Combined assessment of the environmental, economic and social impacts of structural solutions for residential construction

  1. E. Fraile-García 1
  2. J. Ferreiro-Cabello 2
  3. E. Sodupe-Ortega 1
  4. A. Sanz-Garcia 3
  1. 1 University of La Rioja, España
  2. 2 Qualiberica SL., Madrid, España
  3. 3 University of Helsinki, Finland
Journal:
Informes de la construcción

ISSN: 0020-0883

Year of publication: 2015

Volume: 67

Issue: 539

Type: Article

DOI: 10.3989/IC.14.041 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Informes de la construcción

Institutional repository: lock_openOpen access Editor

Abstract

Sustainable development in construction is based on three fundamental pillars: economic, environmental and social. This type of approach aims to identify the best possible solutions for sustainably developing structures by conducting a joint evaluation of the impact on those three pillars. The proposed methodology incorporates metadata on the Spanish construction sector. First, a discrete database is generated with 360 alternatives covering a range of common solutions in residential building. A Pareto algorithm is utilized to select the optimal choices and the wide range of solutions is reduced to the 5 % of the initial group. The project manager is therefore provided with an objective assessment of suitable structural alternatives including the overall joint economic, social, and environmental impact. The results obtained demonstrate the importance and utility of the proposed methodology for sustainable construction.

Bibliographic References

  • (1) Bernardos, G. (2009). Creación y destrucción de la burbuja inmobiliaria en España. Información Comercial Española ICE: Revista de economía, (850): 23-40.
  • (2) Instituto Nacional de Estadística. (2008-2013) Directorio Central de Empresas INEbase. http://www.ine.es.
  • (3) AENOR-CEN. (2014). UNE-EN 15804:2012+A1:2014. Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products. Asociación española de normalización (AENOR).
  • (4) Cellura, M., Guarino, F., Longo, S., Mistretta, M., Orioli, A. (2013). The role of the building sector for reducing energy consumption and greenhouse gases: An Italian case study. Renewable Energy, 60: 586-597. http://dx.doi.org/10.1016/j.renene.2013.06.019
  • (5) Sesana, M.M., Salvalai, G. (2013). Overview on life cycle methodologies and economic feasibility for nZEBs. Building and Environment, 67: 211-216. http://dx.doi.org/10.1016/j.buildenv.2013.05.022
  • (6) Rincón, L., Castell, A., Pérez, G., Solé, C., Boer, D., Cabeza, L. F. (2013). Evaluation of the environmental impact of experimental buildings with different constructive systems using Material Flow Analysis and Life Cycle Assessment. Applied Energy, 109: 544-552. http://dx.doi.org/10.1016/j.apenergy.2013.02.038
  • (7) Bonham, M.B. (2012). Leading by example: new professionalism and the government client. Building Research & Information, 41(1): 77-94. http://dx.doi.org/10.1080/09613218.2013.743251
  • (8) AENOR-CEN. (2012). UNE-EN 15978:2012. Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method. Asociación española de normalización (AENOR).
  • (9) CEN/TC. (2014). EN 16309:2014. Sustainability of construction works - Assessment of social performance of buildings - Calculation methodology. Comité europeo de normalización (CEN).
  • (10) Zabalza, I., Valero, A., Aranda, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5): 1133-1140. http://dx.doi.org/10.1016/j.buildenv.2010.12.002
  • (11) Aguado, A. (2006). Aplicación de índices de sostenibilidad medioambiental al proyecto de estructuras de hormigón. Nuevas tendencias del hormigón en el ámbito de una construcción sostenible. Madrid: CEDEX-ACHE.
  • (12) Burón-Maestro, M. (2007). La sostenibilidad de las construcciones de hormigón. Cemento Hormigón, (897): 58-65.
  • (13) Tenorio, J.A., Vega-Catalán, L., Turmo, J., Burón, M., Alarcón, A., Martín-Consuegra, F., Burón, A., D'Andrea, R.(2010). Los requisitos del Código Técnico de la Edificación. Eficiencia energética e incremento de la sostenibilidad. Aplicación a los edificios de hormigón. Cemento Hormigón, 937: 60-81.
  • (14) Kloepffer, W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2): 89-95. http://dx.doi.org/10.1065/lca2008.02.376
  • (15) Huedo, P., López-Mesa, B. (2013). Review of tools to assist in the selection of sustainable building assemblies. Informes de la Construcción, 65(529): 77-88. http://dx.doi.org/10.3989/ic.11.048
  • (16) Jørgensen, A., Le Bocq, A., Nazarkina, L., Hauschild, M. (2008). Methodologies for social life cycle assessment. The International Journal of Life Cycle Assessment, 13(2): 96-103. http://dx.doi.org/10.1065/lca2007.11.367
  • (17) Hunkeler, D. (2006). Societal LCA Methodology and Case Study (12 pp). The International Journal of Life Cycle Assessment, 11(6): 371-382. http://dx.doi.org/10.1065/lca2006.08.261
  • (18) Norris, G. (2006). Social Impacts in Product Life Cycles - Towards Life Cycle Attribute Assessment. The International Journal of Life Cycle Assessment, 11(1): 97-104. http://dx.doi.org/10.1065/lca2006.04.017
  • (19) Fraile-García, E. (2012). Análisis multicriterio de forjados unidireccionales. In Mechanical Engineering. Logro-o: University of La Rioja.
  • (20) Ferreiro-Cabello, J. (2013). Metodología de optimización para soluciones estructurales en edificación residencial. In Mechanical Engineering. Logro-o: University of La Rioja.
  • (21) Pacios-Alvarez, A., Martos, G. (2008). Estimación del Índice de Contribución de la Estructura a la Sostenibilidad en ejemplos de edificación. Cemento Hormigón, 913: 70-83.
  • (22) Tsai, W.H., Lin, S.J., Liu, J.Y., Lin, W.R., Lee, K.C. (2011). Incorporating life cycle assessments into building project decision-making: An energy consumption and CO2 emission perspective. Energy, 36(5): 3022-3029. http://dx.doi.org/10.1016/j.energy.2011.02.046
  • (23) Reza, B., Sadiq, R., Hewage, K. (2011). Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle analysis. Construction and Building Materials, 25(4): 2053-2066. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.041
  • (24) Pons, O., de La Fuente, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49: 882-893. http://dx.doi.org/10.1016/j.conbuildmat.2013.09.009
  • (25) De Medeiros, G.F., Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59: 185-194. http://dx.doi.org/10.1016/j.engstruct.2013.10.045
  • (26) ITec. (2013). BEDEC - Banco Estructurado de Datos de Elementos Constructivos. http://itec.es/nouarbrebedec.e/menu2.aspx?tcq=0&idbanc=0. Instituto de Tecnología de la Construcción de Catalu-a (ITeC).
  • (27) Hischier, R., Weidema, B. (2009). Documentation of changes implemented in ecoinvent Data v2.1. Final report ecoinvent data v2.1.
  • (28) SEOPAN (2014). Asociación española de empresas constructoras de ámbito nacional Observatorio de la Construcción. http://www.seopan.es.