Determination of nonlinear stability for low order resonances by a geometric criterion
- Lanchares, V. 1
- Pascual, A.I. 1
- Elipe, A. 2
-
1
Universidad de La Rioja
info
-
2
Universidad de Zaragoza
info
ISSN: 1560-3547
Año de publicación: 2012
Volumen: 17
Número: 3-4
Páginas: 307-317
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Regular and Chaotic Dynamics
Proyectos relacionados
Resumen
We consider the problem of stability of equilibrium points in Hamiltonian systems of two degrees of freedom under low order resonances. For resonances of order bigger than two there are several results giving stability conditions, in particular one based on the geometry of the phase flow and a set of invariants. In this paper we show that this geometric criterion is still valid for low order resonances, that is, resonances of order two and resonances of order one. This approach provides necessary stability conditions for both the semisimple and non-semisimple cases, with an appropriate choice of invariants. © 2012 Pleiades Publishing, Ltd.