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Abstract 
The recent outbreak of COVID-19 has caused millions of deaths worldwide 
and a huge societal and economic impact in virtually all countries. A large va-
riety of mathematical models to describe the dynamics of COVID-19 trans-
mission have been reported. Among them, Bayesian probabilistic models of 
COVID-19 transmission dynamics have been very efficient in the interpreta-
tion of early data from the beginning of the pandemic, helping to estimate the 
impact of non-pharmacological measures in each country, and forecasting the 
evolution of the pandemic in different potential scenarios. These models use 
probability distribution curves to describe key dynamic aspects of the trans-
mission, like the probability for every infected person of infecting other indi-
viduals, dying or recovering, with parameters obtained from experimental 
epidemiological data. However, the impact of vaccine-induced immunity, 
which has been key for controlling the public health emergency caused by the 
pandemic, has been more challenging to describe in these models, due to the 
complexity of experimental data. Here we report different probability distri-
bution curves to model the acquisition and decay of immunity after vaccina-
tion. We discuss the mathematical background and how these models can be 
integrated in existing Bayesian probabilistic models to provide a good estima-
tion of the dynamics of COVID-19 transmission during the entire pandemic 
period. 
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1. Introduction 

As of 19 January 2024, over 770 million confirmed COVID-19 cases and over 7 
million deaths have been reported worldwide [1]. In Spain, more than 121,000 
persons have already died from the disease [2]. Although the public health 
emergency due to the COVID-19 pandemic is officially over, the virus is still ac-
tive, and efficient mathematical models of the transmission dynamics are still 
needed to be ready for periodic recurrence, appearance of new virus variants, or 
any other unwanted future scenarios. 

From the beginning of the pandemic, mathematical modelling has helped to 
understand the relevant factors involved in the transmission dynamics of the vi-
rus and to evaluate the effectiveness of public health measures. This has pro-
vided powerful tools for decision-makers to identify and apply effective control 
mechanisms in order to minimize the impact of the pandemic on public health 
and society. Thus, different approaches were reported to model the transmission 
dynamics of the virus in the population. Among them, Bayesian probabilistic 
models were very efficient for the estimation of the transmission parameters at 
the early stages of the pandemic [3], since they could use ad-hoc devised mecha-
nistic functions in complex scenarios, like incomplete data due to low detection 
rates, changing conditions due to intervention measures or different compliance 
of such measures in each region/country. In these challenging conditions, other 
mathematical approaches based on differential equations were more problematic 
to use in practical terms.  

At the beginning of the pandemic, we applied a Bayesian probabilistic model 
to analyse the impact of non-pharmacological measures in different countries 
[4], as these were the only strategies to control the spread of the disease, and 
found that such measures had different impact in the COVID-19 transmission in 
each country. The initial model was extended throughout the pandemic in order 
to include key features such as the possibility of defining an unlimited number 
of non-pharmacological measures, modelling the impact of detection rate in the 
transmission, or predicting cases and deaths in hospitals (manuscript in prepa-
ration). But towards the end of 2020, two key aspects had a dramatic effect on 
COVID-19 transmission dynamics: the massive vaccination of the population, 
and the appearance of different virus variants. The challenge was to efficiently 
include in the model the impact of vaccine-induced immunity on the evolution 
of the disease, taking also into account the immunity of the recovered popula-
tion and considering specific transmission parameters for the different virus va-
riants. 

Different studies have estimated the evolution in time of the protection pro-
vided by vaccination based on clinical data as well as on the concentration of an-
tibodies and other molecules of the immune system [5] [6] [7] [8]. Such studies 
show important aspects that need to be considered to model the impact of vac-
cination on transmission dynamics. Basically, after vaccination, the level of pro-
tection against infection (immunity) increases until reaching a maximum value, 
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which remains at a certain level during a period of time. Immunity provided by 
additional vaccine doses will be incremental, but at some point, if no additional 
doses are applied, immunity starts to decay. In addition, these studies show that 
immunity provided by vaccination is less effective against some variants, like 
omicron. 

In this work, we focus on how to model the impact of the vaccination on the 
transmission of the disease. We define probability distribution curves to estimate 
the degree and duration of the vaccine-induced immunity and its impact on the 
transmission, considering the different vaccine doses. The approach assumes 
that the protective effect of the vaccination gets reflected in a reduction of the 
population that is susceptible of being infected, and that this reduction can be 
quantified by optimizing different parameters related to the impact of the vac-
cines, such as the percentage of the vaccine-induced immunity after each vaccine 
dose and the duration of this immunity. We show how these probability curves 
and the different vaccination parameters can be integrated in a more generic 
transmission model that can explain the transmission dynamics of COVID-19 
over long periods of time, incorporating parameters for the most relevant factors 
related to the spread of the disease: non-pharmacological measures, vaccination, 
and individual characteristics of the different virus variants. 

2. The Model and Preliminaries 
2.1. Compartmental SIR Model 

Compartmental models are widely used to describe the spread of infectious dis-
eases [9]. In these models, the population is divided into different groups (com-
partments), and the evolution of a disease is described by the dynamics that 
modulate the transition of the individuals between the different compartments. 

One of the most popular compartmental approaches to describe the transmis-
sion dynamics of the COVID-19 is the SIR model (Figure 1), where the popula-
tion is classified into the following compartments: susceptible (S), infected (I), 
and recovered (R). 

The SIR model and other compartmental approaches are usually implemented 
using differential equations to describe the dynamics of the transitions between 
the different compartments [9]. In this model, the evolution of the population in 
each compartment over time can be described by the following ordinary diffe-
rential equations (ODEs): 

d dS t I S Nβ= − ⋅ ⋅ , ( ) 00 0S S= ≥ ,                 (1) 

( ) ( )d dI t I S N Iβ γ= ⋅ ⋅ − ⋅ , ( ) 00 0I I= ≥ ,              (2) 

d dR t Iγ= ⋅ , ( ) 00 0R R= ≥ ,                    (3) 

where N denotes the total population, which is a constant value, assuming no 
vital dynamics (births and deaths), so that ( ) ( ) ( )N S t I t R t= + + , being ( )S t , 
( )I t  and ( )R t  the populations of each of the compartments at any given 

time. 
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Figure 1. Scheme of a SIR model. 

 
The identification of the values for the ODE parameters (β and γ) that best fit 

the observed data, usually through numerical integration, will provide the de-
scription of the factors related to the transmission of the disease. However, this 
approach has important limitations. This simple model does not consider dif-
ferent aspects of the transmission that were not evident at the beginning of the 
pandemic. For instance, susceptible population will be reduced due to dead in-
dividuals, recovered individuals can be susceptible again after some time when 
acquired immunity is lost, or the fact that infected individuals are not contagious 
from the moment of infection. To address these situations, SIR models were ex-
tended to the SEIR models, with an additional compartment for exposed (E), i.e., 
individuals that have been infected but are not yet contagious, or by using of ad-
ditional compartments for dead (D), or new transitions from recovered to sus-
ceptible compartments. In addition, in realistic scenarios where transmission 
conditions can change in time due to intervention measures or other factors, or 
with limited and inconsistent observed data, these mathematical models based 
on differential equations can become highly complex and have difficulties in es-
timating the key parameters for the transmission dynamics on the long term. 

Here, we use a probabilistic approach based on a SIR model that has been ex-
tended by adding an additional state, dead (D), as previously described [3] [4], 
and where the dynamic of the transitions between the different states (suscepti-
ble, infected, recovered, dead) are described by specific parameters and proba-
bility distributions over time [3] [4]. In this model, we use a numerical integra-
tion method with a Bayesian approach and Markov Chain Monte Carlo (MCMC) 
simulations for the parameter estimation, which provides sets of parameter val-
ues that optimally fit the observed data. 

2.2. Numerical Integration Using Probability Distributions 

In our numerical integration approach, the expected number of new infections 

iI  occurring in each day i is defined as a function of the number of infected in-
dividuals jI  in the previous days, their probability of infecting other individu-
als after i-j days according to a serial interval (SI) probability density function, 
and the effective reproduction number ( tR ) in the day i (Equation (4)). 

( ) ( )1
1 .i

i t j i jji
I R I SI−

−=
⋅ ⋅= ∑                      (4) 

The effective reproduction number ( tR ) as defined here describes the total 
number of persons that are infected in average on a given day by each infected 
individual. This value changes over time and depends on different factors, such 
as the application of non-pharmacological measures. Values greater than 1 mean 
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that the disease is still spreading, while values less than 1 mean that the trans-
mission of the disease is under control. In our model, the value of tR  at a given 
day i is determined by the basic reproduction number ( 0R ) and a set of factors 
e kα−  that describe the effect of all non-pharmacological measures that are active 
on that day i as well as other events/conditions that can impact the virus trans-
mission (Equation (5)). 

( ) 0 e .kk
t i

R R α−∑⋅=                        (5) 

The basic reproduction number ( 0R ) is the initial value of the effective re-
production number ( tR ) and can be defined as the average number of secondary 
infections produced when one infected individual is introduced into a host pop-
ulation where everyone is susceptible [9]. This parameter describes the trans-
mission rate in a susceptible population in absence of any measures. The factors 
that quantify the impact of the different measures that are active in a given pe-
riod, defined for convenience as exponentials e kα− , reflect the contribution of 
each non-pharmacological measure or event to changes in the value of the effec-
tive reproduction number. Factors with values less than 1 are related to effective 
measures that have contributed to a reduction in the value of the reproduction 
number, and therefore in the spread of the disease. Factors with values greater 
than 1 are associated to periods and events that have led to an increase in the re-
production number, and therefore in the number of cases. The optimal values 
for the basic reproduction number ( 0R ) and the factors e kα−  will be estimated 
after fitting the model to the observed death data (see next section).  

The Serial Interval (SI) probability density distribution (Figure 2(a)) de-
scribes in probabilistic terms when a newly infected individual is more likely to 
transmit the disease to another person. This distribution was estimated as a 
gamma distribution g ~ Gamma (6.5, 0.62) based on data from early epidemics 
[3]. 

On the other side, the expected number of deaths iD  in each day i is a func-
tion of the number of infections jI  occurring in the previous days, the esti-
mated infection fatality ratio (IFR) for each country, and the probability of oc-
currence of death in day i-j after infection according to a previously calculated 
infection to death (ITD) probability density distribution (Equation (6)). 

( )1
1 .i

i j i jjD I IFR ITD−
−=

⋅ ⋅= ∑                     (6) 

The infection fatality ratio (IFR) is the probability of death for an infected 
case, and it has been calculated for each country from clinical data as previously 
described [4]. 

The infection to death (ITD) probability distribution (Figure 2(b)) describes 
when a fatality is more likely to occur after infection. This distribution was esti-
mated as the combination of two gamma distributions, representing the incuba-
tion period (infection to onset) and the time between onset of symptoms and 
death (onset to death), and is given by π ~ Gamma (5.1, 0.86) + Gamma (17.8, 
0.45) according to data from early epidemics [3]. 
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Figure 2. Probability distribution curves used in our COVID-19 transmission model: (a) 
Serial Interval (SI), and (b) Infection to Death (ITD). 

2.3. Monte Carlo Simulations and Bayesian Estimation of  
Transmission Parameter Values 

The above-described model (Equations (4)-(6)) estimates the new infected indi-
viduals and deaths for each day as a function of a set of parameters that will be 
optimized so that the model provides the best possible description of real data. 
These parameters are: 1) the initial infected individuals ( 0I ) during the first 6 
days of the studied period, which usually starts 30 days before the first cumu-
lated 10 deaths; 2) the initial value of the reproduction number ( 0R ), and 3) the 
parameters kα  that quantify the impact of the different intervention measures 
and conditions that are applied in each of the periods defined by the user. The 
values of the parameters are sampled from Bayesian prior distributions by using 
a Markov Chain Monte Carlo (MCMC) method in order to obtain the posterior 
distributions that lead to the best possible fit of the model estimations of daily 
deaths to the reported data, which are assumed to follow a negative binomial 
distribution, as previously described [3] [4]. The parameters kα  are technically 
grouped in two classes ( )1kα , related to measures that decrease transmission 
(e.g. lockdown), and ( )2kα , related to periods or events that may increase 
transmission of the disease (e.g. Christmas periods). Following the approach 
from previous works [3] [4], the prior distributions for the first class of parame-
ters ( )1kα  are defined as a gamma distribution g ~ Gamma (0.5, 1). This has 
always a value greater than 0 and ensures that the corresponding factors e kα−  
are always less than 1, which is the appropriate range of values to describe effec-
tive measures. For the second class of parameters ( )2kα , the prior distributions 
are defined as a normal n ~ Normal (0, 1), which assumes a priori a neutral ef-
fect ( e 1kα− =  for the mean value 0kα = ) and may result in a posterior distribu-
tion with all possible values for the factor e kα− , which will allow the identifica-
tion of any possible effect, either positive or negative, for the corresponding pe-
riods and events. 
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3. Impact of Vaccination on Transmission Dynamics 
3.1. Including Vaccine-Induced Immunity in the Transmission 

Model 

The impact of vaccination in the transmission can be described by a reduction of 
the effective reproduction number by the relative amount of the initial popula-
tion 0N  that is not susceptible of being infected due to the protective effect of 
the vaccination. The same is true also for the immunity acquired after infection. 
Both types of immunity contribute to the estimation of the reproduction num-
ber with a reduction factor (Equation (7)), in which 1iImm −  represents the total 
amount of immune population (calculated on the previous day for practical 
purposes). 

( ) ( )( )0 1 0e 1 .kk
t ii

R R Imm Nα−
−

∑ −⋅ ⋅=                 (7) 

The amount of immune population ( iImm ) can be calculated as a function of 
the reported number of individuals vaccinated on previous days at each dose 
type (Vacc1j, Vacc2j, Vacc3j), the probability of having acquired immunity in 
day i-j after vaccination according to a precalculated distribution for each dose 
type (V1TImm, V2Timm, V3TImm), and the efficiency of the vaccine against 
each virus variant, according to the reported proportion of variants each day 
(IRvarj) (Equation (8)). The value Immi also includes the number of infected 
people in previous days and the probability of retaining immunity since the time 
of infection. To avoid double counting in the case of infected individuals that are 
vaccinated, here we have included only detected cases when this number is larg-
er than the number of vaccinated people. 

((
) )

1

1
1 1 2 2

3 3 .

i

i j j i j j i j
j

j i j j i j

Imm IRvar Vacc V TImm Vacc V TImm

Vacc V TImm I ITImm

−

− −
=

− −

= ⋅ ⋅ ⋅

+ ⋅ ⋅

+

+

∑
      (8) 

The V1TImm, V2ITmm, V3TImm distributions will describe the probability 
of being immune at a given time after each vaccination dose. We will analyse 
here (see next section) different probability distributions based on approaches 
from other studies and on empirical data related to the effectiveness of the vac-
cines.  

On the other side, the infection fatality ratio (IFR), assumed to be a constant 
value for each country during the entire studied period in the initial model, 
should actually be variable in time when vaccine-induced immunity is included, 
given that vaccinated individuals that are infected have lower probability of 
death. In addition, IFR can be different for each virus variant. Thus, IFR on a 
given day j will depend on the percentage of vaccinated population and on the 
proportion of infections for the different virus variants on that day. With this, 
the constant value of IFR used initially in Equation (6) for the estimation of the 
number of deaths is replaced by a variable value jIFR  (Equation (9)). 

( )1
1 .i

i j j i jjD I IFR ITD−
−=

⋅ ⋅= ∑                     (9) 
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3.2. Vaccine-Induced Immunity Probability Distributions 

A key element for efficiently describing COVID-19 transmission dynamics in 
our Bayesian model will be the probability distributions that describe the protec-
tion against infection after vaccination (V1TImm, V2Timm, V3TImm), which 
are used for the estimation of the immune population on a given day based on 
the information about the vaccinated population for each dose type (Equation 
(8)). Based on previous studies [5] [6] [7] [8], the probability distributions that 
describe vaccine-induced immunity should take into account two important as-
pects: 1) vaccination does not provide immediate immunity; and 2) vaccinated 
and infected individuals are immune against infection during an undetermined 
period of time.  

The acquisition of immunity after vaccination is not immediate, and there are 
many studies showing how this immunity increases over time until reaching a 
maximum in a period of time that depends on the vaccine type and the number 
of previously received doses. As an example, Figure 3 shows empirical data with 
the evolution of the concentration of antibodies after 1st dose vaccination [10], 
which can be described as a logistic curve. 

The evolution in time of vaccine-induced immunity acquired after more than 
one dose will require of more complex probability distribution curves. As an 
example, Figure 4 shows different probability distribution curves as possible 
approaches to model the vaccine-induced immunity for the individuals that have 
received two vaccine doses on time (V2TImm), and how these curves describe 
well available data showing the evolution of antibody concentration after the two 
first vaccination doses, after adjusting the empirical data to the vaccination time 
between doses [10]. But it must be noticed that the level of the antibody concen-
tration does not reflect necessarily the degree of immunity, especially when the  
 

 
Figure 3. Logistic curve fit (median with 95% confidence interval in green) to antibody 
concentration levels after vaccination with BNT162b2 (blue dots, extracted manually from 
Figure 1 in reference [10]). 
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Figure 4. Examples of probability distribution curves (V2TImm) that describe the evolution of vaccine-induced immunity when 
the two first vaccine doses are applied on time: (a) smooth increase of the immunity defined by truncated gaussians; (b) using a 
step function, assuming an activation of the immunity some days after vaccination; (c) successive increase of the degree of im-
munity after vaccination; and (d) smooth increase of immunity after vaccination following the trend of a truncated gaussian, the 
maximum level of immunity starts to decay immediately after the second dose to get a best fit to the concentration of antibodies. 
For comparison, an empirical example with the evolution of the antibody concentration levels after vaccination is shown (blue 
dots, representing data extracted from Figure 1 in reference [10] for the evolution of antibodies after vaccination with 
BNT162b2). 

 
highest level of protection is reached. In this situation, according to some stu-
dies, the immunity will be kept as long as the antibody concentration remains 
above a defined protective threshold (see details, for example, in reference [11]). 
For this reason, the most adequate immunity curve will not be automatically the 
one that best fits the values of the concentration of antibodies. 

More complex is the description of the vaccine-induced immunity decay after 
a given period of time. Many studies have shown that the level of immunity can 
start to decay months after the vaccination, although the extent of this decay is 
less clear. Besides, the starting time of such decay depends on the number and 
type of vaccine doses, which increases the complexity of the description. Thus, 
several factors define the parameters of the immunity probability distribution 
curves related to the vaccination: time to reach the highest immunity after each 
vaccine dose, highest immunity against infection after each vaccine dose, period 
of highest immunity after each vaccine dose, period of immunity decay from 
highest to lowest immunity, and lowest immunity against infection after im-
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munity decay. We have evaluated here different probability distribution curves 
describing the evolution of vaccine-induced immunity after several doses, ac-
cording to the following requirements: consistency with information available 
from other studies, good fit of empirical data, and convenience for a flexible im-
plementation. 

Figure 5 shows some examples of the immunity curves used in the current ver-
sion of the model for the individuals that have received 2 or 3 doses (V2TImm, 
V3TImm) when using specific values for the different parameters in different 
scenarios. Delaying (or suppressing) the application of the booster dose shows a 
relevant impact in the decay of the immunity. Figure 5 also includes the proba-
bility distribution curve describing the evolution of immunity in infected people 
(ITImm). The periods of increase and decrease of immunity are defined as trun-
cated gaussians, and the periods of maximum and minimum immunity are just 
constant values. 

 

 
Figure 5. Probability distribution curves describing the evolution of vaccine-induced immunity in different possible scenarios: (a) 
when all vaccine doses are applied on time; (b) when only two vaccine doses (no booster) are applied; (c) when the booster is de-
layed; and (d) curve for immunity decay in infected people (ITImm). 
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4. COVID-19 Transmission Model Including Vaccine-Induced 
Immunity: Application to Reported Data 

4.1. Defining the Optimal Parameters for the Immunity  
Probability Curves 

The model has been applied to available data from a total of 30 European coun-
tries using different combinations of the parameters that define the vaccination 
immunity curves. Initial values for these parameters have been obtained from 
empirical data documented in different sources [12] and from available informa-
tion about the effectiveness of the vaccines obtained from a systematic review of 
65 studies from 19 different countries [13], which is considered a good starting 
point for the definition of the initial values used to fit and optimize the model. 
From these initial values, the optimal combination of parameters has been found 
by adjusting some of them to get the best fit results of the model for different 
countries. The values of the parameters that provide the best fit for the majority 
of the European countries are shown in Table 1. 

4.2. A Case Study: Application of the Model to COVID-19  
Transmission Dynamics in Spain 

The above-described model, including the effect of vaccine-induced immunity, 
has been applied to the available data of COVID-19 pandemic in Spain in the 
period from January 1st, 2020 to October 31st, 2022. The vaccination immunity 
model has been adjusted using the best values for the parameters from Table 1 
(best-fit scenario), as well as using different values in three of the parameters to 
describe another potential situation with a reduced impact of vaccination impact 
in the disease transmission reduction (pessimistic scenario). Table 2 shows the 
parameter values used here for these two scenarios. 

Figure 6 shows the predicted cumulative number of deaths (median with 95% 
credible interval) for the two above-described scenarios in comparison with the 
real data. Remarkably, using the values from Table 1 (best-fit scenario), the pre-
dictions from the model replicate well the evolution of the number of reported 
deaths along the entire period of time since the beginning of the pandemic (from 
01/01/2020 to 31/10/2022). In the pessimistic scenario, the predictions deviate 
from the real data in the first months of 2021, when the massive vaccination of 
the population started. This analysis indicates that vaccination showed a clear 
positive impact on reducing the spread of the disease and the parameter values 
shown in Table 1 suggest a consistent description of the evolution of acquired 
immunity after vaccination. 

Figure 7 shows the evolution of the values for daily infection fatality rate 
( jIFR ) in Spain, considering the percentage of vaccinated population and the 
proportion of infections for the different virus variants on a given day. This val-
ue gradually decreases since beginning of 2021, when massive vaccination of 
population starts, and dramatically drops towards the end of 2021, when the 
omicron variant becomes dominant. 
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Table 1. Optimal values for the parameters of the vaccine-induced immunity probability 
distribution curves within the COVID-19 transmission model. 

Parameter Value 

Time to reach the highest immunity after each vaccine dose 15 days 

Highest immunity against infection after first dose 56% 

Highest immunity against infection after second dose 80% 

Highest immunity against infection after booster 80% 

Period of highest immunity after second dose 150 days 

Period of highest immunity after booster 240 days 

Period of immunity decay from highest to lowest immunity 60 days 

Lowest immunity against infection after immunity decay 25% 

Reduction factor of the previous immunity values for infections  
with the variant omicron 

0.5 

 
Table 2. Parameter values of the vaccination immunity curves used in two potential sce-
narios regarding the impact of vaccination. 

Parameter Best-fit Pessimistic 

Highest immunity against infection after second dose 80% 70% 

Highest immunity against infection after booster 80% 70% 

Period of highest immunity after second dose 150 days 120 days 

 

 
Figure 6. Cumulated number of deaths in Spain predicted by our COVID-19 transmis-
sion model (green line is the median and green shadow indicates the 95% confidence in-
terval of the predictions) using different vaccination parameters: (a) best-fit scenario with 
parameter values from Table 1, and (b) pessimistic scenario, as a result of assuming a 
reduced effect of the vaccination. Reported cumulated number of deaths is shown in 
brown bars. 
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Figure 7. Evolution of daily infection fatality rate (IFRj) estimated for Spain data, consi-
dering the percentage of vaccinated population and the proportion of infections for the 
different virus variants on every day. 

5. Discussion and Conclusions 

We have explored here different probability models to include the impact of 
vaccination in a previously described Bayesian COVID-19 transmission model 
[4]. The use of probability distribution curves with parameters from empirical 
data to describe the evolution of vaccine-induced immunity provides estima-
tions that optimally fit the reported data. However, while working well in gener-
al terms, our approach has some limitations. For instance, there is evidence that 
there are differences in the effect of the vaccination between seropositive (i.e., 
recovered from a COVID-19 infection) and seronegative individuals [8], and 
that this effect is also different depending on the age [14]. These factors are not 
considered in our model, where we assume common vaccination parameters for 
the whole population. This is consistent with other simplifications of the model, 
in which, for example, age weighted values for the initial value of the infection 
fatality ratio (IFR) are used. 

On the other side, while the initial value of the reproduction number ( 0R ) and 
the factors that quantify the impact of the non-pharmacological interventions 
are optimised during the fitting process, the parameters that define the vaccina-
tion immunity curves are predefined as constant values in each fit run, accord-
ing to empirical data as described in previous sections. Future versions of the 
model will include these parameters to be optimized during the fitting process. 
The challenge is the limited availability of epidemiological data for the majority 
of countries, which is increasingly scarce since the COVID-19 pandemic is offi-
cially over. 
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In summary, Bayesian inference models are very efficient to model transmis-
sion dynamics of infectious agents in complex scenarios, like COVID-19. These 
models can be used to estimate the impact of non-pharmacological measures or 
other events that can affect the virus transmission. The versatility of these mod-
els makes it feasible to include different scenarios like vaccination or new va-
riants. We have used a realistic distribution probability curve to describe the ac-
quisition of immunity after vaccination, which provides very good fitting of the 
model to the available epidemiological data. Now that the public health emer-
gency due to the COVID-19 pandemic is officially over and COVID-19 data are 
not published regularly, the challenge is to estimate the evolution of the vac-
cine-induced immunity in the long term. The tool presented here can be easily 
adapted to estimate future potential scenarios and can be used for the planning 
of long-term vaccination strategies, e.g. considering the need of additional 
boosters periodically due to the decay of the vaccine-induced immunity, or to 
the appearance of new virus variants with specific transmission dynamics. 
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