High Order Uniformly Convergent Fractional Step RK Methods and HODIE Finite Difference Schemes for 2D Evolutionary Convection-Diffusion Problems

  1. Gracia, J.L. 1
  2. Jorge, J.C. 2
  3. Bujanda, B. 3
  4. Clavero, C. 1
  1. 1 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  2. 2 Universidad Pública de Navarra
    info

    Universidad Pública de Navarra

    Pamplona, España

    ROR https://ror.org/02z0cah89

  3. 3 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Journal of Computational Methods in Sciences and Engineering

ISSN: 1472-7978

Año de publicación: 2003

Volumen: 3

Número: 3

Páginas: 403-413

Tipo: Artículo

DOI: 10.3233/JCM-2003-3304 SCOPUS: 2-s2.0-26044464159 GOOGLE SCHOLAR

Otras publicaciones en: Journal of Computational Methods in Sciences and Engineering

Resumen

In this work we present a numerical method to solve linear time dependent two dimensional singularly perturbed problems of convection-diffusion type with dominating convection term; this class of problems is characterized by the presence of a regular boundary layer in the output boundary of the spatial domain. The method combines the alternating direction technique, based on an A-stable third order RK method, with a third order HODIE finite difference scheme of classical type, i.e., exact only on polynomial functions, constructed on a special spatial mesh of Shishkin type. We show that, under appropriate restrictions between the discretization parameters, the method is uniformly convergent with respect to the diffusion parameter, having order three (except by a logarithmic factor) in the maximum norm. The method provides the computational advantages of the splitting technique and also the efficiency provided by high order methods, achieving good approximations of the solution in the whole domain, including the boundary layer region. We show some numerical results validating in practice the good properties of the method.