Evaluation of potential bacteriocin-producing bacteria recovered from soil. A holistic OneHealth strategy against multidrug-resistant pathogens and for food-industry applications.

Mario Sergio Pino-Hurtado^{1*}, Rosa Fernández-Fernández^{1*}, Beatriz Robredo², Carmen González-Azcona¹, Irene Marañón-Clemente¹, Oscar García-Tuesta¹, Carmen Tenorio¹, Carmen Lozano¹, Myriam Zarazaga¹, Carmen Torres¹.

UNIVERSIDAD

DE LA RIOJA

¹Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain. ²Area of Didactic of Experimental Sciences, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.

> mario-sergio.pino@unirioja.es rosa.fernandez@unirioja.es

OneHealth-UR Group

INTRODUCTION

Soils are reservoirs for a wide variety of bacteria, that coexist and compete for access to better nutrient sources by producing bacteriocins as a defense mechanism to a hostile ecosystem. These antimicrobial peptides would be

OBJECTIVES

Evaluate the antimicrobial-activity (AA) of soil bacteria against a wide range of relevant pathogens to detect bacteriocin-producing isolates (P-BAC+).

of great interest for biomedical and food-industry applications.

- 1. 50 P-Bac+ showed AA against at least one of the 15 indicator-bacteria tested, corresponding to 13 genera and 25 species (Figure 1).
- 2. 51.4% of the P-Bac+ were susceptible to all antibiotics tested, while 67% lacked β-hemolytic activity.
- 4. The WGS analysis of the nine selected P-Bac+ isolates revealed:
 - Presence of 9 different BGC in 8 out of the 9 genomes analysed. It highlights the high presence of Lanthipeptide-like and Uberolysin-like coding operons (Figure 2).
 - No plasmids were detected (Table 1).

A)

_R1.6

X7270

Uberolysin

_R1.8

X9472_

Uberolysin

_R3.6

- Complete phages were detected in 7 out of 9 P-Bac+ isolates (Table 1).
- 3. B. laterosporus strain X7237 showed AA against 8/15 indicators, including methicillin-resistant *S. aureus* and *L. monocytogenes*.

Isolates	Identification	Phenotypic Characterization	Genotypic Characterization (WGS)				
		AMR	AMR	AMR non structural genes	BGC	Plasmids	Phages
X7237	Brevibacillus laterosporus	Susceptible	-	<i>van</i> S-F <i>van</i> R-F	Lanthipeptide (Gallidermin, Linocin_M18) Sactipeptide	-	NC_028930 NC_028749 NC_028969
X7259	Bacillus pumilus	Susceptible	cat86	-	Lanthipeptide-like Uberolysin/Pumilarin	-	NC_001884 NC_048631 NC_028991
X7262	Brevibacillus laterosporus	Susceptible	-	<i>van</i> Y-F	RiPP-Like	-	NC_022980 NC_028805 NC_028749
X7264	Paenibacillus apiarius	PEN-FOX-TOB	<i>bla</i> BPU	-	Uberolysin/Pumilarin	-	NC_028991
X7270	Pseudomonas kilonensis	TIC-ATM	<i>bla</i> BPU	-	Uberolysin/Pumilarin	-	NC_029104
X7276	Staphylococcus hominis	Susceptible	-	_	-	-	NC_020490 NC_020490
X9431	Bacillus pumilus	Susceptible	blaBPU, cat86	-	Uberolysin/Amylocyclicin	-	NC_029104 NC_048640
X9467	Bacillus mycoides	Susceptible	fosB, bla1, bla2	<i>van</i> R-A	Lanthipeptide i (Subtilomycin) Lanthipeptide ii (SwittermicinA/ Macedovicin, Cerecidin) RiPP-like	-	-
X9472	Bacillus altitudinis	Susceptible	-	-	Uberolysin/Pumilarin/ Amylocyclicin	-	_

Table 1. Phenotypic and Genotypic characterizations of the nine selected P-Bac+ isolates

Antibiotics tested: penicillin (PEN), cefoxitin (FOX), imipenem (IMP), meropenem (MER), vancomycin (VAN), erythromycin (ERY), clindamycin (CLI), tetracycline (TET), gentamicin (GEN), tobramycin (TOB), streptomycin (STR), trimethoprim-sulfamethoxazole (SXT), ciprofloxacin (CIP), chloramphenicol (CHL) and linezolid (LZD). For Pseudomonas kilonensis: ticarcillin (TIC), levofloxacin (LEV), meropenem (MER), aztreonam (AZT), ceftazidime (CAZ) and ciprofloxacin (CIP).

AGENCIA Estatal de Investigaci

Fig. 2. Genetic environment comparison. A) Uberolysin-like; B) Lanthipeptides-like

CONCLUSIONS

Soils are reservoirs of bacteriocin-producing bacteria with antimicrobial-activity against relevant pathogens, which is of great interest for biomedical and food-industry applications.

ACKNOWLEDGES Project PID2022-139591OB-loo of the Ministry of Science and Innovation of Spain. Mario Sergio Pino-Hurtado has a Predoctoral Contract FPI from the University of La Rioja (FPI-UR).