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Abstract

We study the semilocal and local convergence of Newton’s method in Banach spaces
under a generalization of the classic conditions used in mathematical literature until
now. We illustrate this study with some application.
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1 Introduction

A large number of problems in applied mathematics and engineering are solve by finding
solutions of equations. The most commonly used solution methods are iterative: from one
or several initial approximations a sequence is constructed that converges to a solution of
an equation. Newton’s method is the most well-known iterative method to solve equations
because of its simplicity, easy implementation and efficiency.

To give sufficient generality to the problem of approximating a solution of a nonlinear
equation by Newton’s method, we consider equations of the form F (x) = 0, where F is
a nonlinear operator, F : Ω ⊆ X → Y , defined on a non-empty open convex domain Ω
of a Banach space X with values in a Banach space Y , which is usually known as the
Newton-Kantorovich method and whose algorithm is

x0 given in Ω; xn = xn−1 − [F ′(xn−1)]
−1F (xn−1), n ∈ N. (1)

We can do different analysis of the convergence of Newton’s method: local, semilocal
or global, depending on the required conditions. We are interested in the semilocal and
local convergence. There is a large number of local and semilocal convergence results on
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Newton’s method in Banach spaces. We refer to reader to [1, 2] and the references there for
the history and recent results on Newton’s method. Basic results concerning the convergence
of the method have been published under assumptions of Kantorovich-type. An abundant
list of references can be found in [1] and [5], where several techniques for finding sufficient
conditions for the convergence of Newton’s method are given.

The first semilocal convergence result for Newton’s method in Banach spaces is due
to L. V. Kantorovich, which is usually known as the Newton-Kantorovich theorem and is
proved under the following conditions for the operator F and the starting point x0:

(i) ‖Γ0‖ ≤ β, (ii) ‖Γ0F (x0)‖ ≤ η, (iii) ‖F ′′(x)‖ ≤ M, x ∈ Ω, (iv) Mβη ≤ 1

2
,

where it is supposed that the operator Γ0 = [F ′(x0)]−1 ∈ L(Y,X) exists at some x0 ∈ Ω,
where L(Y,X) is the set of bounded linear operators from Y into X.

There are several techniques to prove the semilocal convergence of Newton’s method.
In this paper, we use the majorant principle to prove it, which is based on the concept
of majorizing sequence. This technique was first developed by Kantorovich [4] and used
later by many authors to analyse the semilocal convergence of different iterative methods.
The majority of results presented in the mathematical literature demand that ‖F ′′(x)‖ is
bounded in the domain Ω, where the solution x∗ must exist. According to this, the number
of equations that can be solved by Newton’s method is limited, since it is not easy to see
that ‖F ′′(x)‖ is bounded in a general domain Ω. It is not easy either to locate a domain
where ‖F ′′(x)‖ is bounded and the solution x∗ is contained.

The main aim of this paper is to generalize the semilocal convergence conditions given
by Kantorovich for Newton’s method, so that conditions (iii)–(iv) are relaxed in order
to Newton’s method can be applied for solving more equations. To do this, we follow a
variation of Kantorovich’s technique based on the majorant principle.

Next, we emphasize a particular case of our general convergence conditions, prove that
the R-order of convergence of Newton’s method is at least two and give some a priori error
bounds.

Finally, we also provide some application where our results are applied in this study.

2 New convergence conditions

Our idea in this paper is to generalize the hypotheses of Kantorovich by modifying conditions
(iii)–(iv) and, following Kantorovich’s theory [4], construct a real function f ∈ C(2)([t0, t′])
with t0, t′ ∈ R which satisfies:

(I) There exists the operator Γ0 = [F ′(x0)]−1 ∈ L(Y,X), for some x0 ∈ Ω, with ‖Γ0‖ ≤
− 1

f ′(t0)
, ‖Γ0F (x0)‖ ≤ − f(t0)

f ′(t0)
, and ‖F (i)(x0)‖ ≤ f (i)(t0) for i = 2, 3, . . . , k − 1.
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(II) ‖F (k)(x)‖ ≤ f (k)(t), for ‖x− x0‖ ≤ t− t0, x ∈ Ω and t ∈ [t0, t′].

Obviously, the above generalization of Kantorovich’s hypotheses leads to a variation in
the technique of the majorant principle, which Kantorovich develops to prove the semilocal
convergence of Newton’s method under conditions (i)–(iv).

To establish the semilocal convergence of Newton’s method, under conditions (i)–(iv)
Kantorovich considers a quadratic polynomial and proves that the semilocal convergence of
Newton’s sequence in the Banach spaceX is guaranteed from the scalar majorizing sequence
which is constructed from the quadratic polynomial (see [4]).

To obtain the sequence {tn} Kantorovich uses a real function f(t) defined in [t0, t′] ⊂ R
as:

t0 given; tn = tn−1 −
f(tn−1)

f ′(tn−1)
, n ∈ N,

considers that f(t) is a second degree polynomial and fits its coefficients with conditions (i)
and (ii), so that Kantorovich obtains the polynomial

f(t) =
M

2
t2 − t

β
+

η

β
· (2)

Observe that this problem is of interpolation fitting.
In our case, if we consider (I)–(II), we cannot obtain a real function by interpolation

fitting, since (II) does not allow determining the class of functions where (I) can be applied.
To solve this problem, we proceed differently. Observe that polynomial (2) can be obtained
otherwise, without interpolation fitting, by solving the following initial value problem:

y′′(s) = M ; y(t0) =
η

β
, y′(t0) = − 1

β
·

The new way of getting polynomial (2) has the advantage of being able to be generalized
to conditions (I)–(II), so that we can then construct real functions f(t) under more general
conditions.

3 A particular case

In the following, we see a situation that can be deduced as particular case of our general
conditions (I)–(II). We suppose that conditions (I)–(II) are reduced to the following
conditions:

(A1) ‖Γ0‖ ≤ β, ‖Γ0F (x0)‖ ≤ η, ‖F (i)(x0)‖ ≤ Mi, with Mi ∈ R+ and i = 2, 3, . . . , k − 1,

(A2) ‖F (k)(x)‖ ≤ ω(‖x‖), x ∈ Ω, where ω : R+ ∪ {0} → R is a non-decreasing continuous
function such that ω(0) = 0.
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In order to be able to use the new way above-mentioned of getting polynomial (2) with
conditions (A1)–(A2), we first note that we have ‖F (k)(x)‖ ≤ ω(‖x‖) ≤ ω(t− t0 + ‖x0‖) ≡
ω(t; t0), provided that ‖x‖ − ‖x0‖ ≤ ‖x − x0‖ ≤ t − t0, since ω is non-decreasing. In
consequence, instead of (A2), we consider ‖F (k)(x)‖ ≤ ω(t; t0) for ‖x − x0‖ ≤ t − t0,
where ω : [t0,+∞) → R is a continuous non-decreasing function such that ω(t0; t0) ≥ 0.
The corresponding initial value problem to solve is then

y(k)(t)− ω(t; t0) = 0; y(t0) =
η

β
, y′(t0) = − 1

β
, y(i)(t0) = Mi, for i = 2, 3, . . . , k − 1,

whose solution is:

f(t) =

∫ t

t0

∫ sk−1

t0

· · ·
∫ s1

t0

ω(z; t0) dz ds1 · · · dsk−1+
Mk−1

(k − 1)!
(t−t0)

k−1+· · ·+M2

2!
(t−t0)

2− t− t0
β

+
η

β
.

In addition, from the ideas of Dennis and Schnabel in [3], we obtain a local convergence
result that leads to R-quadratic convergence of Newton’s method under condition (A2).
Moreover, some a priori error bounds are given.

Finally, the above developed theory is illustrated with some application.
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Abstract

We present simple modifications of one-point iterative methods with memory that
are called hybrid iterative methods and consist of two methods with different speed of
convergence. The principal feature of these methods is that the accessibility regions are
extended until that of the iterative method with lower speed of convergence.
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1 Introduction

Many scientific and engineering problems can be brought in the form of a nonlinear equation
F (x) = 0, where F is a nonlinear operator defined on a non-empty open convex subset Ω
of a Banach space X with values in another Banach space Y . In general, if the operator F
is nonlinear, iterative methods are used to solve F (x) = 0. A very important aspect in the
study of iterative methods is the choice of good initial approximations. In general, iterative
methods usually converge once the initial approximations satisfy certain conditions (that
is, semilocal convergence). The most used iterative processes are the well-known one-point
iterations, that are defined as follows:

{
z0 given in Ω,

zn = G(zn−1), n ∈ N,

where G is an operator defined on Ω with values in the Banach space X.
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