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A B S T R A C T

Diseases and pests in agriculture significantly impact crop yield and quality. Downy mildew (Plasmopara viticola) 
is a particular noteworthy example in grapevines. Traditional detection methods are laborious, subjective and 
time-consuming. Consequently, a technological solution based on artificial intelligence, would provide higher 
levels of reproducibility and sampling. The aim of this work was to develop an interpretable, automated method 
for detection and localisation of plant disease symptoms under field conditions. Images of the grapevine canopy 
were taken in 14 commercial vineyard plots under a range of lightning conditions, including both static and on- 
the-go settings. The images were processed using a sliding window, classifying sub-images into areas with and 
without downy mildew. Transfer learning, fine-tuning and data augmentation were employed to automate the 
classification, comparing convolutional neural networks (CNNs) and vision transformers (ViT). Subsequently, the 
trained model was integrated into the sliding window to localise regions within the canopy images exhibiting 
symptoms of downy mildew. Model predictions were interpreted using explainable artificial intelligence (XAI) 
methods. The EfficientNetV2S model achieved an accuracy of 91 % and an F1-score of 0.92 when classifying 
image areas and an Intersection over Union (IoU) of 0.83 when locating symptomatic areas. This method showed 
promising results, enabling automatic and explainable detection and localisation of plant diseases in complex 
conditions. The straightforward labelling process facilitated adaptation to new conditions, making it suitable for 
different crops and diseases. Integration into mobile platforms could enhance disease management and reduce 
the spread of pathogens, making a significant advance in agricultural technology.

1. Introduction

Diseases and pests are one of major problems in agriculture, whose 
effect could range from slowing plant growth to the death of the whole 
crop, directly affecting the quality and quantity of its production (Liu 
and Wang, 2021). Crop monitoring is relevant to prevent the spread of 
diseases and pests, reducing crop damage and the need for pesticides 
and other control measures. Traditional methods for detecting diseases 
and pests rely on visual inspection by trained experts, which can be time- 
consuming, subjective, and susceptible to human error (Paulus et al., 
1997). Downy mildew (Plasmopara viticola) is one of the most devas-
tating diseases affecting grapevine worldwide (Wilcox et al., 2015). This 
disease can present symptoms in the fruit, branch, and leaves of the 
plants. Detecting the symptoms in leaves is crucial because it is one of 

the primary sites of the infection and can be an early indication of the 
presence of the disease. The small size of the initial symptoms, which 
include oil spots and sporulation primarily on the leaf undersides, makes 
them difficult to identify (Gessler et al., 2011). Early identification in the 
field enables timely fungicide applications, thereby maximizing efficacy 
and preventing extensive crop loss. Hence, one of the main challenges in 
plant protection is automated disease symptoms detection under field 
conditions (Lee and Tardaguila, 2023; Liu et al., 2022; Zhang et al., 
2022).

Non-invasive technologies are frequently used in phytopathology 
and crop protection, avoiding to damage crops during monitoring. 
Spectral signals (Al-Saddik et al., 2018; Nguyen et al., 2021) and thermal 
images (Mastrodimos et al., 2019) have been analysed to detect in-
fections in crops such as grapevine. However, RGB image analysis 
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remains one of the main techniques used for visual disease detection, 
due to its acquisition and processing simplicity and low economical cost. 
Similarly to the symptoms of other diseases such as potato late blight 
(Gao et al., 2021), or rice (Dey et al., 2022), mango (Kusrini et al., 2020), 
soybean (Bevers et al., 2022) or apple leaf diseases (Li et al., 2021), the 
symptoms of downy mildew on grapevine leaves (appearing as oil spots) 
represent a small part of the plant, so their visual localisation in early 
stages is complicated. For this reason, RGB images of leaves or plant 
regions are often used to detect diseases automatically with computer 
vision techniques or machine learning models. Disease symptoms can be 
detected in the laboratory or using simple backgrounds analysing image 
features using computer vision (Barbedo, 2014; Hernandez et al., 2022, 
2021), but the use of more advanced techniques such as deep learning 
makes it possible to detect or differentiate them from other diseases or 
pests under more complex conditions, such as their analysis directly in 
the field (Bevers et al., 2022; Cai et al., 2023; Dey et al., 2022; Gutierrez 
et al., 2021). However, creating a method using self-collected images 
taken in the field remains a challenge, due to the changes in lighting that 
are not contemplated in the methods, background noise that might 
interfere with other objects of interest, or the small size of the disease 
lesions, often ignored in low-resolution images. It is remarkable that, 
although deep learning models require a lot of data, transfer learning 
and fine-tuning combined with data augmentation techniques are 
frequently used for complex and small datasets (Kusrini et al., 2020; 
Thakur et al., 2022). convolutional neural networks (CNNs) and vision 
transformers (ViTs) have been recognized as powerful tools for image 
analysis in recent years, being used in tasks such as the classification of 
leaf diseases in cassava (Thai et al., 2021), apple (Li et al., 2021), tomato 
(Agarwal et al., 2020) or rice (Zhou et al., 2023). CNNs have been the 
most widely used architecture for image classification due to their 
ability to automatically learn and extract features from images. How-
ever, while CNNs may have limitations in capturing global information 
in an image, ViTs have shown great potential in overcoming these lim-
itations by processing the entire image as a sequence of patches, 
allowing them to access global information at once. Furthermore, 
explainable artificial intelligence (XAI) methods such as Gradient- 
weighted Class Activation Mapping (Grad-CAM) and attention maps 
have gained importance in recent years as they enable researchers to 
understand the reasoning behind the classification results of deep 
learning models (Barredo Arrieta et al., 2020; Kakogeorgiou and Kar-
antzalos, 2021). The combination of these techniques has the potential 
to enhance the accuracy and interpretability of image classification 
models, making them more useful in various domains, including agri-
culture and medicine (Pintelas et al., 2021; Xia et al., 2021).

On the other hand, lesion localisation usually requires laborious 
annotation by experts which makes these methods more complex. For 
instance, Tardif et al. (2022) reported that it can take up to 20 min to 
locate different leaf diseases per grapevine image using bounding boxes. 
Ahmad et al., (2023) also identified the labour-intensive nature of 
accurately delineating the shape of the symptoms in image segmentation 
tasks. To address this challenge, the methodology presented in this work 
proposes a sliding window method that uses a deep neural network as 
feature extractor and classifier to achieve an easily adaptable method 
that allows extracting the location of symptomatic plant areas. 
Furthermore, this localisation can be interpreted using XAI methods, 
which avoids interpretability problems usually associated with this type 
of network, as is mentioned by Liu and Wang (2021). The use of a simple 
and intuitive method to locate symptomatic lesions, such as the sliding 
window, could provide a complete picture of the infection in the plant 
employing a simple annotation, rather than just a part of it, as most of 
the works in this field reflect (Liu and Wang, 2021).

This study introduces an innovative technology designed for the 
detection and localisation of foliar diseases and pests in plants under 
real-world conditions, accompanied by novel tools for the analysis of 
visual symptom detection. In particular, the methodology was demon-
strated through the example of downy mildew detection in grapevines. 

The study examined the effectiveness of the benchmark CNNs and vision 
transformer in determining the optimal classification neural network for 
the detection of disease-affected regions in plants. To enhance confi-
dence and usability, explainable artificial intelligence techniques were 
employed to interpret the predictions of the neural networks. In addi-
tion, the classification model was used to identify the regions of the plant 
affected by the disease through the use of a sliding window approach, 
thereby facilitating the localisation and quantification of the disease 
across the entire plant with a straightforward labelling methodology. 
Finally, the study analysed the adaptability of the method to varying 
daylight conditions, plant varieties and image acquisition, enabling its 
implementation on a mobile platform for accurate automated disease 
diagnosis and treatment in commercial crops.

2. Related works

Several studies have explored the use of deep learning to detect plant 
diseases and pests in real natural environments, with a focus on pre-
venting and controlling their spread and development (Liu and Wang, 
2021; Thakur et al., 2022). Deep neural networks are mainly used for 
feature extraction, classification and lesion localisation using data 
collected in the laboratory and in the field (Liu and Wang, 2021). In 
addition, image datasets are usually collected manually, using a simple 
background and focusing the image on the region of interest of the plant 
(Araujo and Peixoto, 2019; Chen et al., 2021), or the background may be 
even removed to decrease image complexity (Dey et al., 2022). which 
leads to simpler image processing and accurate results, but requires 
additional time.

Kumar Sahu and Pandey (2023) employ computer vision and ma-
chine learning techniques to differentiate plant foliar diseases in 
different crops. Image processing and Fuzzy C-Means clustering are used 
to extract features from the images and Random Forest (RF) and Multi- 
Class Support Vector Machine (MCSVM) models are hybridised to clas-
sify the data. The method used is well adapted to images taken under 
controlled conditions using a simple annotation of the images and allows 
an interpretation of the prediction due to the simplicity of the methods 
applied. However, its adaptation to complex field conditions would 
require more complex methods, such as deep learning. Arumuga Arun 
and Umamaheswari (2023) propose a Complete Concatenated Deep 
Learning (CCDL) architecture for crop disease classification, using a 
resampled version of the Plant Village dataset to pre-train a model 
capable of adapting to crop field images retraining the model through 
fine-tuning. The importance of model interpretability is also highlighted 
by visualizing the feature maps generated by the different levels of 
convolution layers. Although this model is notable for its potential for 
adaptation to resource-constrained devices, models that achieve a 
higher accuracy such as the Inception architecture, which could be 
relevant for disease detection, are discarded. In addition, the method 
focuses on images of specific parts of the leaves. These methods could be 
improved for efficient application in the field by considering image 
acquisition using a mobile platform, in different daylight conditions and 
focusing on the whole plant.

In the case of grapevine, techniques such as computer vision, deep 
neural networks, transfer learning, fine-tuning and data augmentation 
could be applied to accurately detect the presence of leaf disease 
symptoms. Wu et al. (2020) develop a computer vision method that 
extracts lesion pixels using spatial colour transformations, Wiener 
filtering, the Otsu method, morphological operations, and Prewitt edge 
detector, and then extracts various features from the size and shape of 
the lesions for their classification using a back-propagation neural 
network. This type of feature extraction is usually specialised in the 
datasets and requires intensive supervision by experts to adjust the pa-
rameters of each technique and is more useful in controlled conditions, 
as considered in the study. Other works consider deep learning to deal 
with natural environmental conditions, although in some cases com-
puter vision techniques such as the use of HSV colour space and 
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morphology transformations are employed to simplify the region of in-
terest, although deep learning is used to extract the lesion features 
(Gutierrez et al., 2021; Liu et al., 2022). However, the use of these 
techniques could be replaced by deep neural networks to detect leaf 
diseases such as downy mildew, as in the case of Zhang et al. (2022), 
who combine YOLOv5 with attention mechanisms. Meanwhile, Chen 
and Wu (2023) identify grape leaf diseases by augmenting their dataset 
using a Faster R-CNN and a generative adversarial network (DCGAN) to 
generate synthetic grape lesions, and then classify the images with a 
CNN. Although the findings appear promising, these approaches are 
limited to identifying diseases on leaves without considering the 
complexity of detecting diseases directly on the plants.

3. Materials and methods

Before exposing the specific details of this study, a previous, general 
overview is presented to the reader in Fig. 1. First, plant images were 
acquired in the field using portable digital cameras (a). Afterwards, raw 
data processing was performed involving image supervision, splitting, 
and adequately labelling by human experts (b). The next step was the 
deep learning modelling with neural networks for automated disease 
detection in leaves, trained with the images previously labelled (c). 
Modelling was supported and evaluated with XAI methods. Finally, 
affected leaves were located generating a sliding-window detector, 
capable of batch-processing canopy images for disease localisation (d).

3.1. Data acquisition

In-field RGB image acquisition was performed in fourteen commer-
cial vineyard plots trained on vertical shoot positioning located in two 
regions in northern Spain presenting different levels of downy mildew 
incidence (Table 1). Image acquisition was carried out under different 
sky light conditions in two seasons (2019 and 2021).

Images were taken both manually and on-the-go at a height of 
approximately one metre from the ground and at 1.0 m from the vine-
yard canopy, ensuring the acquisition of the main body of the canopy. A 
ground mobile platform with permanent all-wheel drive (AS 940 Sherpa 
4WD XL, AS-Motor GmbH, Bühlertann, Germany) was used to take the 
images on-the-go (Fig. 2). The vehicle was taking images at a speed of 5 
Km/h, using a Canon EOS 5D Mark IV RGB camera (Canon Inc. Tokyo, 
Japan), mounting a full-frame CMOS sensor (35 mm and 30.4MP 
equipped with a Canon EF 20 mm F/2.8 USM lens). The images taken 
manually were obtained both with the Canon camera and with a Sony 
alpha 7-II digital mirrorless RGB camera (Sony Corp., Tokyo, Japan) 
equipped with a Zeiss 24/70  mm lens with optical stabilization. Images 
taken with the Canon camera had dimension of 6720 × 4480 pixels, 
while the ones taken with the Sony were 6000 × 4000 pixels. In total, 

224 images were captured from all the plots: 52 on-the-go, 66 manually 
using the Canon camera, and 106 manually using the Sony camera 
(Table 1). Examples of the images taken with different natural lighting 
and shading can be seen in the Fig. 3.

3.2. Data preparation and labelling

Visual symptoms of downy mildew are mainly represented by small 
spots on leaves, which requires high-quality images for detection. Can-
opy of the plant was captured almost completely and similarly in all 
plots, due to its vertical shoot positioning system, which allowed the 
images to be processed in the same way, detecting which parts of the 
plants were diseased using a sliding window. The height and width of 
the leaves in the images varied from 1200 to 120 pixels, due to the 
variability in grapevine, the variation in both leaf size and leaf surface 
(which means that some shoots are closer to the camera than others or 
that there are variations in the age of the leaves) on each plant. For this 
reason, the dataset used to detect the downy mildew symptoms was 
created extracting sub-images of 800x800 pixels with a sliding window, 
considering approximately one leaf per window or an area with several 
leaves. The sliding window used to extract the data applied a 400x400 
pixel stride (50 % overlap) to obtain more windows per image and to 
increase available data. For each 6720x4480 pixel image, 176 windows 
were extracted and for 6000x4000 pixel images, 126 windows were 
extracted. The extracted sub-images were resized to 320x320 pixels in 
order to adapt them to the input of the neural network models. This 
process reduced the computational load of the models while maintain-
ing the texture of the disease symptoms in the images, despite the loss of 
detail.

The windows were manually classified by an expert into two classes 
(areas with downy mildew symptoms and areas without downy mildew 
symptoms) (Fig. 4). The infected areas included at least one leaf con-
taining oil spots caused by downy mildew. The non-infected areas 
included all other cases, such as leaves without symptoms of downy 
mildew, the trunk of the plant, the soil, or the sky.

3.3. Disease detection

The sub-images were classified using six deep learning models and 
transfer learning, reducing training time transferring weights learned 
from a huge image dataset. The tested architectures were five: four CNNs 
and a vision transformer, all of them pre-trained using the ImageNet 
dataset (Russakovsky et al., 2015) and changing the original last dense 
layer to one with two neurons and a softmax activation function, to 
adapt the network to a binary classification problem. The four CNNs 
architectures used, implemented in Keras 2.10.0 (Chollet, 2015) over 
TensorFlow 2.10.0 (Abadi et al., 2016), were ResNet50 (He et al., 2016), 

Fig. 1. Diagram of the methodology developed in this paper. Grapevine canopy images were acquired under field conditions (a). Images were divided in sub-images 
(b). Areas with downy mildew symptoms were detected training a pre-trained deep learning model and the model was verified using Grad-CAM (c). Areas with 
downy mildew symptoms were located in the full image using the trained model for object detection (d).
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Xception (Chollet, 2017), EfficientNetV2S (Tan and Le, 2021) and 
RegNetX002 (Dollar et al., 2021). The vision transformer used, imple-
mented in vit-keras library (Morales, 2021), was ViT-Base (Dosovitskiy 
et al., 2020) using patch sizes of 16 and 32 pixels. All models were 
trained using the weights of the pre-trained neural network: training 

only the classification layer, training only the normalization and clas-
sification layers (as in Frankle et al. (2020) for the ResNet architecture 
using ImageNet and CIFAR-10 datasets), and training all the layers. The 
neural networks minimized categorical cross entropy as the loss function 
using the Adam optimizer and a Cyclical Learning Rate (Smith, 2017) 

Table 1 
Details of the plots at the time the images were taken and the number of images taken with each device.

Plot ID Plot features Image acquisition Number of images captured

Grapevine variety Downy mildew incidence Time of day Sky On-the-go Manually 1 (Canon) Manually 2 (Sony) Total

1 Hondarribi Zuri Middle Early afternoon Cloudy 0 31 0 31
2 Tempranillo Low Early afternoon Partly cloudy 0 0 8 8
3 Hondarribi Zuri High Early afternoon Cloudy 0 12 10 22
4 Hondarribi Zuri Zerratia High Late afternoon Cloudy 0 12 10 22
5 Hondarribi Zuri High Afternoon Partly cloudy 0 11 10 21
6 Tempranillo Very low Early afternoon Cloudy 0 0 3 3
7 Graciano Low Early afternoon Cloudy 0 0 11 11
8 Tempranillo Middle Early evening Clear 12 0 10 22
9 Hondarribi Zuri High Late morning Cloudy 2 0 10 12
10 Hondarribi Zuri High Late morning Cloudy 12 0 10 22
11 Hondarribi Zuri Middle Early afternoon Cloudy 12 0 0 12
12 Hondarribi Zuri Low Afternoon Partly cloudy 12 0 10 22
13 Hondarribi Zuri Low Late afternoon Clear 2 0 5 7
14 Tempranillo Low Late afternoon Clear 0 0 9 9
All   52 66 106 224

Fig. 2. Mobile platform used for taking the images on-the-go in the vineyard.

Fig. 3. Examples of images taken with different sky light conditions: clear (a), partly cloudy (b) and cloudy (c).
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with an exponential function having a gamma value of 0.9, a step size of 
1364 iterations (2*steps per epoch), a base learning rate of 0.001 and a 
maximum learning rate of 0.00001, that decrease the learning rate in 
each cycle. The batch size used to train the neural networks was 32. The 
training step stopped after 50 epochs without improving the validation 
accuracy and then, and the model achieving the best accuracy was 
selected.

All models were evaluated using a stratified hold-out validation, 
where the original image dataset, containing the high-resolution images, 
was separated into two distinct datasets: 80 % for training and vali-
dating the model, and 20 % for testing the model. The proportion of 
images from each plot was maintained in both datasets. Both the original 
images and the sub-images extracted from them were taken into 
consideration for the purposes of analysis. Subsequently, the sub-images 
from the dataset prepared for training and validating the model, were 
divided into two new datasets: one comprising 80 % of the sub-images, 
which were employed for model training, and the other comprising 20 
%, which were utilised for model validation during the training process. 
The proportion of sub-images from each plot, the type of image acqui-
sition (either on-the-go or manually using one of the two cameras), and 
the classification assigned by the expert were maintained. The total 
number of sub-images and images considered in each dataset is detailed 
in Table 2. The resulting labelling of the sub-images indicated that 43 % 
showed some downy mildew symptom and 57 % were areas without 
symptoms, maintaining a relatively balanced dataset. Online data 
augmentation was applied to the training dataset to improve the 
generalization ability during the training step. The sub-image trans-
formations applied were the random combination of rotation between 
0 and 360 degrees, horizontal and vertical flip, brightness change be-
tween 90 % and 110 % from its original brightness, zoom between the 
scales of 0.95 and 1.05, width and height shift between 0 and 5 % of its 
pixels and shearing between 0 and 5 degrees. In all cases, the points 
outside the boundaries of the input image were filled with the reflection 
of the image. The metrics used to evaluate the model classification were 
recall, precision, f1-score, accuracy, and confusion matrix. Their calcu-
lation formulas are as follows: 

Recall =
TP

TP + FN
(1) 

Precision =
TP

TP + FP
(2) 

F1 − score =
2 × Precision × Recall

Precision + Recall
(3) 

Accuracy =
TP + TN

TP + TN + FP + FN
(4) 

The true positive values (TP) represented the number of sub-images 
correctly identified by the model as positive class, while the true nega-
tive values (TN) indicated the number of sub-images correctly classified 
as the negative class. The false positive values (FP) represented the 
number of negative instances incorrectly predicted as positive, and the 
false negative values (FN) referred to the number of positive instances 
incorrectly classified as negative. The recall, precision and f1-score 
metrics were calculated for each class, with the macro-average used 
for the final calculations.

Model prediction was visually analysed using two XAI methods, 
observing in both cases the pixels the neural network had prioritised to 
classify the images. The CNNs were analysed using the Gradient- 
weighted Class Activation Mapping (Grad-CAM, Selvaraju et al., 
2020), using the gradient information from the last convolutional layer 
to assign importance values to the image pixels depending on a specific 
class. On the other side, the vision transformers were analysed using the 
output token of the network to see the attention associated with the 
input image, in the same way as Dosovitskiy et al. (2020).

3.4. Disease localisation

The sliding window method was used to analyse the complete can-
opy images and localise areas with disease symptoms. The trained 
neural network that achieved the highest f1-score was used to detect the 
windows where symptoms were present. The sliding window was 
800x800 pixels and used a 400x400 pixel stride (50 % overlap), main-
taining the same size used for the disease detection. The trained model 
classified the windows, identifying those that showed some of the 
symptoms. The windows classified as symptomatic of each image were 
then aggregated to enable a comprehensive evaluation of the entire 
image. This involved the segmentation of the image between the 
symptomatic areas and the areas where the disease was not detected. 
Furthermore, the same segmentation was conducted by reconstructing 
the images with the sub-images classified by the expert and aggregating 
those classified as symptomatic, thus enabling a comparison of the 
prediction with the expert’s labels. The merged symptomatic areas were 
highlighted in red in the full image, thus facilitating the visualisation of 
the location of the areas containing disease symptoms. The localisation 
was evaluated with accuracy, f1-score, precision, recall and Intersection 
over Union (IoU). These metrics were evaluated by comparing the in-
dividual pixel values, taking into account the masks generated for each 

Fig. 4. Examples of sub-images labelled as downy mildew (a) and non-downy mildew (b).

Table 2 
Number of sub-images (800x800 pixels) and images used in each dataset and 
separated by classes (downy mildew or no symptoms).

Dataset Sub-images Images

Downy mildew Non downy mildew All

Training 9584 12,258 21,842 179
Validation 2397 3065 5462
Testing 2773 4047 6820 45
Total 14,754 19,370 34,124 224
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image. Additionally, the severity of the disease on the plant was calcu-
lated as the percentage of the image that was identified as an area 
exhibiting symptoms of downy mildew. The root mean square error 
(RMSE) and coefficient of determination (R2) metrics were used to 
compare the severity obtained with the expert’s labels with the pre-
dicted severity for each image. The metrics were calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(ŷi − yi)
2

n

√

(6) 

R2 = 1 −

∑n
i=1(ŷi − yi)

2

∑n
i=1(y − yi)

2 (7) 

Where yi was the severity obtained with the expert assessment for the 
i-th full image, ŷi was the predicted severity for the i-th full image, y was 
the mean of severities of the expert and n the number of full images 
available in the analysed dataset.

The probability of a window being a diseased area was also evaluated 
by comparing the results of the location and severity prediction using 
threshold values between 0.1 and 0.9 on the probability. In this way, 
only windows whose probability of being diseased provided by the 
neural network was greater than the threshold were considered as 
diseased. The threshold that obtained a higher IoU for the images used in 
the training stage was taken into account to locate the symptoms of the 
disease.

4. Results and discussion

4.1. Downy mildew detection

Accurate detection of downy mildew or other plant diseases or pests 
is of great importance for effective agricultural management. The 
overall results of the classification process, as shown in Table 3, 
demonstrated the efficacy of the deep neural networks for identifying 
diseases such as downy mildew in grapevine. The analysis focused on 
testing different fine-tuning approaches in pre-trained neural network 
architectures to determine the optimal model. When the architecture is 
analysed independently of the fine-tuning, the vision transformer ar-
chitectures, proposed by Dosovitskiy et al. (2020), produced the supe-
rior results. Under this condition, the features extracted by vision 
transformers using the ImageNet dataset seemed to be more general and 
useful than using CNNs, resulting in a significant increase in accuracy 
during the testing process, from 0.59 (using RegNet002) to 0.79 (using 
ViT-Base with a patch size of 16). In addition, fine-tuning seemed to 
improve the performance of all tested architectures, particularly in CNN 

architectures (Table 3). This reflects the utility of using fine-tuning with 
a pre-trained deep neural network using the ImageNet dataset, as it was 
demonstrated in the identification of rice (Chen et al., 2021) or apple (Li 
et al., 2021) leaf diseases. In line with Bevers et al., (2022), who con-
ducted experiments testing various freezing approaches, the most 
favourable results were obtained retraining the neural networks from 
scratch. This was particularly evident in CNNs, where the Effi-
cientNetV2S architecture, proposed by Chollet (2017), reached an ac-
curacy of 0.91 and an F1-score of 0.92 in the testing phase. Similar 
results were obtained with the remaining CNNs, while ViT-Base indi-
cated slighter lower performance. Vision transformer have demon-
strated superior performance among state-of-the-art CNNs in other leaf 
diseases, like cassava’s (Thai et al., 2021), but this is typically because of 
its large dataset and manual image acquisition. The identification of 
apple leaf diseases with complex backgrounds in the field was also 
attempted using these neural networks (Li et al., 2021), where the 
RegNet architecture was found to be more effective than ViT. This 
suggests that ViT could perform better considering a simple and exten-
sive dataset. However, for identifying leaf diseases in complex scenarios, 
such as the one considered in this study that considers various daylight 
conditions and grapevine varieties, CNNs may still be a more suitable 
solution. It is noteworthy that retraining only the normalization layers 
appeared to be a more robust approach than retraining the models from 
scratch, achieving similar results in the validation and testing phases 
and requiring fewer training layers. This may be attributed to the limited 
amount of data available, which could result in overfitting of the com-
plex models. This suggest that the EfficientNetV2S architecture could be 
adapted effectively to a small dataset, although for other models 
retraining only part of the layers could help to reduce overfitting.

The application of XAI through the Grad-CAM method facilitated the 
interpretation of the results produced by all CNN architectures. The 
Grad-CAM method enabled the visualisation of the specific areas of the 
images that the neural networks focused on for classification. In the 
examples presented in Fig. 5, it can be seen that all CNNs had focused on 
the areas of leaves with yellow spots (oil spots characteristic of leaves 
infected by Plasmopara viticola), to detect leaves with downy mildew 
symptoms. On the other hand, in the detection of the non-infected areas, 
each network seems to concentrate on areas of the plant where parts of 
the leaves were present, yet no such oil spots were discernible. This 
visualization corroborated the correct functioning of CNNs highlighting 
image regions that distinguish labels, filling the gap of interpretation in 
deep neural networks for leaf disease detection, as it is commented in Liu 
and Wang (2021).

In the case of vision transformer, the results of the neural networks 

Table 3 
Results of the classification of the sub-images on the validation and test set with all the models. The best model is highlighted in bold.

Fine Tuning Trained layers Architecture Validation Testing

Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall

None 1 EfficientNetV2S 0.63 0.64 0.70 0.60 0.61 0.63 0.73 0.56
1 RegNetX002 0.56 0.72 0.56 1.00 0.59 0.74 0.59 1.00
1 ResNet50 0.64 0.68 0.68 0.68 0.62 0.68 0.69 0.67
1 Vit-Base16 0.80 0.83 0.80 0.86 0.79 0.82 0.82 0.83
1 Vit-Base32 0.78 0.82 0.78 0.85 0.78 0.81 0.81 0.82
1 Xception 0.75 0.79 0.76 0.81 0.73 0.78 0.77 0.79

Normalization layers 111 EfficientNetV2S 0.89 0.90 0.92 0.89 0.89 0.91 0.93 0.89
45 RegNetX002 0.87 0.89 0.88 0.89 0.86 0.88 0.89 0.87
54 ResNet50 0.87 0.89 0.89 0.89 0.86 0.88 0.90 0.87
2 Vit-Base16 0.79 0.82 0.80 0.85 0.79 0.82 0.82 0.82
2 Vit-Base32 0.78 0.81 0.79 0.84 0.77 0.81 0.81 0.81
41 Xception 0.89 0.90 0.90 0.90 0.88 0.89 0.91 0.88

All layers 515 EfficientNetV2S 0.92 0.93 0.94 0.92 0.91 0.92 0.94 0.90
145 RegNetX002 0.90 0.91 0.92 0.90 0.87 0.89 0.92 0.86
177 ResNet50 0.92 0.93 0.94 0.92 0.90 0.91 0.94 0.89
20 Vit-Base16 0.88 0.89 0.90 0.89 0.85 0.87 0.89 0.85
20 Vit-Base32 0.86 0.87 0.88 0.87 0.77 0.80 0.83 0.78
134 Xception 0.92 0.93 0.93 0.92 0.90 0.91 0.94 0.89
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were analysed using attention maps, as can be seen in the Fig. 6, in a 
similar way as Chen et al. (2021) did to analyse the rice disease classi-
fication. The attention maps revealed that the trained models were 
focusing on the oil spots in the diseased leaves and on other regions in 
the non-diseased leaves. In addition, the main difference between the 
two vision transformers was the certainty in predicting areas with 
downy mildew symptoms. The Vit-Base16 paid more attention to the oil 
spots than the rest of the image. This discrepancy may be attributed to 
the utilisation of an architecture with a smaller path size for the 
extraction of important features from the images. The employment of a 
path size of 16 pixels facilitated a more detailed and fine-grained focus, 
whereas a path of 32 pixels offered a more generalised view. In this 
context, the Vit-Base16 architecture yielded more precise outcomes, 
enabling the focus of the detection on the oil spots.

Considering all the maps obtained with the XAI methods, it could be 
considered that all the architectures were focusing on the parts of the 
image containing disease symptoms to classify them. The ability of these 
methods to interpret the prediction using deep learning was also 
demonstrated, avoiding the need to extract features by hand (Araujo and 
Peixoto, 2019; Wu et al., 2020) or to analyse feature maps of convolu-
tional layers individually (Arumuga Arun and Umamaheswari, 2023). 
Moreover, the fully retrained EfficientNetV2S architecture reflected its 
good performance with the Grad-CAM heatmap, localising most of the 
oil spots present in the diseased image.

The results of the top-performing model, retraining all the layers of 

the EfficientNetV2S architecture, were analysed using a confusion ma-
trix (Table 4). The study indicates that a significant proportion of true 
positives (TP) and true negatives (TN), representing 86 % and 94 % of 
the positive and negative samples, respectively, was detected. These 
results showed a favourable balance between the two classes, resulting 
in high precision for both cases. Another notable value in the confusion 
matrix was the number of false positives (FP), indicating the amount of 
non-symptomatic areas misclassified as symptomatic. Only 6 % of the 
negative samples were wrongly classified in this category. Some exam-
ples of such false positives using the Grad-CAM method are shown in 
Fig. 7. These examples seemed to reflect that false positives were mainly 
due to leaf damages with similar features to downy mildew symptoms, 
so their detection could be positive in order to analyse these damages in 
depth and avoid ignoring real symptoms. The utilisation of images 
captured in complex field conditions, where there may be vegetation on 
the ground, plants in the background, or diverse lightning conditions, 
may potentially impact the precision of the model. Nevertheless, the 
developed methodology enables the examination of these potential 
shortcomings and could be enhanced with new sub-images containing 
these conflicting attributes through straightforward labelling.

4.2. Downy mildew localisation

Once the best model was trained, the localisation of downy mildew 
symptoms was completed using a sliding window. The thresholds tested 
to indicate whether a downy mildew detection was considered based on 
the probability provided by the neural network are summarized in 
Table 5 and Fig. 8. It can be seen that the localisation results were better 
using a threshold of 0.6, obtaining an IoU of 0.83 and a F1-score of 0.89. 
In addition, the results comparing the percentage of the image that 
contain downy mildew symptoms detected by an expert and automati-
cally were similar for all the thresholds, obtaining the lowest RMSE and 
the highest R2 for the thresholds between 0.4 and 0.7. This indicates that 
the medium thresholds are more accurate in locating downy mildew 
symptoms. For this reason and considering that localisation was per-
formed with a 50 % overlap, which helped to reinforce symptom 
detection, a 0.6 threshold was used to detect the areas of the grapevine 
canopy with downy mildew symptoms. This method allowed supervised 

Fig. 5. Examples of Grad-CAM results using the best models of each CNN architecture in windows with and without downy mildew symptoms. Regions with downy 
mildew symptoms are marked in the original image by red rectangles.

Fig. 6. Examples of attention map results using the best models of each Vit 
architecture in windows with and without downy mildew symptoms. Regions 
with downy mildew symptoms are marked in the original image by 
red rectangles.

Table 4 
Confusion matrix of the classification of the windows from the test set using the 
EfficientNetV2S architecture retraining all its layers.

Actual class

Downy mildew Non downy mildew

Predicted class Downy mildew 2542 (86 %) 231 (6 %)
Non downy mildew 414 (14 %) 3633 (94 %)
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Fig. 7. Grad-CAM examples for False positive values using the EfficientNetV2S architecture training all its layers.

Table 5 
Results of the localisation of the areas with downy mildew symptoms for the full images on the test set with the best model. The location of the areas was compared 
using the IoU, accuracy, F1-score, precision, and recall metrics. The best threshold is highlighted in bold.

Threshold Training and validation Testing

IoU Accuracy F1 Precision Recall IoU Accuracy F1 Precision Recall

0.1 0.83 0.90 0.89 0.83 0.99 0.74 0.82 0.83 0.74 0.98
0.15 0.86 0.93 0.91 0.87 0.98 0.76 0.85 0.85 0.78 0.97
0.2 0.88 0.94 0.93 0.89 0.98 0.78 0.87 0.86 0.80 0.96
0.25 0.89 0.95 0.93 0.90 0.98 0.79 0.88 0.87 0.82 0.96
0.3 0.91 0.95 0.94 0.92 0.97 0.80 0.88 0.87 0.83 0.95
0.35 0.91 0.96 0.95 0.93 0.97 0.81 0.89 0.88 0.85 0.94
0.4 0.92 0.96 0.95 0.94 0.96 0.82 0.90 0.89 0.87 0.93
0.45 0.92 0.96 0.95 0.94 0.96 0.82 0.90 0.88 0.87 0.92
0.5 0.92 0.96 0.95 0.95 0.95 0.82 0.90 0.89 0.88 0.92
0.55 0.92 0.96 0.95 0.96 0.95 0.83 0.91 0.89 0.89 0.91
0.6 0.92 0.96 0.95 0.96 0.94 0.83 0.91 0.89 0.90 0.90
0.65 0.92 0.96 0.95 0.97 0.94 0.83 0.91 0.89 0.91 0.90
0.7 0.91 0.96 0.95 0.97 0.93 0.83 0.91 0.89 0.92 0.89
0.75 0.91 0.96 0.94 0.97 0.92 0.82 0.91 0.89 0.92 0.88
0.8 0.90 0.95 0.94 0.98 0.91 0.82 0.91 0.89 0.93 0.87
0.85 0.89 0.95 0.93 0.98 0.89 0.81 0.91 0.88 0.94 0.85
0.9 0.87 0.94 0.92 0.98 0.87 0.79 0.90 0.87 0.95 0.83

Fig. 8. Results of the localisation of the areas with downy mildew symptoms for the full images on the test set with the best model. The percentage of the area in the 
image with downy mildew symptoms was compared with the expert detection using the R2 and RMSE metrics. The dashed vertical lines indicate the best threshold 
for each dataset.
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symptom localisation throughout the entire plant, even in the cases 
where spots are hardly visible. It accomplished this by avoiding the need 
for time-consuming labelling of disease lesion (Gao et al., 2021; Zhang 
et al., 2022), and instead taking into account the context of the infected 
area. Additionally, it reduced the false positives due to small plant 
damage areas, dark leaves or soil patches.

An example of the localisation of downy mildew symptoms in a full 
image can be seen in the Fig. 9. This type of image enables consideration 
of the location of the downy mildew infection on the leaf surface, in 
addition to its detection. In this example, all symptoms of downy mildew 
were successfully identified, although some areas were discarded, as 
they were covered by other overlapping windows. The complexity of the 
high-quality images used is also remarkable, reflecting the whole plant 
and some elements that could be conflicting, such as the ground, sky or 
rows of the same crop in the background. Such images also indicate the 
potential for utilising ground vehicles, such as the platform used in this 
work, tractors or other crop-specific vehicles, for disease assessment 
purposes. The vehicles can be equipped with imaging systems to capture 
comprehensive views of the plants, thereby facilitating precise disease 
detection across extensive crop fields. This reflects the advantage of this 
method to detect the disease without having to focus the analysis on 
parts of the plant susceptible to symptoms (Chen et al., 2021; Kumar 
Sahu and Pandey, 2023; Wu et al., 2020), and in real field conditions. In 
addition, these results could indicate the possibility of using this method 
to detect low-infected areas of the crop, allowing a more accurate 
treatment of the area.

4.3. Method generalization

The RGB images were taken under different conditions, using 
different cameras, on-the-go or manually, under different lighting con-
ditions (mainly based on agrometeorological conditions) and on 

different grape varieties. This diversity contributed to the complexity of 
the dataset, leading to the development of a robust model adaptable to 
real-world scenarios. As indicated in Figure 10, the method adjusted 
accordingly to variations in acquiring the images and lighting condi-
tions. The results presented F1-score values ranging between 0.85 and 
0.93 in disease detection and IoU values between 78 and 91 % in disease 
localisation. The findings suggest that the method could adapt to a 
mobile platform comparably to manual image acquisition. Therefore, it 
may be feasible to implement it in the vehicles used in cultivation, as in 
Abdelghafour et al. (2020) work. Similarly, obtained results from images 
captured under various sky conditions indicated good performance of 
technology in natural conditions. The need to take the images at night or 
under cloudy skies (Tardif et al., 2022) to avoid noise caused by het-
erogeneous day-light or the influence of plants in the background is not 
necessary. The grapevine varieties showed similar results, obtaining the 
best results for the Hondarribi Zuri variety, most likely due to the 
availability of a greater number of images. On the other hand, the 
Graciano variety obtained lower F1-score and IoU values, as a result of 
considering fewer images. Thus, for effective training of the neural 
network, the method developed seemed to work better when more than 
9 full images per condition are included, as in the case of grapevine 
variety. While adaptable, the performance of the method is tied to the 
conditions under which it was trained, meaning it might need retraining 
or fine-tuning when applied to significantly different conditions or crop 
types. Overall, this method demonstrated significant potential for 
adaptation to other grape varieties or conditions, requiring minimal data 
to achieve satisfactory results, and could be implemented in large crops 
with similar conditions.

Additionally, the figure illustrates the discrepancy between the 
severity estimated by the expert and that predicted by the method, 
calculated from the disease localisation. At the highest severities an 
almost negligible error was made, while at the lowest severities the error 

Fig. 9. Example of image taken in the field (a), one of the areas with downy mildew symptoms (b), downy mildew localisation by an expert (a) and using the 
EfficientNet architecture retraining all the layers and applying a detection threshold of 0.6 (b).
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increased. In the latter case, the method seemed to tend to predict more 
severity than the existing one, although without departing too far from 
the general trend. This characteristic may be particularly advantageous 
for the early detection of the disease, allowing for timely adjustments to 
treatments in less infected areas and thereby reducing critical damage to 
the crop. This quantification capability might enhance crop manage-
ment by enabling more precise and effective disease intervention 
strategies.

5. Conclusions

This study focused on the identification and localisation of diseases 
in real field conditions using an interpretable deep learning approach 
that is readily adaptable to new conditions through the use of transfer 
learning and straightforward data labelling. The case study employed 
was that the detection of grapevine downy mildew in entire plants. The 
neural networks were retrained with several fine-tuning approaches, 
resulting in an optimal balance between model robustness and accuracy 
by retraining only the normalisation layers of the neural network. 
Furthermore, the EfficientNetV2S architecture achieved an accuracy of 
91 % in the test dataset upon retraining all of its layers, thereby 
demonstrating its capability to adapt efficiently to small complex data-
sets. In general, CNNs proved to be superior to ViT in adapting to 
complex and small datasets. Moreover, the developed method facilitated 
the examination of neural network predictions using XAI techniques, 
revealing that the models concentrated on small oil spots for disease 

detection, particularly the optimal model, which automatically identi-
fied the majority of the visible symptoms. The techniques demonstrated 
high performance on a modest dataset of 179 high-quality images, 
indicating the potential applicability to other grapevine varieties, pests/ 
diseases or crops. The method allowed rapid and precise localisation of 
downy mildew in images of the grapevine canopy, even when symptoms 
were minimal, reducing the need for arduous image annotation. Addi-
tionally, the method demonstrated adaptability to different grapevine 
varieties, automatically identifying similarities among their downy 
mildew symptoms. Moreover, the results were consistent for images 
captured under various daylight conditions, whether using a mobile 
platform or a static setup. This indicates the possibility of integrating 
this algorithm into crop treatment machines, such as tractors. Such 
integration could reduce environmental impact by allowing variable- 
rate applications of pesticides. This algorithm opens the possibility for 
accurate real-time crop monitoring and the prevention of major disease 
damage, marking significant advancements in agricultural disease 
management.
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