Emisión Acústica y Redes Neuronales para Modelado y Caracterización del Proceso de Soldadura por Fricción Agitación

  1. Emilio Jiménez Macías 1
  2. Angel Sánchez Roca 2
  3. Hipólito Carvajal Fals 2
  4. Julio Blanco Fernández 1
  5. Juan C. Sáenz-Diez Muro 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad de Oriente
    info

    Universidad de Oriente

    Cumaná, Venezuela

    ROR https://ror.org/03xygw105

Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2013

Volume: 10

Issue: 4

Pages: 434-440

Type: Article

beta Ver similares en nube de resultados
DOI: 10.10167J.RIAI.2013.09.003 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Abstract

This paper presents an analysis of the correlation between acoustic emission (AE) signals and the main parameters of friction stir welding (FSW) process, based on artificial neural networks (ANN). The AE signals have been acquired by the data acquisition instrument NI USB-9234, applied during the welding process carried out on plates of 3mm thick of aluminium AA1050 alloy. Statistical and temporal parameters of discomposed EA signals using Wavelet Transform (WT) have been used as input of the ANN, while the outputs of model include the welding parameters: tool rotation speed and travel speed, as well as the tool profile. A multilayer feed-forward ANN has been selected and trained, using different algorithms and network architectures. The parameters provided by the ANN constitute the model and the characterization of the FSW process; finally an analysis of the comparison between the measured and the calculated data is presented, validating the results. The model obtained can be used to develop the automatic control of the parameters of the FSW process, based on vibro-acoustic signals, which constitutes the following step in this research line.

Bibliographic References

  • Boldsaikhana E., Corwinb EM., Logarb AM., Arbegast WJ., 2011. The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding. Applied Soft Computing, 11, 4839–4846. DOI: 10.1016/j.asoc.2011.06.017
  • Chen Ch., Kovacevic, K., Jandgric, D., 2003. Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. International Journal of Machine Tools & Manufacture, 43, 1383–1390. DOI: 10.1016/S0890-6955(03)00130-5
  • Fernandez JB., Roca, AS., Fals, HC., Macias, EJ., de la Parte, MP., 2012. Application of the vibro-acoustic signals to evaluate tools profile changes in the friction stir welding on AA1050 H24 alloy. Science and Technology of Welding and Joining. (no publicado). DOI: 10.1179/1362171812Y.0000000040
  • Flores, VM., Corre, M., Alique JR., 2011. Modelo Pre-proceso de predicción de la calidad superficial en Fresado a Alta Velocidad basado en Softcomputing. Revista Iberoamericana de Automática e Informática Industrial, 8, 1, 38-43. DOI: 10.4995/RIAI.2011.01.06
  • Fratini, L., Buffa, G., Palmeri, D., 2009. Using a neural network for predicting the average grain size in friction stir welding processes. Computers and Structures, 87, 1166–1174. DOI: 10.1016/j.compstruc.2009.04.008
  • Gajate A., Haber, RE., 2009. Control Neuroborroso en Red. Aplicación al Proceso de Taladrado de Alto Rendimiento. Revista Iberoamericana de Automática e Informática Industrial, 6, 1, 31-38.
  • Kulekci MK., Esme U., Er O., Kazancoglu Y., 2011. Modeling and prediction of weld shear strength in friction stir spot welding using design of experiments and neural network. Materialwissenschaft und Werkstofftechnik, 42, 11, 990-995. DOI: 10.1002/mawe.201100781
  • Lakshminarayanan, AK., Balasubramanian, V., 2009. Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Trans. Nonferrous Met. Soc. China, 19, 9í18. DOI: 10.1016/S1003-6326(08)60221-6
  • Macias, EJ., Roca, AS., Fals, HC., Fernandez JB., de la Parte, MP., 2010. Time–frequency diagram applied to stability analysis in gas metal arc welding based on acoustic emission. Science and Technology of Welding and Joining, 15, 3, 226-232. DOI: 10.1179/136217110X12665778348588
  • Okuyucu, H., Kurt, A., Arcaklioglu, E., 2007. Artificial neural network application to the friction stir welding of aluminum plates. Materials and Design, 28, 78–84. DOI: 10.1016/j.matdes.2005.06.003
  • Roca, AS., Fals, HC., Fernandez JB., Macias, EJ., Adan FS., 2007. New stability index for short circuit transfer mode in GMAW process using acoustic emission signals. Science and Technology of Welding and Joining, 12, 5, 460-466. DOI: 10.1179/174329307X213882
  • Roca, AS., Fals, HC., Fernandez JB., Macias, EJ., de la Parte, MP., 2009. Artificial neural networks and acoustic emission applied to stability analysis in gas metal arc welding. Science and Technology of Welding and Joining, 14, 4, 117-124. DOI: 10.1179/136217108X382981
  • Yousif, YK., Daws, KM., Kazem, BI., 2008. Prediction of Friction Stir Welding Characteristic Using Neural Network. Jordan Journal of Mechanical and Industrial Engineering, 2, 3, 151-155.