Synthesis, Photochemical, and Redox Properties of Gold(I) and Gold(III) Pincer Complexes Incorporating a 2,2′:6′,2″-Terpyridine Ligand Framework
- Gimeno, M.C. 2
- López-De-Luzuriaga, J.M. 1
- Manso, E. 1
- Monge, M. 1
- Olmos, M.E. 1
- Rodríguez-Castillo, M. 1
- Tena, M.-T. 1
- Day, D.P. 3
- Lawrence, E.J. 3
- Wildgoose, G.G. 3
-
1
Universidad de La Rioja
info
-
2
Universidad de Zaragoza
info
-
3
University of East Anglia
info
ISSN: 0020-1669
Year of publication: 2015
Volume: 54
Issue: 22
Pages: 10667-10677
Type: Article
More publications in: Inorganic Chemistry
Metrics
JCR (Journal Impact Factor)
- Year 2015
- Journal Impact Factor: 4.82
- Journal Impact Factor without self cites: 4.268
- Article influence score: 1.001
- Best Quartile: Q1
- Area: CHEMISTRY, INORGANIC & NUCLEAR Quartile: Q1 Rank in area: 4/46 (Ranking edition: SCIE)
SCImago Journal Rank
- Year 2015
- SJR Journal Impact: 1.782
- Best Quartile: Q1
- Area: Inorganic Chemistry Quartile: Q1 Rank in area: 6/72
- Area: Physical and Theoretical Chemistry Quartile: Q1 Rank in area: 21/172
- Area: Chemistry (miscellaneous) Quartile: Q1 Rank in area: 35/460
Scopus CiteScore
- Year 2015
- CiteScore of the Journal : 8.5
- Area: Inorganic Chemistry Percentile: 96
- Area: Physical and Theoretical Chemistry Percentile: 90
- Area: Medicine (all) Percentile: 89
Related Projects
Abstract
Reaction of [Au(C6F5)(tht)] (tht = tetrahydrothiophene) with 2,2′:6′,2″-terpyridine (terpy) leads to complex [Au(C6F5)(η1-terpy)] (1). The chemical oxidation of complex (1) with 2 equiv of [N(C6H4Br-4)3](PF6) or using electrosynthetic techniques affords the Au(III) complex [Au(C6F5)(η3-terpy)](PF6)2 (2). The X-ray diffraction study of complex 2 reveals that the terpyridine acts as tridentate chelate ligand, which leads to a slightly distorted square-planar geometry. Complex 1 displays fluorescence in the solid state at 77 K due to a metal (gold) to ligand (terpy) charge transfer transition, whereas complex 2 displays fluorescence in acetonitrile due to excimer or exciplex formation. Time-dependent density functional theory calculations match the experimental absorption spectra of the synthesized complexes. In order to further probe the frontier orbitals of both complexes and study their redox behavior, each compound was separately characterized using cyclic voltammetry. The bulk electrolysis of a solution of complex 1 was analyzed by spectroscopic methods confirming the electrochemical synthesis of complex 2. © 2015 American Chemical Society.