

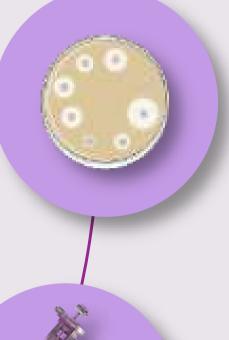
Detection of MRSA and MSSA CC398 isolates in osteoarticular infections in patients of a Spanish Hospital

Paula Eguizábal¹, Alba Bellés-Bellés², Saray Mormeneo², Mercé García², Javier Latorre-Fernández¹, Carmen Lozano¹, Carmen Torres¹

¹Area Biochemistry and Molecular Biology, University of La Rioja - Logroño (Spain) ²Service of Microbiology, Hospital Arnau Vilanova - Lleida (Spain)

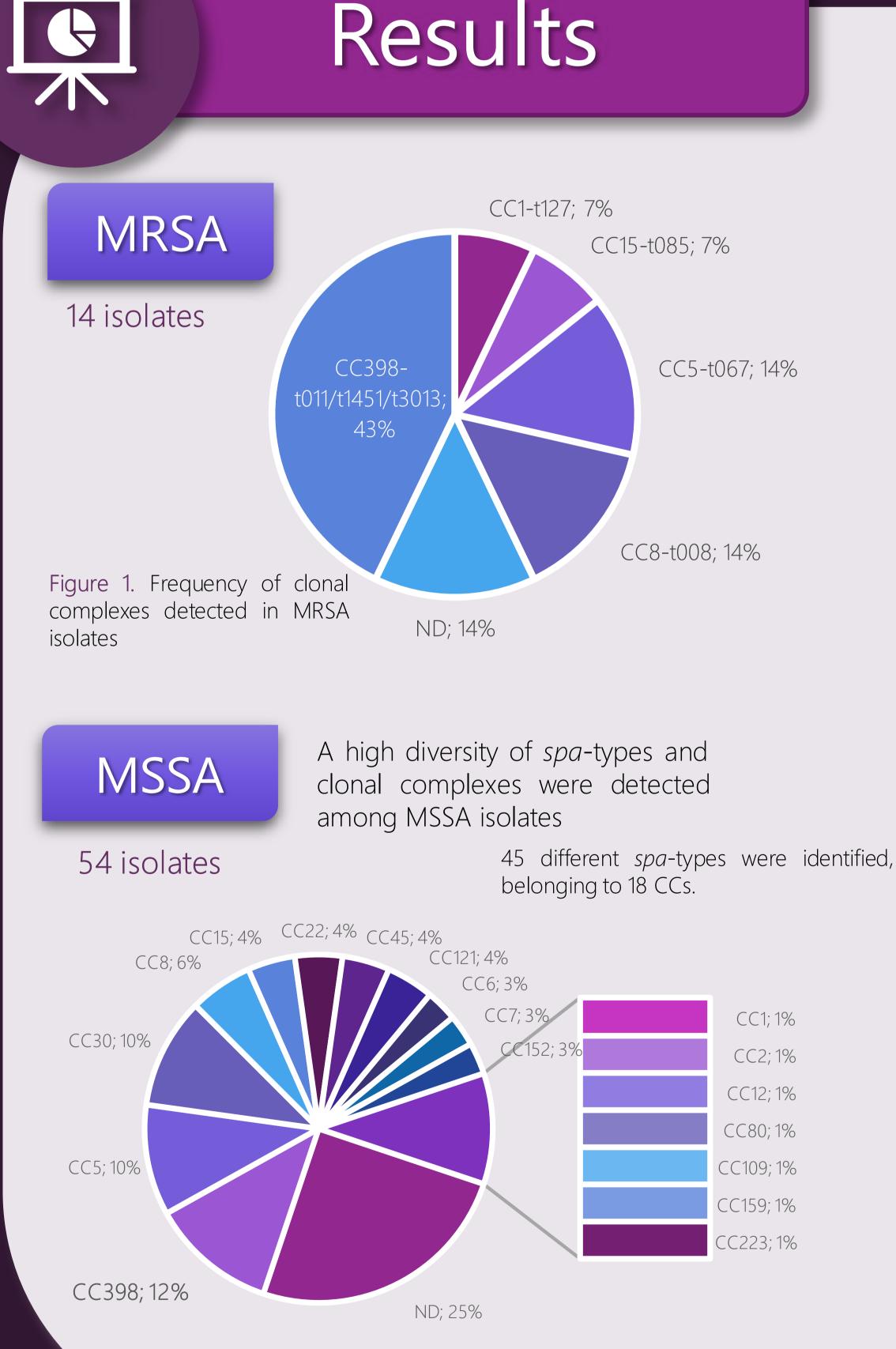
Background

Previous studies have shown a significant relationship between high density swine areas (HDSA), and methicillinresistant *S. aureus* (MRSA) CC398 prevalence at hospital level.

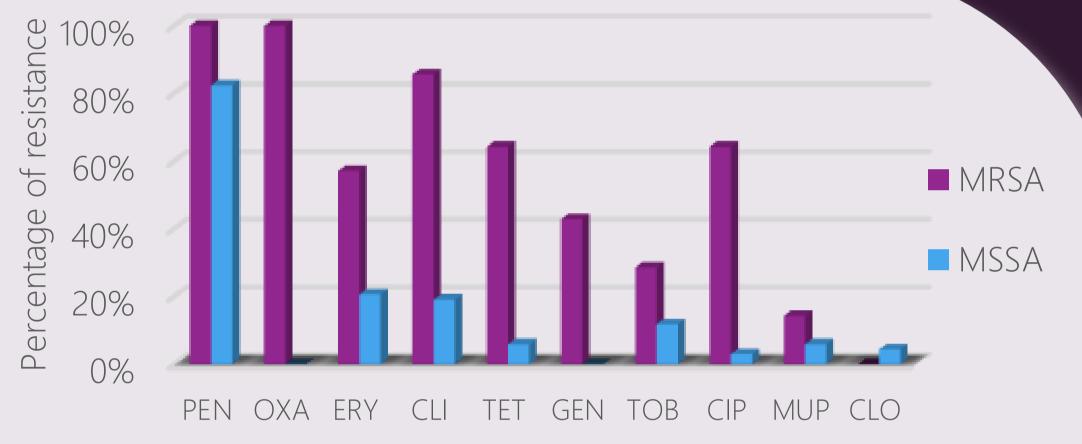

Tetracycline resistance (Tet^R) has been evidenced as a phenotypic marker for detection of livestock-associated (LA) MRSA, specially of CC398 lineage.

Methods

All 68 *S. aureus* isolates recovered during July2020-December2021 from osteoarticular infections in a Spanish hospital located in a HDSA were included in this study (one isolate/patient).


There are few data on the presence of LA-MRSA in osteoarticular infections in our hospital, located in a HDSA.

The objective of this study was to determine the resistance phenotype/genotype, the virulence content, and molecular typing of *S. aureus* from osteoarticular infections.


The phenotype/genotype of antimicrobial resistance was evaluated by Microscan, and PCR-sequencing

spa-typing was analysed by PCR-sequencing in all isolates. A PCR specific for the CC398 lineage was performed in this collection, and the Immune Evasion Cluster (IEC) genes were determined by PCR in CC398 isolates.

Resistance

- 34,6% of isolates were multidrug resistant, being 14 MRSA and 13 MSSA.
- The percentage of resistance were higher in MRSA than in MSSA isolates

Figure 3. Phenotype of resistance of the 68 S. aureus

Figure 2. Frequency of clonal complexes detected in MSSA isolates

PEN, penicillin; OXA, oxacillin; ERY, erythromycin; CLI, clindamycin; TET, tetracycline; GEN, gentamicin, TOB, tobramycin; MUP, mupirocin; CLO, chloramphenicol

Table 1. Genotype of resistance of the 68 S. aureus.

Antibiotic resistance	Resistance genes (n ^o of isolates)
Penicillin	<i>blaZ</i> (63)
Oxacillin	mecA (10)
Erythromycin-Clindamycin	<i>erm</i> (A) (15), <i>erm</i> (C) (9), <i>erm</i> (T) (11), <i>mph</i> (C) (2), <i>vga</i> (A) (1)
Tetracycline	<i>tet</i> (K) (13), <i>tet</i> (M) (6)
Gentamicin-Tobramycin	<i>aac</i> (6')-le- <i>aph</i> -(2'')-la (5), <i>ant</i> (4')-la (5)
Chloramphenicol	$cat_{pc221}(2)$

CC398

12 CC398 isolates were detected (17.6%)
 4 MRSA (t011, t1451, and t3013)
 All were Tet^R and IEC negative
 7/8 showed ERY-CLI^{Ind} phenotype, and contained *erm*(T) and *scn* genes

Table 2. Characteristics of the 12 CC398 isolates of this study

	<i>spa-</i> type (n° of isolates	Resistance phenotype	Resistance genotype
	t011 (4)	PEN, OXA, ERY ² , CLI ³ , TET, GEN ¹ , TOB ¹ , CIP ³ , CLO ¹ , MUP ¹	blaZ, mecA, tet(K), tet(M), erm(A) ² , erm(C) ² , erm(T) ² , aac(6')-le- aph-(2'')-la ¹ , ant(4')-la ¹ , cat _{pc221} ¹
MRSA	t1451 (1)	PEN, OXA, TET, GEN, TOB, CIP	<i>blaZ, tet</i> (K), <i>tet</i> (M), <i>aac</i> (6')-le- <i>aph</i> -(2'')-la, <i>ant</i> (4')-la
	t3013 (1)	PEN, OXA, ERY, CLI*, TET, GEN, TOB, CIP, MUP	blaZ, tet(K), erm(A), erm(C), erm(T), mph(C), aac(6')-le-aph-(2'')-la, ant(4')-la
	t571 (5)	PEN, ERY ¹ , CLI*, TOB ¹	blaZ, erm(A) ³ , erm(C) ¹ , erm(T), ant(4')-la ¹
MSSA	t1451 (2)	PEN, ERY ¹ , CLI* ¹ , GEN ¹ , TOB ¹	$blaZ, erm(A)^{1}, erm(T)^{1}, aac(6')-le-aph-(2'')-la^{1}, ant(4')-la^{1}$
	t3625 (1)	PEN, ERY, CLI*	blaZ, erm(T)

A number in superscript reflects when not all isolates of the group have the referred characteristic PEN, penicillin; OXA, oxacillin; ERY, erythromycin; CLI, clindamycin; TET, tetracycline; GEN, gentamicin; TOB, tobramycin; CLO, chloramphenicol; MUP, mupirocin

- MRSA and MSSA-CC398 isolates were frequently identified among osteoarticular infections in this hospital
 TET^R or ERY-CLI^{Ind} resistance seems to be good phenotypic marker for detection of CC398 isolates of animal and human clades, respectively.
- 3. The emergence of multiresistant LA-MRSA lineages in these osteoarticular infections should be monitored, especially in HDSA.

Acknowledgement:

This work was supported by unrestricted research grant from Menarini. P. Eguizábal received funding from the predoctoral contract from the University of La Rioja (FPI).