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A B S T R A C T   

Downy mildew is a major disease of the grapevine that can severely reduce crop quality and yield. Its assessment 
in the laboratory is time-consuming, usually carried out by experts, and can require expensive and complex tools. 
For this reason, there is an opportunity to apply sensor technologies and artificial intelligence to plant disease 
detection. In this study, deep learning applied to RGB images was investigated to early detect downy mildew and 
the infection stage in grapevine leaf discs under laboratory conditions. Leaf discs of Tempranillo grapevine 
variety from 3 to 9 days post-inoculation located in Petri dishes were imaged using controlled conditions. Leaf 
disc images were extracted using computer vision techniques. Convolutional Neural Networks were used to 
classify the infected and healthy discs and to identify the disease infection. 10-fold cross-validation was used to 
evaluate the network results and Grad-CAM was used to interpret model prediction. An accuracy around 99% 
and a f1-score of 0.99 was achieved in downy mildew detection after DPI 3. An accuracy of 81% and a f1-score of 
0.77 was obtained in infection stage identification. The developed method offered objective, rapid and accurate 
results, giving the possibility of early detecting downy mildew in grapevine leaf discs using low-cost techniques.   

1. Introduction 

Grapevine downy mildew is an important disease caused by the 
oomycete Plasmopara viticola, affecting plants and plots exponentially 
due to its rapid spreading with favorable conditions (Buonassisi et al., 
2017). This leads to significant impact in terms of resources and envi-
ronment, as it can shrink the vineyard size if not treated, or provoke an 
excessive use of chemicals if these are not properly directed. This disease 
is therefore a major concern for winegrowers, especially in the context of 
climate change (Bois et al., 2017; Bove et al., 2020). The traditional 
approaches for disease control in vineyards involve the costly supervised 
monitoring by experts and the frequent fungicide applications, being the 
latter harmful to the environment, and also prone to pathogen resistance 
if used massively (Massi et al., 2021). Taking advantage of sensing 
technologies and powerful advances in artificial intelligence, these 
challenges can be addressed by automated disease detection through 
optical sensors, including thermal readers, fluorescence sensors, and 
red-green-blue (RGB) imaging (Zhang et al., 2019). 

Analysis of RGB images, as it involves the processing of colour 

distribution and pixel patterns and textures, has shown promise for 
detecting symptoms of downy mildew in grapevine leaves, especially 
when applying the latest advances in artificial intelligence and deep 
learning (Li et al., 2021). Deep learning is a powerful branch of artificial 
intelligence that has reformulated the approach to complex tasks in 
machine learning. It is based on artificial neural networks, that are able 
to automatically learn complex representations and hierarchies of fea-
tures from large amounts of data. Their potential has been exploited by 
many authors in several fields, including plants and agriculture 
(Jahanbakhshi et al., 2020; Khosravi et al., 2021; Yang and Xu, 2021). 
Within deep learning, one of the most successful applications of neural 
networks for computer vision are convolutional neural networks 
(CNNs). These networks rely on the concept of convolution in image 
processing, and allow for the automated feature extraction from sample 
images, reducing the need for manual image pre-processing or engi-
neering (Kamilaris and Prenafeta-Boldú, 2018b). The capability of CNNs 
for the extraction of relevant, high-level features from the image-
s—without the active need of human expertise or domain kownledge— 
has proven useful in agriculture (Kamilaris and Prenafeta-Boldú, 
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2018a), and particularly in plant disease detection (Abade et al., 2021). 
Disease detection has been attempted with non-destructive sensors in 

several crops and conditions. Spectral sensing has been successfully 
applied for the early estimation of powdery mildew in wheat (Khan 
et al., 2021; Xuan et al., 2022), squash (Abdulridha et al., 2020) or 
(Chandel et al., 2021). Thermal technologies combined with hyper-
spectral imagers has been also proven useful for disease detection in 
cucumber leaves (Zhao et al., 2016) or rapeseed (Baranowski et al., 
2015). Nevertheless, the highest reported sensing technology is arguably 
RGB imaging, as it can be easily deployed and symptoms can be auto-
matically analyzed by deep learning algorithms. Examples can be found 
for multiple diseases in apple (Bansal et al., 2021; Jiang et al., 2019), 
sugar beet (Adem et al., 2023) or potato leaves (Mahum et al., 2023; 
Rashid et al., 2021). While reports on downy mildew detection has been 
already published under different conditions with RGB sensing (Bierman 
et al., 2019; Gutiérrez et al., 2021; Hernández et al., 2022; Zendler et al., 
2021; Zhang et al., 2022), we find an opportunity for the monitoring and 
estimation of downy mildew in grapevine leaves as the disease grows, 
under the same conditions that those from Hernández et al. (2022), 
which assessed downy mildew severity with fuzzy logic. The current 
paper therefore hypothesises that RGB sensors and deep learning could 
be used to detect downy mildew at an early stage and to detect the 
infection stage in continuous monitoring. Consequently, the aim of this 
paper was to model RGB vine leaf images with deep learning for 
continuous monitoring of downy mildew from pre-inoculation to full 
infection after several days post-inoculation. 

2. Materials and methods 

2.1. Dataset generation 

Part of the dataset employed was introduced by Hernández et al. 
(2022) under the name Set-2. In order to generate the dataset for training 
and validation, 50 grapevine plants (Vitis vinifera L., cv. Tempranillo) 
were grown in 5 L pots in a climate chamber at 23 ± 2∘ C and 80% 
relative air humidity. Leaf discs of 15 mm diameter were extracted from 
one to three leaves taken from each plant and placed on Petri dishes. 
Approximately half of each plant’s discs (half of the Petri dishes) were 
inoculated with Plasmopara viticola (Toffolatti et al., 2016) and incu-
bated in humid chamber at 23 ± 2∘ C for 9 days. Inoculated leaf discs 
were treated as positive (infected) samples, while the rest was 

considered as negative (healthy) samples. 
During the inoculation period, RGB images (6000x4000 pixels, 

Fig. 1) from Petri dishes were taken, specifically on days 3 and 4 post- 
inoculation (DPI), when symptoms were not visible and when symp-
toms started to appear, respectively, and from DPI 7 to 9, when disc 
severity was medium to high. The images were taken using a Sony a7-II 
mirrorless camera (Sony Corp., Tokyo, Japan) mounting a Vario-Tessar 
FE 24-70 mm lens and with controlled illumination conditions. A total of 
34 Petri dishes (275 leaf discs, approximately nine per dish) were 
imaged each day, discarding some of them due to leaf disc damages over 
the course of the days. Table 1 gathers the detailed information of 
number of samples per DPI. 

2.2. Image pre-processing 

Leaf disc localisation and extraction for each Petri dish was the first 
required step in order to work with individual disc images, similarly to 
Hernández et al. (2022). First, the original RGB colour space was 
transformed into HLS (hue, lightness, saturation) for better differentia-
tion between the leaf discs and the Petri dish. Then, two filters were 
applied to smooth the HLS images while maintaining the edges and 
preserving the shape of the discs. The first filter applied was the initial 
step of mean shift segmentation with a spatial window radius of 15 
pixels and a colour window radius of 30 pixels. Then, a median blur filter 
with a kernel of 11 pixels was applied to the saturation channel. Finally, 
Hough Circle Transform was used for the localisation of the centre and 
radius of each disc in the saturation channel (Yuen et al., 1990). The 

Fig. 1. Examples of negative (a) and positive (b) Petri dishes from 9 days post-inoculation (DPI).  

Table 1 
Number of Petri dishes and discs per day post-inoculation (DPI) and separating 
negative (healthy) and positive (infected) samples. The total number of discs for 
each type of sample is given in the last column.  

Sample type Number of samples per DPI 

3 4 7 8 9 Total 

Positive Petri dishes 18 14 14 8 8 62 
Negative Petri dishes 16 16 16 11 10 69 
All Petri dishes 34 30 30 19 18 131 
Positive discs 147 124 108 79 71 529 
Negative discs 128 128 124 115 101 596 
All discs 275 252 232 194 172 1125  
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parameters for disc detection were a distance between disc centres of 
150 pixels, a disc radius between 125 and 147 pixels and an upper 
threshold of Canny detector of 100. In addition, the leaf discs were found 
automatically in each image changing the inverse ratio between 1 and 4 
and the threshold for centre detection between 13 to 120. 

Once the discs were located, an image was extracted for each leaf 
disc from its radius and centre, fitting the image to the disc boundaries 
(Fig. 2). In view of the information provided by changing the colour 
space, both RGB and HLS images of the discs were taken into account. In 
addition, to try to reduce the complexity of the problem, masks were 
extracted from the discs with the detection of the most intense areas in 
the saturation channel both with a crisp threshold at the value 98, and 
with a fuzzy threshold using a trapezoidal membership function in the 
range of 92 to 104. To extract these masks the images were previously 
pre-processed, using the saturation channel from the HLS images, 
applying a median blur filter with a kernel of 3-pixel size and applying 
the Contrast Limited Adaptive Histogram Equalization method 
(CLAHE). As not perfect circles were delimited by Hough Circle Trans-
form, each disc radius was reduced by 10 pixels, discarding most of the 
background. 

2.3. Deep learning modelling 

All machine learning modelling in this study was performed via 
transfer learning using the Convolutional Neural Network (CNN) ar-
chitecture VGG16 pretrained with images from the ImageNet dataset 
(Simonyan and Zisserman, 2015). The input of the network was 
300x300x3, considering the maximum detail of the disc images. The 
models were trained minimizing the cross-entropy loss in a maximum of 
1000 epochs using a batch size of 64 and the Adam optimizer, reducing 
the learning rate from 10− 5 to 10− 9 by a factor of 0.1 if the validation 
loss stopped improving after 50 epochs. The models were evaluated 
using the accuracy, f1-score, precision and recall metrics. False positive 
and false negative values were also evaluated to analyse the error of the 
models. RGB images, HLS images, crisp masks and fuzzy masks were 
used independently for their comparison to check which gave the most 
information for detecting and identification of downy mildew infection. 
Moreover, the training data was augmented using an online data 
augmentation to reduce overfitting, applying random transformations 
on the images such as vertical and horizontal flipping, rotation in a 
range between 0 and 360 degrees and a 50% increase and decrease in 
brightness. Both training and validation images were normalized to the 

range from zero to one, to make the training of the model faster. 

2.3.1. Early downy mildew detection 
In order to check whether it was possible to detect downy mildew 

infection in an early stage, the data from the fourth day post-inoculation 
was selected, when the first visual symptoms started to appear as 
sporulation in the abaxial side of the leaf discs. This data was used to 
make a 10-fold cross-validation to evaluate the general network per-
formance and check if it was possible to differentiate the positive and the 
negative discs automatically. An early stopping mechanism was used to 
stop the training when the model stop improving after 200 epochs, using 
the model with the less validation loss as the final model. 

Once all the models used in the cross-validation were trained, all the 
data from the 4 DPI was used to train a model, considering the average 
number of epochs used to obtain the best model in each fold as the 
maximum epoch. This model was used to evaluate the generalization of 
the method, validating them with the data from all the DPIs indepen-
dently, analysing the disease detection on each day and each type of 
image pre-processing. To provide interpretability to the model predic-
tion and see which parts of the leaf discs were more or less important to 
the neural network in detecting the disease, Gradient-weighted Class 
Activation Mapping (Selvaraju et al., 2019) was employed. 

2.3.2. DPI identification 
On the other hand, to detect whether it was possible to differentiate 

the stage of infection of the disease, an attempt was made to identify to 
which DPI a leaf disc corresponded once the infection was detected by its 
visual symptoms. For this approach, positive discs (infected by downy 
mildew) from DPI 4 to 9 were used to make a 10-fold cross-validation, in 
a similar way as for early detection. In this case, only the types of image 
pre-processing that gave the best results in detecting the infection of the 
discs were compared. Confusion matrix was used to evaluate the correct 
and wrong predictions in each DPI and possible confusions between 
days. 

3. Results 

3.1. Early downy mildew detection 

During the incubation period, symptoms were first visible very 
slightly in DPI 4. For this day, four different kinds of modeling were 
developed using different images as input: full RGB; full HLS; crisp mask; 

Fig. 2. Examples of images of negative (healthy) and positive (infected) discs processed. RGB image (a), HLS image (b), crisp mask (c) and fuzzy mask (d) 
were considered. 
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and fuzzy mask. The results from the 10-fold cross-validation of this DPI 
are summarized in Table 2. Average accuracy and precision validation 
values were all at around 90%, reaching 98% by those models trained 
with HLS images. The F1 score, although classes were almost completely 
balanced in DPI 4, showed that no bias existed towards any of the two 
classes. On the other hand, looking at the number of epochs needed to 
train the network, it can be seen that by using masks, starting from less 
information about the discs, the models needed fewer epochs to train, 
although using RGB or HLS images this information helped to obtain a 
better classification. 

To analyse the behaviour of the neural networks during the training 
process, charts of the accuracy evolution per epoch are displayed in 
Fig. 3. Evolution plots of the CNN trainings show quick convergence 
between training and validation lines in all four cases. In the case of the 
RGB and HLS images (Fig. 2a and b), both training and validation lines 
reached their maximum convergence before 50 epochs, and after it lines 
run almost in parallel, with a slight divergence along the epoch increase. 
In contrast, the modelling that involve masks presented a divergence 
with an increased growth rate (Fig. 2c and d). Still, they reached their 
peak performance (the epoch in which both training and validation lines 
begin to diverge) virtually at the same point than the plots in the first 
row of Fig. 2. 

Given the good prediction capability obtained from the models 
trained with data from DPI 4, complete CNN models were trained using 
all samples from that day and the previously listed types of input images. 
With these four models, leaf disc images from the remaining DPIs were 
predicted and their performance statistics computed and presented in 
Table 3. The original number of imaged leaf discs began diminishing 
since inoculation, due to sample deterioration (like damage or necrosis), 
especially in the last DPIs (as disease evolved). This caused an increased 
class imbalance in DPIs 8 and 9. Excluding DPI 3 and 4, classification 
results from the remaining DPIs (7, 8 and 9, with abundant visible 
symptoms) reached or surpassed accuracy values of 97%. The prediction 
of the images from DPI 4 resulted in lower classification accuracies than 
latter DPIs, but still above 93%. Models from crisp and fuzzy masks in 
DPI 4 yielded the higher number of false negatives (17 and 15, respec-
tively, both out of 124 positive samples). Finally, for DPI 3 the models 
gave completely inaccurate results, as precision values around the 0.50 
mark and high false negative values reflected the prediction of almost all 
discs as negative discs. 

The neural network trained with the RGB images was analysed and 
processed using Grad-CAM. Results per DPI are presented in Fig. 4 for a 
single leaf disc image during disease evolution. In the case of the latter 
DPIs (7, 8 and 9, with higher levels of visual symptoms), the CNN 
focused primarily on the top half of the disc, that matches with the fact 
that downy mildew spots accumulated on the same zones. Still, spot 
clusters on the bottom semicircle also received an increased importance 
as disease advanced. Regarding DPI 4, although symptoms were clearly 
less distinguishable than the next imaged DPI, the neural network was 
able to detect and give special importance to those zones with downy 
mildew spots (Fig. 4, second column), whether scattered-top half or 
concentrated-bottom right. 

3.2. DPI identification 

The RGB and HLS images were chosen to detect the stage of infection 
of the discs by the DPI to which they belonged, as this type of data 
seemed to provide more information to the network in the early detec-
tion. Multi-class modelling for the classification between the different 
DPIs was developed and validated using a 10-fold cross validation for 
RGB and HLS images. The confusion matrices and statistics are gathered 
in Table 4. The best accuracy was obtained using the RGB leaf disc 
images (81% vs 77%). Precision, recall and F1 scores were fairly similar, 
within rows in Table 4 and also between image input (RGB and HLS). 
This was caused by the different misclassification rates that occurred 
between the three latter DPIs. Additionally, it is worth noting that 
samples of DPI 4 were almost perfectly classified, and very few of them 
were misclassified (and when it occurred, the predicted label was DPI 7). 
A high precision is also maintained for DPI 7, even though some of the 
discs are mainly classified as the latest DPIs. On the other hand, DPIs 8 
and 9 are mainly confused with each other and with DPI 7, because 
sporulation at these stages was very similar. 

4. Discussion 

Early detection when the symptoms started to appear was achieved 
with high accuracy for each type of input. The use of masks that high-
lighted areas with higher saturation values helped to focus the detection 
on the symptoms and required less time for the model to converge. In 
addition, the fuzzy mask gave slightly better results by providing more 
information about the intensity of the highlighted areas, also discussed 
in Hernández et al. (2022). However, the masks reflected some false 
positives due to nerves in the leaves or water droplets reflecting similar 
saturation in the image, unlike the work of Gutiérrez et al. (2021), where 
thresholding seemed to favour the detection of downy mildew and spi-
der mite. Thus, the RGB and HLS images seemed to provide more in-
formation about the infection, giving better results and less overfitting 
during neural network training, suggesting that models trained with 
these data are suitable for accurately detecting downy mildew symp-
toms in the early stages of infection, when sporulation became visible. 
This reflected the good performance of using CNNs for downy mildew 
detection with very low severity without applying pre-processing to the 
images or adjusting disease thresholds for the masks, as in Chandel et al. 
(2021) or Hernández et al. (2022), taking advantage of the use of 
transfer learning and data augmentation to obtain good results with a 
reduced amount of data. These techniques have already proven to work 
better than machine learning-based approaches on datasets collected in 
the laboratory such as detecting plant diseases using the PlantVillage 
dataset (Kumar et al., 2022), achieving an accuracy of 99.64%, or 
detecting defects in sour lemons (Jahanbakhshi et al., 2020), achieving 
an accuracy of 100%. This was also demonstrated in this case for the 
detection of downy mildew in early stages under laboratory conditions, 
although the symptoms were barely visible. 

When the model trained with the most troubled discs, where symp-
toms were hardly visible, was used on other days, the DPIs that have 
symptoms (4, 7, 8 and 9) were correctly detected, even though the level 
of infection was not considered during training. This reflected the 
robustness of the method, which differed from other works such as Khan 
et al. (2021), where powdery mildew was detected in wheat at 
pre-symptomatic stages, but the imbalance in the number of diseased 
and healthy leaves caused errors in the classification of late stages of the 
disease. The results were almost similar to those that could be obtained 
using a visible and near infrared spectral system (Baranowski et al., 
2015; Zhang et al., 2019) to detect plant disease symptoms, which 
would be more costly and complex to process than using RGB imaging. 
On the other side, when the symptoms were not visible, such as in the 
DPI 3, the model was not capable of detecting the infection. Therefore, 
these techniques could be combined with other systems using fluores-
cence or thermal sensors to detect pre-symptomatic stages of the disease, 

Table 2 
Results from the 10-fold cross validation of the leaf disc modelling at DPI 4. The 
last column represents the average number of epochs, per fold, needed by the 
neural network to converge into the highest accuracy.  

Input type 
10-fold cross validation 

Accuracy (%) Precision Recall F1-score Epochs 

RGB 97 0.97 0.97 0.97 280 
HLS 98 0.98 0.98 0.98 293 
Crisp mask 88 0.88 0.88 0.88 78 
Fuzzy mask 90 0.90 0.90 0.90 151  
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such as the infection in DPI 3. In addition, the detection with RGB im-
ages could be interpreted by the results obtained with the Grad-CAM 
method, as a novelty to other works where CNNs were also employed, 
such as its use to detect diseases in apple leaves (Bansal et al., 2021) or to 
estimate the severity of powdery mildew in grapevine (Bierman et al., 
2019). With this method, it was observed that the model ignored the 

infection on symptomless discs, but on the other stages it focused on 
practically all the sporulation, giving importance to the areas of the discs 
showing symptoms of downy mildew to perform the classification. Thus, 
it can be concluded that the symptoms could be detected in the discs 
when they were visible using RGB images, or data extracted from this 
type of images using deep learning models, even in the first days, but for 

Fig. 3. Evolution of the CNN in the modelling of DPI 4 (10-fold cross-validation) with four different image inputs: RGB (a); HLS (b); crisp mask (c); and fuzzy mask 
(d). The ordinate represents the average accuracy in the epoch from all folds. 

Table 3 
Classification results in the prediction of leaf disc images from days post-inoculation (DPI) 3, 4, 7, 8 and 9, using four different kinds of inputs (RGB; HLS; crisp mask 
[BM]; and fuzzy mask [FM]). The prediction model was trained with images from DPI 4 (first visible symptoms).  

DPI Input type Accuracy (%) Precision Recall F1-score FP FN 
Number of discs 

Positive Negative 

3 

RGB 47 0.51 0.50 0.35 5 141 

147 128 HLS 48 0.56 0.51 0.38 6 136 
CM 53 0.61 0.55 0.47 10 120 
FM 48 0.57 0.51 0.37 4 139 

4 

RGB 100 1.00 1.00 1.00 0 0 

124 128 
HLS 100 1.00 1.00 1.00 0 0 
CM 93 0.94 0.93 0.93 1 17 
FM 94 0.95 0.94 0.94 0 15 

7 

RGB 100 1.00 1.00 1.00 0 1 

108 124 HLS 99 0.99 0.99 0.99 0 2 
CM 97 0.97 0.97 0.97 1 6 
FM 98 0.98 0.98 0.98 0 5 

8 

RGB 100 1.00 1.00 1.00 0 0 

79 115 
HLS 99 0.99 0.99 0.99 1 1 
CM 99 1.00 0.99 0.99 0 1 
FM 99 0.99 0.99 0.99 0 2 

9 

RGB 99 1.00 0.99 0.99 0 1 

71 101 
HLS 99 0.99 0.99 0.99 1 1 
CM 98 0.99 0.98 0.98 0 3 
FM 99 0.99 0.99 0.99 0 2  
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detecting the asymptomatic stages it could be necessary its combination 
with other sensors. 

When trying to differentiate the stage of the infection, it was possible 
to differentiate with high accuracy the day with early symptoms of the 
disease (DPI 4), but the rest of the days became confusing to classify, 
especially the last days which had very similar symptoms and were 
confused between them. This indicates that this method was very good 
at distinguishing the early from the late stages of infection (after day 7 
post inoculation), and in many cases could also differentiate DPI 7 (with 
more than 80% accuracy), where the symptoms are slightly less than in 
DPIs 8 and 9, which are almost completely confused with each other or 
with DPI 7. Furthermore, in this case the RGB images performed better 
than the HLS, especially in the classification of the last days of infection, 
which seems to indicate that by not processing these images less infor-
mation about the discs was lost which helped to differentiate the stages 
of infection. Another way to obtain disease stage could be to estimate the 
severity by detecting sporulation on leaf discs, as in the case of Zendler 
et al. (2021), where a shallow convolutional neural network was used, 
or in the case of Hernández et al. (2022), where computer vision and 
fuzzy logic were used. However, in both cases, an expert assessment of 
each disc indicating the level of infection was necessary, unlike in this 
work, where the classification was done by its DPI, which reduced the 

data labelling time. In addition, the estimation of severity often reflects 
various false positives due to leaf nerves, water droplets or leaf hairs, 
which seemed to be reduced by classifying the discs. In Abdulridha et al. 
(2020) the stage of powdery mildew disease in squash was considered 
using hyperspectral images taken in the laboratory, which allowed more 
information to be extracted from data such as chlorophyll concentration, 
plant water content or leaf cell structure. However, in addition to the 
economic cost of these sensors and the amount of time and specialized 
personnel needed to handle and analyse the data, the detection of the 
disease when it presented early symptoms made certain errors and the 
stages of the disease needed to be monitored separately due to the dif-
ference in their features. The method developed in this work provided 
accurate disease detection even when symptoms were early and disease 
stage differentiation between early (DPI 4), intermediate (DPI 7) and 
high (DPI 8 and 9) using RGB images, which could be obtained with 
low-cost sensors, and are easy to analyse using deep convolutional 
neural networks, requiring little data pre-processing. 

5. Conclusion 

Applying deep learning to RGB images enabled automatic detection 
of early symptoms of downy mildew in grapevine leaves in the 

Fig. 4. Results from Grad-CAM using the model trained with RGB leaf diss images from the DPI 4. The example shows the RGB image of a disc at DPIs 3 to 9 (a), the 
heatmap resulting from the Grad-CAM method (b) and the combination of both (c). The reddish zones represent the features that the model considers more relevant 
for classification. 

Table 4 
Results for the 10-fold cross validation of DPI classification using RGB and HLS disc images. Correctly classified samples and its precision in percentage (diagonal of the 
confusion matrix) are highlighted. Epochs refers to the average number of epochs the models needed for training during the 10-fold cross validation.  

Input type   

Confusion matrix 

Accuracy (%) Precision Recall F1-score Epochs   Predicted DPI   

4 7 8 9 

RGB 

Actual DPI 

4 123 (99%) 1 0 0 

81 0.77 0.77 0.77 150 7 2 96 (85%) 11 4 
8 0 8 49 (62%) 22 
9 0 11 15 45 (63%) 

HLS 

4 123 (99%) 1 0 0 

77 0.74 0.73 0.73 135 
7 2 93 (82%) 10 8 
8 0 15 47 (59%) 17 
9 0 18 17 36 (51%)  

I. Hernández et al.                                                                                                                                                                                                                              



Scientia Horticulturae 331 (2024) 113155

7

laboratory, allowing to evaluate different treatments in an easy and 
rapid way. The developed method demonstrated its capability of 
detecting disease symptoms since the fourth day after inoculation, 
considering the sporulation on the leaves. Using convolutional neural 
networks facilitate data preprocessing, achieving high accuracy using 
raw data, which implied less time in giving a diagnostic of the leaf discs. 
Moreover, transfer learning helped facilitating automatic feature 
extraction of disc images, using previous knowledge of the model. On 
the other hand, automatic DPI identification was performed differenti-
ating when the symptoms started to appear, from the 7 DPI and the last 
days. This differentiation could facilitate the identification of the first 
symptoms and the late stages of the infection, adding information about 
the infection detected to evaluate possible treatments applied. This work 
showed the usefulness of deep learning techniques for early detection of 
plant diseases in the laboratory and the identification of their stage of 
infection with data that could be acquired easily and cheaply, even with 
a mobile phone. 
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