Fractal dimension of the universal Julia sets for the Chebyshev-Halley family of methods

  1. Gutiérrez, J.M. 1
  2. Magreñán, Á.A. 1
  3. Varona, J.L. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Libro:
AIP Conf. Proc.

ISBN: 978-073540956-9

Año de publicación: 2011

Volumen: 1389

Páginas: 1061-1064

Tipo: Capítulo de Libro

beta Ver similares en nube de resultados
DOI: 10.1063/1.3637794 SCOPUS: 2-s2.0-81855216304 WoS: WOS:000302239800259 GOOGLE SCHOLAR lock_openAcceso abierto editor
Repositorio institucional: lock_openAcceso abierto Postprint

Resumen

The concept of universal Julia set introduced in [5] allows us to conclude that the dynamics of a root-finding algorithm applied to any quadratic polynomial can be understood through the analysis of a particular rational map. In this study we go a step beyond in this direction. In particular, we can define the universal fractal dimension of the aforementioned algorithms as the fractal dimension of they corresponding universal Julia sets. © 2011 American Institute of Physics.