromosomes to episomes (2009) Plasmid, 61, pp. 1-14
  • Maamar, E., Hammami, S., Alonso, C.A., Dakhli, N., Abbassi, M.S., Ferjani, S., High prevalence of extended-spectrum and plasmidic AmpC beta-lactamase-producing Escherichia coli from poultry in Tunisia (2016) Int J Food Microbiol, 231, pp. 69-75
  • Ploy, M.C., Denis, F., Courvalin, P., Lambert, T., Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron (2000) Antimicrob Agents Chemother, 44, pp. 2684-2688
  • Quiroga, M.P., Andres, P., Petroni, A., Soler Bistué, A.J., Guerriero, L., Vargas, L.J., Complex class 1 integrons with diverse variable regions including aac(6')-Ib-cr, and a novel allele, qnrB10, associated with ISCR1 in clinical enterobacterial isolates from Argentina (2007) Antimicrob Agents Chemother, 51, pp. 4466-4470
  • Navia, M.M., Ruiz, J., Sánchez-Céspedes, J., Vila, J., Detection of dihydrofolate reductase genes by PCR and RFLP (2003) Diagn Microbiol Infect Dis, 46, pp. 295-298
  • Ramírez, M.S., Quiroga, C., Centrón, D., Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii (2005) Antimicrob Agents Chemother, 49, pp. 5179-5181
  • Limansky, A.S., Viale, A., Can composition and structural features of oligonucleotides contribute to their wide-scale applicability as random PCR primers in mapping bacterial genome diversity? (2002) J Microbiol Methods, 50, pp. 291-297
  • Orman, B.E., Piñeiro, S.A., Arduino, S., Galas, M., Melano, R., Caffer, M.I., Evolution of multiresistance in nontyphoid Salmonella serovans from 1984 to 1998 in Argentina (2002) Antimicrob Agents Chemother, 46, pp. 3963-3970
  • Jones-Dias, D., Manageiro, V., Martins, A.P., Ferreira, E., Caniça, M., New class 2 integron In2-4 among IncI1-positive Escherichia coli isolates carrying ESBL and PMAβ genes from food animals in Portugal (2016) Foodborne Pathog Dis, 13, pp. 36-39
  • Martínez-García, E., Navarro-Lloréns, J.M., Tormo, A., Identification of an unknown promoter, OUTIIp, within the IS10R element (2003) J Bacteriol, 185, pp. 2046-2050
  • Beyrouthy, R., Robin, F., Delmas, J., Gibold, L., Dalmasso, G., Dabboussi, F., IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of bla OXA-48 into the Escherichia coli chromosome (2014) Antimicrob Agents Chemother, 58, pp. 3785-3790
  • Gassama Sow, A., Diallo, M.H., Gatet, M., Denis, F., Aïdara-Kane, A., Ploy, M.C., Description of an unusual class 2 integron in Shigella sonnei isolates in Senegal (sub-Saharan Africa) (2008) J Antimicrob Chemother, 62, pp. 843-844
  • Dubois, V., Parizano, M.P., Arpin, C., Coulange, L., Bezian, M.C., Quentin, C., High genetic stability of integrons in clinical isolates of Shigella spp. of worldwide origin (2007) Antimicrob Agents Chemother, 51, pp. 1333-1340
  • González-Prieto, C., Agúndez, L., Llosa, M., Chloramphenicol selection of IS10 transposition in the cat promoter region of widely used cloning vectors (2015) PLoS ONE, 10. , e0138615
  • Olliver, A., Vallé, M., Chaslus-Dancla, E., Cloeckaert, A., Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar typhimurium DT204 acrB mutants selected with fluoroquinolones (2005) Antimicrob Agents Chemother, 49, pp. 289-301
  • Rodríguez, I., Martín, M.C., Mendoza, M.C., Rodicio, M.R., Class 1 and class 2 integrons in non-prevalent serovars of Salmonella enterica: structure and association with transposons and plasmids (2006) J Antimicrob Chemother, 58, pp. 1124-1132
  • Smet, A., Van Nieuwerburgh, F., Vandekerckhove, T.T., Marte, A., Deforce, D., Butaye, P., Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences (2010) PLoS ONE, 5. , e11202
  • Siguier, P., Gourbeyre, E., Chandler, M., Bacterial insertion sequences: their genomic impact and diversity (2014) FEMS Microbiol Rev, 38, pp. 865-891
  • Simons, R.W., Hoopes, B.C., McClure, W.R., Kleckner, N., Three promoters near the termini of IS10: pIN, pOUT and pIII (1983) Cell, 34
  • Vinué, L., Sáenz, Y., Rojo-Bezares, B., Olarte, I., Undabeitia, E., Somalo, S., Genetic environment of sul genes and characterisation of integrons in Escherichia coli isolates of blood origin in a Spanish hospital (2010) Int J Antimicrob Agents, 35, pp. 492-496
  • Schink, A.K., Kadlec, K., Schwarz, S., Analysis of bla(CTX-M)-carrying plasmids from Escherichia coli isolates collected in the BfT-GermVet study (2011) Appl Environ Microbiol, 77, pp. 7142-7146
  • Szczepanowski, R., Krahn, I., Pühler, A., Schlüter, A., Different molecular rearrangements in the integron of the IncP-1 beta resistance plasmid pB10 isolated from a wastewater treatment plant result in elevated beta-lactam resistance levels (2004) Arch Microbiol, 182, pp. 429-435
  • White, P.A., McIver, C.J., Rawlinson, W.D., Integrons and gene cassettes in the Enterobacteriaceae (2001) Antimicrob Agents Chemother, 45, pp. 2658-2661
  • Wolkow, C.A., DeBoy, R.T., Craig, N.L., Conjugating plasmids are preferred targets for Tn7 (1996) Genes Dev, 10, pp. 2145-2157
  • Xia, R., Ren, Y., Guo, X., Xu, H., Molecular diversity of class 2 integrons in antibiotic-resistant gram-negative bacteria found in wastewater environments in China (2013) Ecotoxicology, 22, pp. 402-414
  • Young, H.K., Qumsieh, M.J., McIntosh, M.L., Nucleotide sequence and genetic analysis of the type Ib trimethoprim-resistant, Tn4132-encoded dihydrofolate reductase (1994) J Antimicrob Chemother, 34, pp. 715-725
  • Zhang, F., Wang, X., Xie, L., Zheng, Q., Guo, X., Han, L., A novel transposon, Tn6306, mediates the spread of blaIMI in Enterobacteriaceae in hospitals (2017) Int J Infect Dis, 65, pp. 22-26