Fractional step runge–kutta methods for the resolution of two dimensional time dependent coefficient convection–diffusion problems

  1. Bujanda, B. 2
  2. Jorge, J.C. 1
  1. 1 Universidad Pública de Navarra
    info

    Universidad Pública de Navarra

    Pamplona, España

    ROR https://ror.org/02z0cah89

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Lecture Notes in Computer Science

ISSN: 0302-9743

Año de publicación: 2001

Volumen: 1988

Páginas: 133-143

Tipo: Artículo

beta Ver similares en nube de resultados

Otras publicaciones en: Lecture Notes in Computer Science

Resumen

In this paper we obtain a unconditional convergence result for discretization methods of type Fractional Steps Runge-Kutta, which are highly efficient in the numerical resolution of parabolic problems whose coefficients depend on time. These methods combined with standard spatial discretizations will provide totally discrete algorithms with low computational cost and high order of accuracy in time. We will show the efficiency of such methods, in combination with upwind difference schemes on special meshes, to integrate numerically singularly perturbed evolutionary convection–diffusion problems. © Springer-Verlag Berlin Heidelberg 2001.