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Abstract

This work studies the impact of foliar application of methyl jasmonate (MeJA) and methyl jasmonate plus urea (MeJA + Ur)
on the evolution of amino acid content in “Tempranillo’ grapes during ripening, across two vintages. To achieve this goal,
sample grapes were harvested at five different timing. Foll: 1 day before first foliar application; Fol2: 1 day before second
foliar application; Preharvest: 15 days after second foliar application; Harvest: the day of harvest; and Postharvest: 15 days
after harvest. The effect of foliar treatments was season dependent, being effective to improve the amino acids content of
grapes only in the first vintage. Among the treatments studied, foliar application of MeJA-Ur showed better results. The
evolution of amino acids during ripening also was different among seasons. Overall, in the 2019, amino acids reached their
highest content at Preharvest or Harvest samples, whereas in the 2020 season, these highest concentrations were reached at
Postharvest. Asparagine might serve as a suitable amino acid for controlling grape ripening, as its content decreased from
Foll to Postharvest in the two vintages. Moreover, differences on the total amino acids content at Harvest date between
vintages were observed, probably due to different climatological conditions. Therefore, this study pioneers the examination
of the impact of foliar applications of MeJA and MeJA + Ur on the amino acids evolution in ‘Tempranillo’ grapes during
ripening. The need for further research is clear to comprehend the complex interaction between foliar treatments and grape
amino acids dynamics for optimizing nitrogen quality of grapes.
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Introduction changes significantly during ripening and these changes

can influence grape and wine quality. Likewise, the initial
The amino acids of must are key compounds for the growth  nitrogen (N) pool in grapes can affect a large number of
and development of yeast during the alcoholic fermentation ~ metabolites that contribute to wine’s quality. At berry set
and for bacteria in the course of malolactic fermentation =~ commence grape N accumulation [4]. The total amino acid
[1]. Their content can affect the kinetic of the fermenta-  grape content increases from veraison to harvest. However,
tion [2]. Furthermore, some of amino acids are precursors sometimes the total amino acid content achieves a peak
of volatile compounds such as higher alcohols, aldehydes, before harvest, after which it stabilized and/or decrease
ketones and esters [3]. The amino acid content of grapes slowly until harvest [5]. Furthermore, the content of amino
acids and its profile in grapes can be influenced by different
factors such as viticultural practices, environmental con-

0 Eva P. Pérez-Alvarez ditions, and grapes variety [6]. The amino acid profile of
evapilar.perez@icvv.es grapes is generally similar from year to year for each vari-
04 Teresa Garde-Cerdén ety, whereas the amino acid concentration can vary broadly
teresa.garde.cerdan@csic.es [7]. However, climatic change is modifying the develop of
rapes and therefore, grape composition and flavour. Berr
! Grupo VIENAP, Instituto de Ciencias de La Vid y del Vino g, P . R - grap . P L. y
(CSIC, Universidad de La Rioja, Gobierno de La Rioja), ripening is accelerated under high temperatures, achieving
Ctra. de Burgos, km. 6, 26007 Logrofio, Spain a high content of sugars versus a faster breakdown of acids
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in the grape, which leads to higher alcohol and lower acidity
in the resulting wine. These effects may appear by modifi-
cation of secondary metabolites such as flavonoids, amino
acids and carotenoids, affecting aroma and wine color [8].
For this reason, it is interesting to study how the evolution of
amino acids in grapes during ripening is developing, in the
current climatic change scenario. To mitigate the climatic
change effects several approaches have been studied in last
years, foliar application of biostimulants to grapevines is one
of them [9-12]. Among them, stand out the use of elicitors
and nitrogen compounds as foliar treatments to grapevines.

Methyl jasmonate (MeJA) is one of the elicitors more
used, is a phytohormone present in several plant tissues and,
acts as inductor of secondary metabolites in plants [13]. Its
foliar application to vineyard increases the phenolic con-
tent in grapes, mainly anthocyanins and stilbenes [14, 15],
presumably because MeJA can activate the phenylalanine
ammonia-lyase (PAL), enzyme which catalyses the first
step in the phenolic biosynthesis pathway [16]. However,
its effect can be influenced by grape variety, season, or cli-
mate conditions [17—19]. The effect of MeJA foliar applica-
tion in other fruits also has been studied. In sweet cherry
fruits, MeJA treatments were effective in maintaining of fruit
firmness, although a decrease on total phenolics, antioxi-
dant capacity and total monomeric anthocyanin values was
observed [20]. Another study focused on kiwi concluded that
treatments with MeJA can be used as an efficient postharvest
tool to reduce weight loss and minimize losses in vitamin
C, total phenolics, and total flavonoids [21]. Regarding the
effect on amino acids content in grapes, MeJA foliar appli-
cation to grapevines presents an unclear effect. In this way
Garde-Cerdan et al. [22], observed an increase in the content
of some amino acids in the must from ‘Tempranillo’ grapes,
whereas Gutiérrez-Gamboa et al. [23] showed a decrease
on the must amino acids content. Recently, Garde-Cerdan
et al. [24], in their study about the effect of MeJA and MeJA-
dopped nanoparticles on nitrogen composition of ‘Tempra-
nillo’ grapes, have observed a different effect of these foliar
treatments depending on the vintage.

Foliar fertilization is another practice that research-
ers carry out to improve grapes quality. Hannam et al.
[25] showed that nitrogen foliar application at veraison-
time to vineyard is an effective method of improve YAN
(yeast assimilable nitrogen) content in must and it produces
changes in amino acid profiles of must. Among the differ-
ent nitrogen sources, foliar application of urea (Ur) is wide-
spread due to its small molecular size, higher water solu-
bility and low cost [11, 26]. Previous studies reported an
increase on the concentration of several amino acids in must
of grapes coming from grapevines foliar treated with urea
[25, 27]. Nevertheless, Gutiérrez-Gamboa et al. [28] showed
a decrease on the concentration of some amino acids and,
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an increase on the proline content in must from ‘Cabernet
Sauvignon’ grapes foliar treated with urea.

There are previous works [29, 30] which analyze the
effect of foliar application of MeJA and MeJA combined
with Ur on the phenolic, aromatic and nitrogen composi-
tion of ‘Tempranillo’ wines and phenolic grape composi-
tion. Authors concluded that foliar treatments were season
dependent and the effect of MeJA + Ur foliar treatment was
greater than the effect of MeJA improving the wine chemi-
cal composition. However, there is only a recent publication
on the effect of MeJA + Ur foliar treatment on the amino
acids composition of grapes at the harvest date. This study
concluded that, in the first vintage examined, the foliar
application of MeJA and MeJA + Ur increased ammonium
nitrogen, amino nitrogen, and yeast assimilable nitrogen in
‘Tempranillo’ grapes compared to the control grapes, with
the combined treatment exhibiting a more pronounced effect.
However, in the second year of the study, these treatments
did not significantly impact nitrogen parameters, suggest-
ing a season-dependent influence, possibly attributed to
environmental conditions and variations in grapevine nitro-
gen content [31].Taking into account the aforementioned,
we wonder about the impact of foliar application of MeJA
and MeJA + Ur on the amino acids content of grapes during
ripening. Based on the hypothesis that both treatments will
increase amino acids content in grapes, although, MeJA + Ur
will probably have a greater effect on amino acid content
compared to the application of MeJA alone. Hence, the aim
of this work was to study, for the first time, the evolution
(from 1 day before the first foliar application to 15 days after
harvest) of the content of the different amino acids on grapes
coming from ‘Tempranillo’ grapevines foliar treated with
MelJA and MeJA + Ur over two vintages.

Materials and methods
Vineyard site and experimental layout

This work was conducted in the 2019 and 2020 vintages
with grapes from ‘Tempranillo’ (Vitis vinifera L.) variety
grown in the experimental vineyard of Finca La Grajera.
This vineyard was located in Logrofio, La Rioja (Spain)
(Lat: 42°26"25.36" North; Long: 2°30'56.41" West; 456 m
above sea level). Vines were planted in 1997, were trained
to a vertical shoot positioned (VSP) trellis system with a
grapevine spacing of 2.80 mx 1.25 m and grafted onto a
R-110 rootstock. For this trial, three foliar applications were
carried out to vineyard: (i) control (sprayed with aqueous
solution of Tween 80 alone), (ii) methyl jasmonate (MeJA,
10 mM of methyl jasmonate) and (iii) methyl jasmonate plus
urea (MeJA + Ur, 10 mM of methyl jasmonate and a dose of
6 kg N/ha of urea).
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The products employed to foliar applications were
dissolved in water (the concentration of treatments was
decided following previous works [11, 22, 32], and Tween
80 (1 mL/L) were used as wetting agent. Treatments were
carried out twice, at veraison and 1 week later. For each
treatment, 200 mL of solution was sprayed over leaves. The
treatments were performed in triplicate and the experimental
layout was arranged in a complete randomized block design
along the vineyard. 10 vines were sprayed for each replica-
tion and treatment.

Grapes were hand-harvested at five different timing. Foll:
1 day before the first foliar application; Fol2: 1 day before
second foliar application; Preharvest: 15 days after the sec-
ond foliar application; Harvest: the day of harvest [when
grapes reached their optimum technological maturity, i.e.,
the weight of 100 berries remained constant and the prob-
able alcohol reached 13 (% v/v)]; and Postharvest: 15 days
after harvest. For each time of sampling, 150 berries per
replicate and treatment was collected haphazard and frozen
at — 20 °C until the analyses of amino acids were carried out.

Analysis of amino acids in the musts by HPLC-DAD

The amino acids analysis was carried out following the
method described by Garde-Cerdén et al. [33]. In brief, a
derivatization of amino acids was performed by reaction of
1.75 mL of borate buffer 1| M (pH 9), 750 pL of metha-
nol (Merck, Darmstadt, Germany), 1 mL of sample (previ-
ously filtered), 20 pL of internal standard (2-aminoadipic
acid, 1 g/L) (Sigma—Aldrich, Madrid, Spain) and 30 pL of
derivatization reagent diethyl ethoxymethylenemalonate
(DEEMM) (Sigma-Aldrich). In a screw-cap test tube was
done the reaction of derivatization over 30 min in an ultra-
sound bath (DU-100 ARGO Lab, Modena, Italy). Then, the
samples were heated at 70-80 °C in an incubator (INC 120
plus ARGO Lab) for 2 h to complete the degradation of
excess DEEMM and reagent by-products.

The analyses were carried out on an Agilent 1260 Infin-
ity II chromatograph (Palo Alto, USA), with a diode array
detector (DAD). An ACE HPLC column (C18-HL) (Aber-
deen, Scotland) particle size 5 pm (250 mm x 4.6 mm) was
employed for the chromatographic separation. Amino acids
were eluted following the conditions described by Garde-
Cerdan et al. [2]. Phase A, 25 mM acetate buffer, pH 5.8,
with 0.4 g of sodium azide; phase B, 80:20 (v/v) mixture of
acetonitrile and methanol (Merck). DAD was used for the
detection, and was monitored at 280, 269 and 300 nm. The
volume of injection was 50 pL. The identification of the
target compounds was performed according to the retention
times and the UV—Vis spectral characteristics of correspond-
ing standards (Sigma-Aldrich) derivatizated. Quantification
was performed using the calibration graphs of each standard

in 0.1 N HCI (R2 >0.97), which underwent the same process
of derivatization that the samples.

The treatments in vineyard were carried out in triplicate,
so the results of free amino acids correspond to the average
of 3 analyses (n=3).

Statistical analysis

The SPSS Version 21.0 statistical package for Windows
(SPSS, Chicago, USA) was employed to perform the statis-
tical analysis of the data. The differences among the means
of nitrogen compounds data were processed using the vari-
ance analysis (ANOVA) (p <0.05) and a post hoc Duncan’s
multiple range test was carried out. The effect of foliar treat-
ments, time of sampling, seasons and their interaction were
analyzed using a multifactor analysis (MANOVA).

Results and discussion

Influence of the foliar MeJA and MeJA + Ur treatments
on amino acids content in each time of sampling
in grape musts

Table 1 shows the results of must amino acids content from
control and treated vines with methyl jasmonate (MeJA) and
with methyl jasmonate plus urea (MeJA + Ur), in 2019 sea-
son for each time of sampling (Foll, Fol2, Preharvest, Har-
vest, and Postharvest). The amino acid present in a higher
content in all samples was arginine, except for MeJA + Ur
treatment from Preharvest samples, in which glutamine was
the predominant. This result is consistent with observations
made by Hernidndez-Orte et al. [7] on the ‘Tempranillo’
grape variety. Arginine contains four nitrogen atoms in its
molecule, making it the most effective nitrogen source for
yeasts. Glutamine, Y-aminobutyric acid (GABA), and the
sum of threonine and citrulline were found in greater propor-
tion in grapes across all samples. In both Harvest and Post-
harvest samples, histidine reached similar levels as GABA
and the sum of threonine and citrulline. Hernandez-Orte
et al. [7] studied the amino acid profile of grapes from four
varieties over a 3-year period and showed that arginine, pro-
line, histidine, and glutamine were the most prevalent amino
acids across all four varieties. In addition, it is noteworthy
that arginine, along with ammonium, serves as the main
nitrogen sources for yeast through alcoholic fermentation
[2]. Valine, isoleucine, leucine and phenylalanine are amino
acids that acts as precursors of higher alcohols in alcoholic
fermentation [2]. Their representation in grapes, as shown
in Foll, was less than 5% of the total amino acids content. In
Fol2, this group of amino acids accounted for approximately
5% in both control and MeJA + Ur grapes, whereas in MeJA
grapes, it represented about 8%. In Preharvest samples, it
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Postharvest samples. These amino acids included aspartic
acid, glutamic acid, asparagine, serine, histidine, the sum of
threonine and citrulline, alanine (treatments also increased
its content at Preharvest, and in the case of MeJA, in Foll),
and tyrosine (MeJA treatment also increased its content in
Foll). MeJA treatment increased the glutamine content at
Harvest and Postharvest, whereas MeJA + Ur only increased
glutamine concentration at Harvest, in comparison to the
content of control grapes (Table 1). Grapes from grape-
vines treated only with MeJA showed a higher content of
glycine than MeJA + Ur grapes, which also had higher con-
tent than the control grapes in Postharvest samples. On the
other hand, MeJA and MeJA + Ur foliar treatments increased
the arginine content at Preharvest and Postharvest samples,
with MeJA + Ur additionally raising the arginine content at
Harvest time compared to control samples. Furthermore,
treatments rose GABA concentration at Preharvest when
compared with control samples (Table 1). However, foliar
treatments did not affect the content of proline in any of the
samples studied. Valine, methionine, isoleucine, and leucine
underwent a similar pattern; treatments jumped their con-
centration from Preharvest to Postharvest, and MeJA also
increased their content in Fol2, compared to their content
in control grapes (Table 1). Grapes from grapevines treated
with MeJA showed a high content of tryptophan from Fol2
to Postharvest, whereas MeJA + Ur treatment increased its
concentration in Preharvest and Postharvest samples. The
content of phenylalanine and ornithine was increased from
Fol2 to Postharvest by both treatments studied. Finally, the
lysine content rose for treatments from Preharvest to Post-
harvest samples (Table 1).

In summary, all amino acids underwent an increase in
their concentrations at any sampling time, except for proline,
due to the effect of foliar treatments compared to control
grapes. Therefore, both MeJA and MeJA + Ur treatments
affected the biosynthesis of amino acids in grapes during
the 2019 season. Garde-Cerdan et al. [24] also observed an
enhance of the synthesis of most amino acids during the first
season of their study, attributed to MeJA foliar application.

Table 2 presents the results of must amino acids con-
tent from control and treated vines with methyl jasmonate
(MeJA) and with methyl jasmonate plus urea (MeJA + Ur),
in 2020 season for each time of sampling (Foll, Fol2, Pre-
harvest, Harvest, and Postharvest). The amino acids present
in a higher content across all samples were glutamine or
arginine, following by alanine, GABA, glutamic acid and
histidine. The amino acids content that act as precursors
for higher alcohols was: in Foll, it accounted for 9% in the
control sample, 7% in MeJA, and 5% in MeJA + Ur of the
total amino acids content; in Fol2, it represented 7% in the
control sample, 9.7% in MeJA, and 6% in MeJA + Ur of the
total amino acids content; in the Preharvest samples these
amino acids accounted for 6.6% in control, 8.4% in MeJA,
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and 5.8% in MeJA + Ur samples of the total amino acids
content; at Harvest, this group of amino acids constituted
10% in control samples, 11% in MeJA, and 9% in MeJA + Ur
samples of the total amino acids content; and finally, at Post-
harvest, these amino acids accounted for 12% in the con-
trol, 9.6% in MeJA, and, 9.5% in MeJA + Ur samples. It was
again observed that foliar application of MeJA increased
the content of amino acid precursors of higher alcohols, this
time from Foll to Harvest. The amino acids with lower con-
tent in all samples were glycine, the sum of threonine and
citrulline, ornithine, and lysine. Their content represented
less than 3% of the total amino acids content in all samples
across various treatments and sampling times. Aspartic and
glutamic acids, GABA, histidine, glycine, methionine, and
tyrosine showed a more or less pronounced increase in their
concentration from Foll to Postharvest (Table 2). A similar
trend was observed for the following amino acids: serine,
glutamine, citrulline + threonine, leucine, valine, isoleu-
cine + tryptophan, phenylalanine and lysine, which presented
a minimal or no increase in their concentration from Foll
to Preharvest, followed by an increase in their content until
Postharvest (Table 2). In the 2020 season, asparagine was
the only amino acid which displayed a decrease in its con-
tent in grapes from Foll to Post-harvest, consistent with the
evolution observed in 2019. Therefore, as mentioned above,
it seems that asparagine could be a suitable amino acid for
monitoring grape ripening, since its content decreased from
Foll to Postharvest in both vintages studied. Arginine and
proline exhibited an increase in their content from Foll to
Harvest, followed by a decrease until Postharvest. Alanine
increased its content in grapes from Foll to Fol2, underwent
a decrease until Preharvest and then slightly increased its
content until Postharvest (Table 2). Ornithine demonstrated
a decrease from Foll to Fol2 and then, an increase until
Postharvest. Overall, the foliar treatments did not signifi-
cantly affect the content of amino acids in grapes during the
ripening process in this second season, with some cases indi-
cating a slight decrease. All amino acids presented a concen-
tration range at Harvest that aligned with those previously
described by Bell &Henschke [5], except for tyrosine, which
showed in control grapes a content higher than 33 mg/L.
Figure 1 shows the total amino acids content, with and
without proline, throughout grape ripening for control,
MeJA and MeJA + Ur samples in both vintages (2019 and
2020). In Fig. 1a, b, it can be observed that in 2019 season,
MelJA and MeJA + Ur treatments increased the total amino
acids and the total amino acids without proline content from
Fol2 to Postharvest stages. Stand out the notable effect of
MelJA + Ur foliar treatment at Preharvest moment; however,
the MeJA treatment also led to an increase in both total
amino acids and total amino acids without proline, in com-
parison to the control grapes. However, during the 2020 sea-
son, the effect of foliar treatments was totally different. Both
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73.05+10.12aC

96.07 +12.46aC

92.95+17.09aC
71.24+2.84aC

131.13+9.496C

142.90+27.01bB

95.17+11.77C

80.72+10.98C

119.33+12.86D

114.78 +18.99B

Tle+Trp
Leu

34.20+5.83aC

29.77+3.84aB

+ 65.14+8.02C +
60.75+0.56bD

30.53+1.51aB

80.25+11.49B

14.69+2.17bA

39.11+1.51bC
11.40+1.16A

51.48+£2.26cC
1435+1.27A

Phe
Orn

11.97 +£0.54aA
12.85+1.19C

9.92+0.43aAB
13.13+1.79B

15.19+1.96B

12.14+2.39AB
15.82+1.42C

14.25+1.83C

15.33+1.63B

Lys

Time of sampling: Foll, 1 day before first foliar application; Fol2, 1 day before second foliar application; Preharvest, 15 days after second application; Harvest, the day of harvest; Postharvest,

15 days after harvest

3). For each compound and time of sampling (Foll, Fol2, Preharvest, Harvest, or Postharvest), different lowercase letters indicate sig-

All parameters are listed with their standard deviation (n

nificant differences between treatments (p <0.05)

For each compound and treatment (Control, MeJA, or MeJA + Ur), uppercase letters indicate differences among the time of sampling (p <0.05). Absence of letters indicate no significant differ-

ences (p>0.05)

MeJA and MeJA + Ur produced a decrease in total amino
acids content and total amino acids content without proline
(Fig. 1c, d) regarding to the amino acids content in control
grapes, observed at Foll, Fol2 and Postharvest stages. Fur-
thermore, no significant differences were observed between
the treated grapes and the control grapes at the Preharvest
and Harvest stages.

The effect of foliar treatments was different between the
two study seasons, suggesting that foliar applications show
a dependence on the season in which they are applied. This
dependence has already been observed by other authors pre-
viously [24]. Mainly, the different effect of foliar treatments
observed could be explained by differences on the pre har-
vest rainfall recorded among seasons. In 2020 season, the
preharvest rainfalls were higher (32.9 1/m?) than in 2019
vintage (11.5 1/m?). In addition, a previous study reported
data on nitrogen compound content in grapes at harvest [24].
In the 2020 season, the nitrogen content in the control grapes
was approximately twice as high as that in 2019. Thus, the
impact of foliar treatments was less pronounced when the
grapes had a higher content of nitrogen compounds.

It should be noted the differences on the total content
(with and without Pro, Fig. 1) of amino acids in musts
between the two years of the study. In 2019 at harvest
moment, total amino acids content of control must was
around 2070 mg/L, whereas in 2020 this content was around
3215 mg/L, which can be explained by climatological condi-
tions, since they play a key role in the amino acid content
of the must [7].

Overall, the variation in amino acids evolution during
ripening differed between seasons. In 2019, amino acids
attained their peak content in preharvest or harvest sam-
ples, aligning with findings by Hernandez-Orte et al. [7]. In
contrast, during the 2020 season, the highest concentrations
were observed at post-harvest, a notable deviation from the
previous vintage, potentially attributed to climatic change.

Multifactor analysis of variance of amino acids
in musts

Tables 3 and 4 show the results of the multifactor analysis
of variance of amino acids content, during the 2019 and
2020 seasons, considering the two factors under investiga-
tion: treatment and sampling time. In 2019 (Table 3), the
treatments influenced the content of all individual amino
acids, except for asparagine and proline in MeJA treatment.
Additionally, the total amino acids content, both with and
without proline, was affected by the treatments, with the
MelJA + Ur treatment showing a more substantial impact
compared to the MeJA treatment (Table 3). The “sampling
time” factor also significantly affected the content of all
individual amino acids at various sampling points, as well
as the total amino acid content with and without proline,
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Fig. 1 Amino acids concentration (mg/L) in grapes from control and
treated vineyards with foliar application, methyl jasmonate (MeJA)
and methyl jasmonate plus urea (MeJA+Ur): a total amino acids
concentration from 2019 season, b total amino acids concentration
without proline from 2019 season, ¢ total amino acids concentration
from 2020 season, d total amino acids concentration without proline

reaching the highest content at Preharvest for several amino
acids (Table 3). The interaction between the two factors was
statistically significant for all individual amino acids, except
for proline, and also affected the total amino acids content
(Table 3). In 2020 season (Table 4), the studied foliar treat-
ments impacted the individual content of several amino
acids, leading to a decrease in their content in grapes when
compared with control grapes. The sampling time also influ-
enced the grape’s content of both individual and total amino
acids. However, in this vintage, the maximum concentration
values were observed either at Harvest or Postharvest stage
(Table 4). In this vintage, the interaction between both fac-
tors was significant for all amino acids, except for aspartic
and glutamic acids, threonine + citrulline, arginine, alanine,
GABA, proline, tyrosine and lysine. These findings further
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from 2020 season. Different lowercase letters indicate significant dif-
ferences between treatments at each time of maturation (p <0.05).
Uppercase letters indicate differences among time of ripening for
each treatment (p <0.05). Absence of letters indicates no significant
differences

confirm the dependence of the effect of foliar application’s
effect on the vineyard in relation to the specific season.

Table 5 shows the percentage of variance attributed to
each factor (season, sampling time, and treatment), and
their interactions. The main source of variability was the
sampling time, which is logical considering the changes in
amino acid content during grape ripening. The season also
showed a significant influence on specific amino acids, such
as aspartic acid, the sum of threonine and citrulline, alanine
and tyrosine (Table 5). However, the effect of the treatments
was minor, producing an effect lower than 5% in all amino
acids. Overall, the interaction effect among factors influ-
enced the concentration of amino acids in grapes, with the
most substantial impact observed only for glutamine.
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Table 3 Multifactor analysis of variance of amino acids content in 2019 season, with the two factors studied: treatment (Control, MeJA,
MelJA + Ur) and time of sampling (Foll, Fol2, Preharvest, Harvest, Postharvest) and their interaction (treatment X time of sampling)

Treatment (T) Time of sampling (S) Interaction

Control MeJA MeJA+Ur  Foll Fol2 Preharvest ~ Harvest Postharvest ~ T*S
Asp 43.60a 49.23b 56.06¢ 32.17a 51.99b 67.05¢ 62.79¢ 34.14a oAk
Glu 70.56a 91.76b 90.62b 31.32a 7491b 109.00d 96.75¢ 109.57d Hokk
Asn 25.89a 26.83a 32.37b 43.08d 34.63c 25.27b 22.73b 16.11a Hokok
Ser 55.39a 71.89b 71.30b 47.32a 52.53a 77.89b 77.57b 75.67b *
Gln 266.80a 397.65b 525.42¢ 152.31a 375.38¢ 671.85¢ 50480d 278.78b Hokok
His 106.36a 132.65b 154.62¢ 59.26a 89.06b 165.26¢cd 163.00c 179.47d Hokk
Gly 6.24a 8.79b 6.59ab 5.09a 4.67a 8.46¢ 8.06¢c 6.42b Hokk
Thr+Cit 128.57a 158.59b 166.43b 89.44a 131.96b 169.31c 186.70d 178.56¢cd Hokk
Arg 484.06a 622.78b 667.73b 218.29a 342.85b 744.81c 804.42cd  847.24d Hok
Ala 62.42a 95.97b 92.77b 52.61a 79.05b 104.56¢ 78.11b 104.27¢ Hokk
GABA 137.19a 159.72b 153.47b 118.93b 99.90a 181.27¢ 175.54c 175.01c *
Pro 72.30a 76.08ab  682.65b 42.28a 57.92b 84.64c 89.77¢c 110.43d N.S.
Tyr 10.43a 14.50c 13.38b 7.28a 9.24b 14.55¢ 14.45¢ 18.35d Hokk
Val 30.45a 64.14c 51.24b 11.62a 28.83b 79.86e 52.24c¢ 70.48d Hokk
Met 10.64a 22.56¢ 17.91b 4.28a 9.67b 27.33e 19.64c 23.97d Hokk
Ile 18.24a 47.13¢ 34.19b 5.96a 18.41b 55.17d 35.57c 50.81d Hokk
Trp 32.96a 43.45¢ 37.72b 20.41a 30.98b 47.01c 45.95¢ 45.86¢ Hokk
Ile+Trp 51.20a 90.58¢ 71.91b 26.37a 49.39b 102.19d 81.52¢c 96.67d Hokk
Leu 37.80a 82.63c 61.30b 13.04a 29.79b 97.02d 69.21c 93.83d Hokk
Phe 18.00a 30.44c 27.65b 8.87a 21.46b 33.08c 32.65¢ 30.74c Hokk
Orn 5.62a 10.69b 11.44b 3.66a 8.20b 13.46d 11.42¢ 9.50b HoAk
Lys 7.51a 11.29b 11.49b 6.77a 7.75a 13.12¢ 12.52¢ 10.30b HoAk
Total aas * 1631.0la 2216.41b  2366.35¢c 974.01a  1559.48b  2789.37d 2563.89c  2469.54c ok

Total aas® without Pro  1558.71a  2140.34b  2283.70c 931.73a  1501.56b  2704.73d 2474.12¢  2359.11c HEE

For each amino acid and factor, different letters indicate significant differences between samples (p <0.05). Interaction: N.S., not significant
(p>0.05); ***p <0.001; **p <0.01; *p <0.05

4Total aas: concentration of total amino acids
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Table 4 Multifactor analysis of variance of amino acids content in 2020 season, with the two factors studied: treatment (Control, MeJA,
MelJA + Ur) and time of sampling (Foll, Fol2, Preharvest, Harvest, Postharvest) and their interaction (treatment X time of sampling)

Treatment (T) Time of sampling (S) Interaction

Control MeJA MeJA+Ur Foll Fol2 Preharvest Harvest Postharvest T*S
Asp 6.35b 5.09a 4.94a 2.26a 4.82b 5.48b 7.07c 7.68c N.S.
Glu 109.23b 86.76a 94.38a 59.73a 83.89b 96.57¢ 117.95d 125.81d N.S.
Asn 35.94 3345 33.63 47.90c 45.95¢ 28.50b 22.73a 26.63ab *
Ser 72.78 67.64 70.06 56.56a 61.48a 64.64a 82.38b 85.72b *
Gln 721.62¢ 424.04a 471.35b 468.01a 531.14b 470.61a 541.81b 683.45¢ ook
His 129.61b 108.12a 103.96a 71.61a 86.89b 98.34b 151.27¢ 161.37¢ *
Gly 11.41b 9.47a 8.96a 6.48a 7.15ab 8.04b 13.16¢ 14.89d *
Thr+Cit 14.68b 13.64ab 12.84a 10.78a 11.98ab 12.68b 16.15¢ 17.01¢c N.S.
Arg 805.52b 714.49a 735.59a 440.07a 537.19b 754.51¢c 1049.72¢ 977.83d N.S.
Ala 155.58b 131.76a 141.27a 128.47a 151.05b 142.02ab 152.32b 140.49ab N.S.
GABA 172.71 153.06 168.37 98.97a 120.50a 145.60b 215.43¢ 243.05d N.S.
Pro 98.07 100.44 100.33 33.77a 82.87b 105.04¢ 144.98¢ 131.42d N.S.
Tyr 33.17b 28.38a 28.48a 19.15a 26.77b 26.40b 37.46¢ 40.27¢ N.S.
Val 62.88¢ 45.71b 37.64a 26.14a 34.23b 32.38ab 73.02¢ 77.96¢ ook
Met 24.33b 20.88a 20.03a 8.01a 15.20b 23.87¢ 31.71d 29.94d ok
Tle+Trp 89.53¢ 79.74b 65.47a 49.05a 60.73a 61.06a 109.76b 110.64b ok
Leu 61.39¢ 48.65b 37.95a 21.90a 26.37ab 31.21b 75.37¢ 91.80d ook
Phe 38.43b 27.59a 26.52a 22.45a 25.92b 23.90ab 40.37¢c 41.57¢c ook
Orn 13.87b 11.32a 10.57a 10.41a 11.90b 12.47b 12.63b 12.19b ok
Lys 12.80b 11.76a 11.50a 8.90a 10.55b 11.80c 15.13¢ 13.72d N.S.
Total aas® 2669.92b 2121.99a 2183.08a 1590.63a 1936.59b 2153.88 2910.42d 3033.46d ook
Total aas® 2571.84b 2021.55a 2082.74a 1556.86a 1853.71b 2048.84¢ 2765.44d 2902.04d ook

without Pro

For each amino acid and factor, different letters indicate significant differences between samples (p <0.05)
Interaction: N.S., not significant (p > 0.05); ***p <0.001; **p <0.01; *p <0.05

2Total aas: concentration of total amino acids
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Table 5 Percentage of variance attributable to season, time of sampling, treatment and their interactions

Season (%) Sampling (%) Treatment (%) Season X Season X Sampling  Season X Sam- Residual (%)
Sampling Treatment X Treat- pling X Treatment
(%) (%) ment (%)
Asp 77.26%*%%  8.04%%* 0.827%%* 7.627%%* 1.27%%* 1.15%%% 1.33%%% 1.62
Glu 4.03%#* 68.78*** 0.20 N.S. 5.06%** 9.2 %% 2.01% 3,64 7.07
Asn 6.58%%* 69.75%** 1.08%* 3,455 2.4k 3,145 5.48%%* 8.11
Ser 1.43* 50.62%** 3.10%* 7.05%%* 8354 7.63%* 1.78 N.S. 20.03
Gln 9.15%s#* 14,09 2.94%%% 20.60%** 22.52%%% 16.86%** 9 (7% 4.77
His 3,055k 65.46%** 0.96%* 7.34%%% 9.54%#3%% 3.10%%* 4.48%%* 6.06
Gly 24.24%%% 3B 3]k 1.59%#:%* 20.10%** 3.20%k:k% 3,454k 3.65%%* 5.37
Thr+Cit 82.84k % (. 4(kH* 1.07%#%* 5.09%#:%* 1.27%%% 1.03%#* 0.997#:#* 1.32
Arg 8254k 77.12%*% 0.70%* 2.20%%sk% 4.20%%* 2.1 17%%% 1.12N.S. 4.20
Ala 59.67*%% 9 5% 0.74 N.S. 5.69%:%* 10.32%%* 3.50%* 1.34 N.S. 9.10
GABA 2.00%* 65.83%** 0.24 N.S. 13.68%* 2.80%* 1.54N.S. 1.46N.S. 12.44
Pro 9.76%#* 73.31%** 0.5I N.S. 7.807%%* 0.24 N.S. 0.89N.S. 0.98N.S. 6.52
Tyr 60.30***  26.40%*** 0.10N.S. 4.59%%* 3.1 [k 0.85N.S. 1.13* 3.52
Val 0.00 N.S.  47.40%* 2.3k 16.96%** 14.94%#* 6.957%%* 8374k 3.07
Met 4.89%%* 62.97%** 2.772%%% 5.46%#* 9.42 %% 6.247%%% 3.65%#* 4.65
Ile+Trp 1.07%* 53.39%** 4.75%%* 13.35%#* 10.70%** 5.38%k% 5.58%#* 5.79
Leu 2.20%%* 55.00%** 3,98k 13.35%#* 10.907%** 5.68%%* 6.627%%* 2.27
Phe 5.24%%% 43.29%%* 0.44%* 10.99%#* 19.58%#* 11.24%#% 5 56%#%* 3.66
Orn 11.00%** 25,48 2.1 7%k 10.25%** 24 .55%%% 12.21%%%  6.62%%%* 7.72
Lys 857k 45.25%%* 3,75k 6.45%#% 13.15%** 8487 4.91%%* 9.45
Total aas® 2.971%%:* 61.88%#** 0.54* 9.41%%* 13.98%** 3.75%% 3.76% %% 3.77
Total aas without Pro  2.60%** 59.81%** 0.53%* 10.287%** 14.91 %% 3.9k 4.06%** 3.89

Statistically significant at ***p <0.001; **p <0.01; *p <0.05. N.S.: not significant (p > 0.05)

2Total aas: total amino acids

Bold indicates which factor was most influential for each amino acid

Conclusions

The influence of foliar treatments with MeJA and MeJA + Ur
on ‘Tempranillo’ grapes, applied at veraison and 1 week
later, during ripening was studied in this research. The evo-
lution of the different amino acids varied between vintages.
Overall, during the 2019 season, amino acids reached their
highest concentration in grapes at Preharvest moment,
whereas in 2020, this maximum was achieved at Postharvest
stage. Moreover, the season dependence of the treatments
is evident, as the effect of both foliar treatments differed
significantly depending on the vintage. In the first season,
foliar treatments increased the content of several amino acids
in grapes, while no such improvement was observed in 2020
season. The asparagine content in grapes could be used to
follow the ripening of grapes, as it decreased from Foll to
the Postharvest stage in the two vintages studied. As well as
the MeJA foliar application increased the content of amino
acid precursors of higher alcohols in both seasons. In con-
clusion, further in-depth research is needed to comprehend
the impact of foliar treatments on the amino acid content of

@ Springer

grapes, to develop an effective tool for enhancing the nitro-
gen quality of grapes.
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