Chaotic rotations of an asymmetric body with time dependent moments of inertia and viscous drag

  1. Iñarrea, M. 1
  2. Lanchares, V. 1
  3. Rothos, V.M. 2
  4. Salas, J.P. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Loughborough University
    info

    Loughborough University

    Loughborough, Reino Unido

    ROR https://ror.org/04vg4w365

Revista:
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering

ISSN: 0218-1274

Año de publicación: 2003

Volumen: 13

Número: 2

Páginas: 393-409

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1142/S0218127403006613 SCOPUS: 2-s2.0-0038672125 WoS: WOS:000182461200007 GOOGLE SCHOLAR

Otras publicaciones en: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering

Resumen

We study the dynamics of a rotating asymmetric body under the influence of an aerodynamic drag. We assume that the drag torque is proportional to the angular velocity of the body. Also we suppose that one of the moments of inertia of the body is a periodic function of time and that the center of mass of the body is not modified. Under these assumptions, we show that the system exhibits a transient chaotic behavior by means of a higher dimensional generalization of the Melnikov's method. This method give us an analytical criterion for heteroclinic chaos in terms of the system parameters. These analytical results are confirmed by computer numerical simulations of the system rotations.