Highly emissive dinuclear complexes [Au2{μ-(PPh 2)2C2B9H10}(C 6F5)(PR3)] with different gold fragments coordinated to an anionic diphosphine

  1. Crespo, O. 2
  2. Díez-Gil, C. 2
  3. Gimeno, M.C. 2
  4. Laguna, A. 2
  5. Monge, M. 1
  6. Ospino, I. 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Instituto de Síntesis Química y Catálisis Homogénea
    info

    Instituto de Síntesis Química y Catálisis Homogénea

    Zaragoza, España

    ROR https://ror.org/002smyt64

Revista:
Dalton Transactions

ISSN: 1477-9226

Año de publicación: 2011

Volumen: 40

Número: 39

Páginas: 10038-10046

Tipo: Artículo

DOI: 10.1039/C1DT10890E SCOPUS: 2-s2.0-80053348465 WoS: WOS:000295843100012 GOOGLE SCHOLAR

Otras publicaciones en: Dalton Transactions

Resumen

Reaction of the yellow-green emitters [Au{(PPh 2) 2C 2B 9H 10}(PR 3)] with [Au(C 6F 5)(tht)] affords orange-red emissive gold complexes [Au 2{μ-(PPh 2) 2C 2B 9H 10}(C 6F 5)(PR 3)] which contain different neutral (PR 3) and anionic (C 6F 5) auxiliary ligands and an anionic diphosphine. The resulting complexes are among the few reported in which an ortho-carborane diphosphine acts in a bridging mode, and are unique in containing not a closo- (neutral), but a nido-carborane (anionic) cluster. DFT and TDDFT calculations led to the prediction of the origin of the two first singlet-triplet transitions, which is consistent with the experimental results. Although the blue emissive nido-diphosphine plays a key role in the transitions of the three-coordinate precursors and the final dinuclear complexes, it is the environment around the gold centre that controls the emission energy. © The Royal Society of Chemistry 2011.