TAO-robust backpropagation learning algorithm

  1. Pernía-Espinoza, A.V. 2
  2. Ordieres-Meré, J.B. 2
  3. Martínez-De-Pisón, F.J. 2
  4. González-Marcos, A. 1
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Neural Networks

ISSN: 0893-6080

Año de publicación: 2005

Volumen: 18

Número: 2

Páginas: 191-204

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1016/J.NEUNET.2004.11.007 PMID: 15795116 SCOPUS: 2-s2.0-15944426684 WoS: WOS:000228440100008 GOOGLE SCHOLAR

Otras publicaciones en: Neural Networks

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

In several fields, as industrial modelling, multilayer feedforward neural networks are often used as universal function approximations. These supervised neural networks are commonly trained by a traditional backpropagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted data (outliers) this training scheme may produce wrong models. We combine the benefits of the non-linear regression model τ-estimates [introduced by Tabatabai, M. A., Argyros, I. K. Robust Estimation and testing for general nonlinear regression models. Applied Mathematics and Computation. 58 (1993) 85-101] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers. The cost function of this approach has a bounded influence function given by the weighted average of two ψ functions, one corresponding to a very robust estimate and the other to a highly efficient estimate. The advantages of the proposed algorithm are studied with an example. © 2005 Elsevier Ltd. All rights reserved.