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Abstract: Methicillin resistance, mediated by the mecA gene in staphylococci and mammaliicocci, has
caused tremendous setbacks in the use of antibiotics in human and veterinary medicine due to its
high potential of presenting the multidrug resistance (MDR) phenotype. Three other mec analogs
exist, of which the mecC has evolutionary been associated with methicillin-resistant Staphylococcus
aureus (MRSA) in wild animals, thus loosely referred to as the wild MRSA. In this study, we present
an epidemiological review and genomic analysis of non-aureus staphylococci and mammaliicocci that
carry the mecC-mediated methicillin resistance trait and determine whether this trait has any relevant
link with the One Health niches. All previous studies (2007 till 2023) that described the mecC gene in
non-aureus staphylococci and mammaliicocci were obtained from bibliometric databases, reviewed,
and systematically analyzed to obtain the antimicrobial resistance (AMR) and virulence determinants,
mobilome, and other genetic contents. Moreover, core genome single-nucleotide polymorphism
analysis was used to assess the relatedness of these strains. Of the 533 articles analyzed, only 16 studies
(on livestock, environmental samples, milk bulk tanks, and wild animals) were eligible for inclusion,
of which 17 genomes from 6 studies were used for various in silico genetic analyses. Findings from
this systematic review show that all mecC-carrying non-aureus staphylococci were resistant to only
beta-lactam antibiotics and associated with the classical SCCmec XI of S. aureus LGA251. Similarly, two
studies on wild animals reported mecC-carrying Mammaliicoccus stepanovicii associated with SCCmec
XI. Nevertheless, most of the mecC-carrying Mammaliicoccus species presented an MDR phenotype
(including linezolid) and carried the SCCmec-mecC hybrid associated with mecA. The phylogenetic
analysis of the 17 genomes revealed close relatedness (<20 SNPs) and potential transmission of M.
sciuri and M. lentus strains in livestock farms in Algeria, Tunisia, and Brazil. Furthermore, closely
related M. sciuri strains from Austria, Brazil, and Tunisia (<40 SNPs) were identified. This systematic
review enhances our comprehension of the epidemiology and genetic organization of mecC within the
non-aureus staphylococci and mammaliicocci. It could be hypothesized that the mecC-carrying non-
aureus staphylococci are evolutionarily related to the wild MRSA-mecC. The potential implications of
clonal development of a lineage of mecA/mecC carrying strains across multiple dairy farms in a vast
geographical region with the dissemination of MDR phenotype is envisaged. It was observed that
most mecC-carrying non-aureus staphylococci and mammaliicocci were reported in mastitis cases.
Therefore, veterinarians and veterinary microbiology laboratories must remain vigilant regarding
the potential existence of mecA/mecC strains originating from mastitis as a potential niche for this
resistance trait.
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1. Introduction

The genera Staphylococcus and Mammaliicoccus are predominantly nasal and skin com-
mensals in humans and most animal species [1–3]. However, they could be translocated to
other parts of the human and animal body to cause clinical infections through the expres-
sions of virulence genes [4]. The antimicrobial resistance (AMR) and virulence potential
of staphylococci have long been elucidated in detail in S. aureus. However, non-aureus
staphylococci and Mammaliicoccus species have recently been shown to carry critical AMR
genes and virulence factors that have been hitherto exclusively reported in S. aureus [5–7].
In these regards, it is important to remark on the detection of linezolid resistance genes (cfr,
optrA, and poxtA) and virulence determinants such as tst, luk-F/S-PV, eta, seb, sec, and sel
in some non-aureus staphylococci and mammaliicocci [5–9]. AMR is a major global health
challenge that needs a holistic “One Health” approach, for which Staphylococcus and certain
Mammaliicoccus species serve as suitable bacteria models. This is because some species and
lineages could “spill over” across multiple hosts, carry emergent resistance mechanisms or
transfer critically important AMR zoonotically or anthropogenically [10]. Recently, studies
have shown enormous interrelations of the wildlife–livestock interface in the transmission
and maintenance of bacterial pathogens and AMR of public health concerns such as those
caused by staphylococci and, by extension, mammaliicocci [11–13].

The presence of methicillin resistance and resistance to nearly all beta-lactams in
staphylococci were historically linked to the acquisition of the mecA gene, which encodes
the alternative penicillin-binding protein PBP2a [14]. However, the frequent association
of methicillin resistance in staphylococci, mammaliicocci, and macrococci has now been
attributed to the presence of other mec-type genes (mecB, mecC, and mecD) (Table 1). These
genes also encode for penicillin-binding proteins (PBPs) that exhibit low affinity for beta-
lactams [15].

Table 1. Beta-lactam resistance as well as mobile genetic elements carrying these genes in staphylo-
cocci, mammaliicocci, and macrococci.

Resistance Mechanism
Mobile Genetic Elements with Resistance Genes

References
Plasmids Transposons Other MGEs

a. blaZ (all species except S. arlettae) pI258, pII147 Tn552, Tn4002
and Tn4201 SCCmec type XI García-Álvarez et al. [16],

Shearer et al. [17]

b. blaARL (only S. arlettae) None None None Andreis et al. [18]

c. mecA None None Various SCCmec types Miragaia [15]

i. mecA1 (M. sciuri), 85% homology with mecA None None None Cai et al. [19]

ii. mecA2 (S. vitulinus) 94% homology with mecA None None None Miragaia [15]

d. mecB (S. aureus) 69% homology with mecA pSAWWU4229_1 None None Becker et al. [20]

e. mecB (M. caseolyticus) pMCCL2 Tn6045 McRImecD-1 Schwendener et al. [21]

f. mecC (S. aureus LGA251 and many CoNS) None None SCCmec XI and
SCCmec-mecC hybrids García-Álvarez et al. [16]

i. mecC1 gene in S. xylosus None None SCCmec XI Harrison et al. [22]

ii. mecC2 gene in S. saprophyticus None None SCCmec-mecC hybrid Małyszko et al. [23]



Microorganisms 2024, 12, 66 3 of 17

Table 1. Cont.

Resistance Mechanism
Mobile Genetic Elements with Resistance Genes

References
Plasmids Transposons Other MGEs

g. Mutations in genes encoding PBP2 and PBP4,
especially on the genes gdpP and yjbH
conditioning the overproduction of PBP4 protein
and resistance to ceftobiprole.

None None None Greninger et al. [24]
Lee et al. [25]

h. mecD (Macrococcus caseolyticus) None None McRImecD-1,
McRImecD-2 Schwendener et al. [21]

Abbreviation: SCCmec: staphylococcal chromosome cassette mec. CoNS: coagulase-negative staphylococci.

The mecA-mediated methicillin-resistant S. aureus (MRSA) exhibits a high prevalence
on a global scale in human and multiple animal hosts, especially in pigs and dairy ani-
mals [10,26,27]. In 2007, an additional mec gene, known as mecC, was discovered to be
associated with resistance to beta-lactam antibiotics during an epidemiological investiga-
tion of bovine mastitis [16,28]. The mecC gene, previously known as mecALGA251, is a mecA
variant that shares 69% nucleotide identity and was initially reported in an S. aureus strain
from a bovine sample [29]. Similar to mecA, mecC was discovered to be present inside the
mobile genetic element (MGE) referred to as the staphylococcal cassette chromosome mec
(SCCmec), which is inserted at the 3′ end of the orfX locus [29].

The SCCmec harboring mecC exhibited notable distinctions from previously identified
types and was officially classified as SCCmec type XI [30,31]. In addition to its presence
in cattle, mecC has been documented in MRSA strains from people throughout various
European countries, as well as in a wide range of wild animal species as reviewed by
Abdullahi et al. [27] and Lozano et al. [32]. Furthermore, mecC-carrying MRSA strains have
also been demonstrated in river water and livestock such as sheep and goats in Spain and
Tunisia [33].

The mecC allotype was subsequently discovered in Mammaliicoccus (previously Staphy-
lococcus) sciuri, located downstream of the newly identified SCCmec type VII [34]. This
hybrid SCCmec-mecC element consists of mecA and mecC regions organized within a class E
mec complex (mecI-mecR, mecC-blaZ) [34]. It has been demonstrated a strong correlation be-
tween M. sciuri and the origin and assembly of the SCCmec element, especially for SCCmec
type III [35]. Consequently, several previous investigations have shown multiple lines of
evidence indicating that the mecA1 gene originated in M. sciuri encoding the PBPD [36].
Furthermore, Rolo et al. [35] provided evidence that M. sciuri species serve as an innate
host and abundant reservoir for ccr, which is the most likely source of these recombinases
for the formation of SCCmec [15]. Nevertheless, there are limited data regarding the origin
and molecular epidemiology and the clinical importance of mecC-carrying mammaliicoccal
strains. So far, M. sciuri has been found in environmental and animal samples [8,37,38] and
has been associated with occasional infections in both animals and humans [39–42]. Previ-
ous research has demonstrated that mammaliicocci strains bearing mecA/mecC homologs
exhibit the ability to excise both the hybrid SCCmec-mecC and SCCmec type XI from the
chromosome [34]. Furthermore, these elements can be subsequently transmitted to more
pathogenic staphylococci [43]. In this study, we present an epidemiological review and
molecular analysis of non-aureus staphylococci and mammaliicocci that carry the mecC-
mediated methicillin resistance trait and determine whether this trait has any relevant link
with the One Health niches.
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2. Methodology
2.1. Literature Search

A comprehensive literature review was conducted on the PubMed database using the
following search terms: “methicillin”, “mecC CoNS”, “mecC methicillin”, “mecC-methicllin
resistance”, “mecC mammaliicocci”, “mecC mastitis”, “mecC livestock”, “mecC dairy”, “mecC
environment”, “mecC wild animal”, “mecC S. sciuri”, “mecC non-aureus”, “mecC human”,
“mecC dog”, and “mecC cat”. Additional search engines such as Google Scholar, ScienceDi-
rect, Scopus, and Web of Science were used to obtain all potentially eligible studies. The
inclusion criteria encompassed articles that were published throughout the time frame of
October 2007 to October 2023. Of the 533 hits, a total of 341 articles were removed, as they
did not address non-aureus staphylococci, as indicated in Supplementary Figure S1. An
additional 176 articles were omitted from the study, as they solely concentrated on the
mecA-mediated methicillin resistance, inadequate methodology, or review papers. An eval-
uation was conducted on 16 studies that specifically examined mecC-carrying non-aureus
staphylococci and mammaliicocci (Table 2). From these 16 articles, only 6 met the criteria
for detailed genomic analyses, as indicated in Supplementary Figure S1 and Table 3.

2.2. Description of the mecC-Carrying Non-aureus Staphylococci and Mammaliicocci Strains and
the Methodology Used in the Eligible Studies

The strains included in this analysis and obtained from the eligible studies (Table 2),
encompassed a diverse range of subjects, including livestock suffering from mastitis, as
well as specimens obtained from farms and wild animals. Non-aureus staphylococci and
mammaliicocci from the eligible studies were obtained from several sources, including
milk, teat, manure, soil, and skin samples. Following the collection of samples in these
studies, they were subjected to cultivation; subsequently, their DNA was extracted for
various gene amplifications, and whole-genome sequencing (in some studies). The disc
diffusion method was commonly utilized in most studies to assess resistance to oxacillin
and/or cefoxitin in antibiotic susceptibility tests. The genomic sequences were utilized
to identify the mechanisms for methicillin resistance and other AMRs. Additionally, the
genomes of the strains obtained from GenBank were used to determine the sequence types
(STs), virulome, plasmids, SCCmec types, and other MGEs (Table 2).

2.3. Phylogenetic and In Silico Genomic Analysis

To determine the relatedness of the non-aureus staphylococci and mammaliicocci
strains from the eligible studies, a web-based CSI phylogeny database (https://cge.food.
dtu.dk/services/CSIPhylogeny/) (accessed on 10 September 2023) was used to obtain
the SNPs by mapping the publicly available genomes of the 17 strains obtained from
GenBank to a reference S. aureus LGA251 (accession number FR821779) with the default
parameter, except for that the minimum distance between SNPs, which was disabled.
The graphical data were added to the phylogenies using iTOL v.6.6 [44]. The sequence
types (STs) were determined using MLST v.2.16 [45]. Virulence factors, plasmid replicons,
and antimicrobial resistance genes were identified using PlasmidFinder, and Resfinder
from the Center for Genomic Epidemiology. Moreover, other databases such as VFDB
(http://www.mgc.ac.cn/VFs/main.htm (accessed on 12 September 2023) and CARD (https:
//card.mcmaster.ca/analyze/rgi) (accessed on 12 September 2023) were used to search
for additional virulence and AMR genes. The genetic environment of the mecC gene from
10 non-aureus staphylococci and mammaliicocci strains (one per species per study) was
illustrated in comparison with the S. aureus LGA251 strain (accession number FR821779).
Computations and graphical designs were performed using EasyFig (https://mjsull.github.
io/Easyfig/) (accessed on 28 October 2023) and Inkscape software version 1.3.2. (https:
//inkscape.org/) (accessed on 28 October 2023).

https://cge.food.dtu.dk/services/CSIPhylogeny/
https://cge.food.dtu.dk/services/CSIPhylogeny/
http://www.mgc.ac.cn/VFs/main.htm
https://card.mcmaster.ca/analyze/rgi
https://card.mcmaster.ca/analyze/rgi
https://mjsull.github.io/Easyfig/
https://mjsull.github.io/Easyfig/
https://inkscape.org/
https://inkscape.org/
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Table 2. AMR, virulence genes, genetic lineages, and mobile genetic elements in S. aureus LGA251, and in mecC-carrying non-aureus staphylococci and mammaliicocci.

Authors Country Source of the
Strains

Bacterial
Species

(Number)
AMR Phenotype Molecular

Assays AMR Genes
Plasmid Reps
(Associated

AMR)

Genetic
Lineage SCCmec Type Other MGEs

García-Álvarez
et al. [16]

UK Bulk milk S. aureus (1) PEN, OXA WGS blaZ, mecC ND ST425 XI None

Harrison et al. [22] UK Bovine milk S. xylosus (1) PEN, OXA WGS blaZ, mecC NT NT XI Tn554-like

MacFadyen
et al. [46] UK Bulk milk tank S. xylosus (1) PEN, OXA WGS blaZ, mecC NT NT XI ACME

Paterson et al. [40] UK Bovine milk
tank M. sciuri (11) PEN, OXA, CLI,

TET, STR WGS blaZ, mecC, salA,
tet(K), str NT NA SCCmec-mecC

hybrid None

Harrison et al. [34] UK Bovine M. sciuri (2)
PEN, OXA, FOX,
CHL, CLI, TET,

STR, FUS
WGS

blaZ, mecA, mecA1,
mecC, fexA, ermC,

tet(K), str
NT NA SCCmec-mecC

hybrid None

Dhaouad et al. [39] Tunisia Calves, cow,
horses, rabbit M. sciuri (6)

PEN, FOX, CHL,
ERY, CLI, GEN,
TOB, STR, TET,

FUS

WGS

blaZ, mecA, mecA1,
mecC, fexA, erm45,

ermB, salA,
aac6′-aph2′′, ant4,
str, dfrK, tet(K),
tet(L), fusB/C

rep22 (ant4′, dfrK,
tet(L)), repUS76

(ermB)
ST38 SCCmec-mecC

hybrid Tn558 (fexA)

de Moura et al. [47] Brazil Bovine M. sciuri (2) PEN, FOX, CLI,
TET, STR WGS

blaZ, mecA, mecA1,
mecC, salA, str,

tet(K)
rep7a (str) ST71 SCCmec-mecC

hybrid None

Aslantaş [48] Turkey Broilers M. sciuri (7)
PEN, FOX, ERY,
CLI, TET, GEN,

SXT
PCR

blaZ, mecA, mecC,
ermA, lnuA, tet(K),

tetM, aac6-aph2
NT NT III (by PCR) NT

Belhout et al. [49] Algeria Camels M. lentus (5) PEN, FOX, STR,
ERY, CLI, TET WGS

blaZ, mecA, mecC,
str, ermB, mphC,

tet(K)
rep7a (tet(K), str) ND SCCmec-mecC

hybrid None

Srednik et al. [50] Argentina Bovine S. saprophyticus
(1) PE, OXA, FOX PCR blaZ, mecC NT NT NT NT

Małyszko et al. [23] Poland Shrew (small
mammal)

S. saprophyticus
(1) PEN, OXA PCR blaZ, mecC NT NT NT NT

Loncaric et al. [51] Austria Eurasian lynx M. stepanovicii
(1) PEN, OXA PCR blaZ, mecC NT NT NT NT
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Table 2. Cont.

Authors Country Source of the
Strains

Bacterial
Species

(Number)
AMR Phenotype Molecular

Assays AMR Genes
Plasmid Reps
(Associated

AMR)

Genetic
Lineage SCCmec Type Other MGEs

Semmler et al. [52] Germany Wild vole M. stepanovicii
(1) PEN, OXA WGS blaZ, mecC NT ND XI None

Lancoric et al. [53] Austria
Wild and
domestic
animals

M. stepanovicii, S.
caprae, S. warneri,
S. xylosus, and

M. sciuri

a. M. sciuri (PEN,
OXA, FOX, GEN,

TET, ERY, CLI,
CHL, SXT)

b. M. stepanovicii,
S. caprae, S. xylosus,

S. warneri (PEN,
FOX)

PCR, WGS

a. blaZ, mecA,
mecA1, mecC ant4′,

tet(M), ermB, cfr,
fexA in M. sciuri
b. blaZ, mecC in

others

ND M. sciuri
(ST22)

a. SCCmec-mecC
hybrid in M.

sciuri
b. XI in others

None

Pantůček et al. [54] The Czech
Republic

Stone frag-
ments/sandy

soil

S. edaphicus sp.
nov. (1) PEN, OXA WGS blaZ, mecC NT ND XI None

Dhaouad et al. [38] Tunisia Bovine mastitis
and manure M. sciuri PEN, OXA, FOX,

TET PCR mecA, mecC, blaZ,
tet(K) NT NT Non-typeable NT

Abdullahi et al. [37] Spain Nestling of
white stork M. lentus PEN, FOX, CLI,

TET PCR blaZ, mecA, mecC,
mphC, tet(K) NT NT blaZ-SCCmec XI NT

Abbreviations: PCR: polymerase chain reaction; WGS: whole-genome sequencing; NT: not tested; NA: not applicable; ST: sequence type: CLI: clindamycin; CHL: chloramphenicol; CIP:
ciprofloxacin; ERY: erythromycin; FOX: cefoxitin; FUS: fusidic acid; GEN: gentamicin; OXA: oxacillin; PEN: penicillin; TET: tetracycline; TOB: tobramycin; STR: streptomycin; SXT:
sulfamethoxazole–trimethoprim.
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Table 3. Species and sources of genomes used for the phylogenomic analyses in this review.

Authors Country Strain GenBank
Accession Number

García-Álvarez et al. [16] UK S. aureusLGA251 FR821779

Dhaouad et al. [39] Tunisia M. sciuri

SRR20693405
SRR20693403
SRR20693382
SRR20693383
SRR20693384

Paterson et al. [40] UK M. sciuri ERR3350388

Lancoric et al. [53] Austria
S. xylosus
S. warneri
M. scuiri

SRR8494495
SRR8494496
SRR8494497

Pantůček et al. [54] The Czech Republic S. edaphicus GCA 002614725

de Moura et al. [47] Brazil M. sciuri GCA 030250115.1
GCA 030250065.1

Belhout et al. [49] Algeria M. lentus

GCA 030013965.1
GCA 030012945.1
GCA 030012925.1
GCA 030012985.1

3. Findings and Discussion
3.1. SCCmec and Its Classification System in Methicillin-Resistance Trait

SCCmec typing was developed during the 2000s and has since been utilized as a
valuable tool in studying the molecular epidemiology of methicillin-resistant staphylococci
and investigating the evolution of various Staphylococcus species [31]. Molecular cloning
and conventional sequencing techniques have been employed to confirm the existence
and arrangement of a newly identified SCCmec type. In practical applications, PCR-based
approaches have been widely utilized for the identification of SCCmec, offering convenience
and efficiency over an extended period [31]. Moreover, the utilization of whole-genome
sequencing has been extensively employed, leading to the recent identification of diverse
SCCmec and analogous structures across other species [31,55]. Upon the discovery that
the mecA gene was widely distributed across several staphylococcal species, a hypothesis
emerged suggesting that mecA might be harbored on a MGE capable of horizontal trans-
mission between staphylococcal species [56]. For the mecC gene, no study has elucidated
the potential for its transfer within species of the Staphylococcus and Mammaliicoccus genera
through SCCmec elements.

As of now, fourteen distinct types of SCCmec have been documented. These types are
further categorized into broad groups [31]. The size of the SCCmec elements varies from 21
to 82 thousand nucleotides [57]. The typical configuration of SCCmec cassettes encompasses
five distinct sections. The categorization of SCCmec into distinct types is determined by the
specific ccr chromosomal recombinase gene complex, namely ccrA, ccrB, and ccrC [57]. The
classification of the mec gene complex also represents a significant factor in the division of
SCCmec. Several distinct classes can be identified, including A, B, B2, C1, C2, D, and E. The
various classes exhibit variations in the extent of mecI-mecR gene deletion, as well as the
relative positioning and distance from the entire or truncated IS431, IS1182, and IS1272 [57].
The categorization of SCCmec subtypes is determined by the subclasses of the mec gene
complex and the composition of the J1, J2, and J3 regions [31]. The mec gene complex
is composed of mecA or mecC, their regulatory genes, and the accompanying insertion
sequences [31]. Currently, five classes of the mec gene complex have been described [31].
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3.2. The Mammaliicoccus Genus, a Recent Offshoot from Staphylococcus

The taxonomic characterization of Mammaliicoccus is derived from the existing data
presented by Madhaiyan et al. [2]. The cellular composition consists of Gram-positive,
nonmotile, non-spore-forming cocci, which are observed in singular form, as well as in
pairs and irregular clusters. These organisms demonstrate the ability to develop under
aerobic conditions, as well as under facultative anaerobic conditions. The tested samples
exhibited good catalase activity, along with varying levels of oxidase activity. According to
Madhaiyan et al. [2], the DNA G+C content (mol%) varies between 31.6 and 35.7, while the
genome size spans from 2.44 to 2.81 Mbp. The aforementioned description pertains to M.
sciuri comb. nov., which serves as the designated type species. The differentiation of the
genus from Staphylococcus was achieved by the utilization of various analytical techniques,
including the examination of 16S rRNA gene sequences, the construction of phylogenetic
trees using whole-genome data, and the assessment of overall genome-related indices.
These former Staphylococcus species include M. fleurettii, M. lentus, M. sciuri, M. stepanovicii,
and M. vitulinus [2].

3.3. Ecology of mecC Gene in Non-aureus Staphylococci and Mammaliicoccus

The detection of the hybrid SCCmec-mecC in few cases in methicillin-resistant M.
sciuri obtained in two different studies from bovine milk [34,40] indicates that the preva-
lence of this genetic feature in M. sciuri may be more extensive than previously known.
Notwithstanding, the mecC gene has been detected in several non-aureus staphylococci and
mammaliicocci in Europe, Africa, America, and Turkey (Figure 1); these include M. lentus,
S. xylosus, M. stepanovicii, S. caprae, and S. warneri. Remarkably, most of these mecC-carrying
strains were identified from dairy animals. Of the 15 studies that reported the detection
of the mecC gene in non-aureus staphylococci and Mammaliicoccus, the most frequently
identified species were M. scuiri and S. xylosus. The detection of mecC carrying-M. sciuri
in both manure and milk samples suggests that contamination may have occurred due
to the mammary secretions of cows suffering from mastitis [38,58]. Ecologically, mecC-
carrying S. xylosus has been detected in fermented food products such as sausage [59,60]
and cheese [61], thus indicating a potential pathway for the transfer of mecC and other resis-
tance genes from the environment or animal product (such as bovine milk) contaminated
with bacteria carrying these AMR genes [22,62].

As most mecC-carrying non-aureus staphylococci and Mammaliicoccus are associated
with livestock, especially dairy animals, these strains could exert negative impacts on
livestock’s health, production, and public health as in the case of bovine mastitis that causes
a decline in quality and quantity of milk and milk product [63–65]. Moreover, contaminated
milk may cause gastroenteritis in humans when they consume dairy products contaminated
with mecC-carrying non-aureus staphylococci or Mammaliicoccus that elaborate virulence
factors such as the icaABCD biofilm genes [66]. It has been shown that biofilm production
could exponentially facilitate the persistence of AMR in bacteria [66]. Thus, biofilms during
infections and contamination of dairy products can cause public health concerns from
veterinary, food safety, and medical standpoints.

Tracing the origin of mecC-carrying non-aureus staphylococci and mammaliicocci in
dairy animals could be difficult, but it could be hypothesized that this methicillin resistance
trait might have been acquired from wild animals’ secretions containing the mecC gene, as
these hosts are the major and natural reservoirs of mecC-mediated MRSA [26]. Interestingly,
two of the three studies on wild animals reported mecC-carrying M. stepanovicii in SCCmec
XI. However, the other was a mecA/mecC-carrying M. lentus from a nestling stork whose
parent foraged in landfills that could have been contaminated by livestock pasture and
feces [37]. In this regard, genomic-based surveillance has become necessary to understand
the potential transmission of mecC gene from MRSA to non-aureus staphylococci and
mammaliicocci in the same micro-niches or ecosystems.

The predominance of M. sciuri and S. xylosus may be better understood by considering
their ability to adapt to various ecological environments and among them the teat canal of
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dairy animals [67]. The organism’s capacity to inhabit both living and nonliving surfaces
is likely ascribed to its capability to form a biofilm and the existence of genes linked to
ecological adaptation [66]. These bacteria have widely been recognized as nonpathogenic
commensal, with a limited number of documented cases associating them with diseases. In
contrast, it is important to highlight that S. saprophyticus, which exhibits the most closely
related evolutionary lineage to S. xylosus, possesses considerable significance as an oppor-
tunistic pathogen [68]. Specifically, S. saprophyticus contracted from contaminated food
has long been implicated in urinary tract infections in young teenagers [68,69]. Moreover,
M. lentus and M. sciuri are considered etiological agents of exudative epidermitis with
zoonotic potentials [70]. Much more recently, whole-genome data of non-aureus staphy-
lococci species have led to the identification and characterization of numerous putative
virulence factors [71–73].
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The finding of a beta-lactam-resistant S. edaphicus strain from an antarctic environment
sample showed that the mecC gene located between a pseudo-staphylococcus cassette
chromosome mec (ψSCCmecP5085) and other SCCs implies the integration and exchange of
foreign DNA [54]. It has been shown that MecC protein exhibits enhanced stability and ac-
tivity at lower temperatures in comparison to the MecA protein [74]. This phenomenon may
provide an evolutionary advantage in mitigating the prevalence of beta-lactam producers
in arctic habitats.

3.4. Genetic Environment of the mecC in Staphylococcus and Mammaliicoccus Species

From our in silico analysis of the environment of mecC gene of all Mammaliicoccus
species, it appears that this gene is encoded within a hybrid SCCmec element comprising
mecA encoding SCCmec type VII [40,47,49]. This is very different from all other mecC-
carrying non-aureus staphylococci, which were all in SCCmec type XI (Figure 2). Specifically,
the analysis of 10 mecC-carrying non-aureus staphylococci and Mammaliicoccus species
showed that all except S. xylosus, M. stepanovicii, S. warneri, S. caprae, and S. edaphicus
carried a hybrid SCCmec-mecC (Figure 2). The SCCmec-mecC hybrid consists of a class E mec
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complex (mecI-mecR1-mecC1-blaZ) located immediately downstream of a SCCmec type VII
element (Figure 2). Most of the cassettes comprise mecA/mecI/mecR2 and cadD/cadA/cadC
(Figure 2). The mecC gene of the S. xylosus, M. stepanovicii, S. warneri, S. caprae, and S.
edaphicus strains was very similar to SCCmec type XI, a classical type that was first found
in S. aureus LGA251 (accession number FR821779). Perhaps, this could be because only
the mecC gene was related to the methicillin resistance in these strains. Due to the high
similarity (>98%) in the environment of the mecC of these strains with that of the reference
S. aureus LGA251, it could be hypothesized that this gene might have been transferred to the
non-aureus staphylococci through SCCmec XI by horizontal gene transfer (HGT), especially
as both mecC-MRSA and mecC-carrying non-aureus staphylococci were reported in the
study of Loncaric et al. [53].
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It is important to mention that using genome sequences on curated web pipelines
could provide an unspecific and incorrect SCCmec type (in most cases SCCmec type III),
which could be due to recombination events between the SCCmec type III (intrinsic for
most M. lentus and M. sciuri) of the mecA gene and SCCmec type XI of the mecC to produce
the SCCmec-mecC hybrid. In this regard, there is a need for caution in using PCR-based
assays to detect SCCmec types in mecC-carrying mammaliicocci. Particularly, the intrinsic
SCCmec type III or blaZ-SCCmec XI fragment in mammaliicocci could appear PCR-positive.
This could be the case of the findings of Abdullahi et al. [37] and Aslantaş [48]. Thus, in
silico and computational analyses of mecA/mecC genes from whole-genome sequences of
mammaliicocci are necessary to deduce their correct SCCmec type.

3.5. Comparison of AMR Rates in mecC-Carrying S. aureus and Non-aureus Staphylococci
and Mammaliicocci

Contrary to the notion that most mecC-carrying MRSA present low-level AMR and
rarely present an MDR phenotype, most of the mecC-carrying mammaliicocci presented an
MDR phenotype, and AMR genes of clinical relevance. This suggests that the acquisition
of other non-beta-lactam resistance genes in these strains is likely to occur with notable
frequency. Specifically, many mecC-carrying M. sciuri strains exhibited the highest fre-
quencies of resistance to erythromycin, clindamycin, tetracycline, chloramphenicol, and
trimethoprim–sulfamethoxazole (Table 2).

It is important to mention that the majority of mammaliicocci strains exhibit resistance
to several clinically relevant AMRs located in plasmids and transposons, especially tet(L),
ant4′, ermB, str, fexA, and dfrK genes. Moreover, the presence of M. sciuri strains from a
sheep and a goat carrying the cfr gene further highlights the potential of mecC-carrying
M. sciuri to carry and transmit critical AMR. It is noteworthy to remark that the cfr gene,
responsible for encoding a methyltransferase enzyme that alters the A2503 location of the
23S ribosomal RNA, was initially identified in a calf-derived strain of M. sciuri in the year
2000 [75]. The cfr gene provides resistance to multiple classes of antibiotics, including
lincosamides, streptogramin A, phenicols, linezolid, and pleuromutilins [75], especially in
staphylococci [7].

It has been observed that fexA gene that encodes for chloramphenicol resistance could
co-select the cfr gene and other linezolid resistance genes in staphylococci and mammaliic-
occi, especially in livestock [5,7,10,76]. This shows that the persistent use of florfenicol (a
derivative of chloramphenicol) in livestock farms could have encouraged the re-emergence
of cfr-mediated linezolid resistance in many Gram-positive bacteria [7]. Tetracycline and
erythromycin are frequently employed in veterinary medicine and their usage may poten-
tially account for the elevated rates of resistance. Contrary to these observations, all the
mecC-carrying non-aureus staphylococci did not present an MDR phenotype, a feature that
is closely similar to the mecC-carrying-MRSA. This further supports the hypothesis that
mecC-carrying non-aureus staphylococci could have similar evolutionary origins of SCCmec
type XI and low-level resistance to non-beta-lactams.

3.6. Phylogenomic Relatedness of mecC-Carrying Non-aureus Staphylococci and Mammaliiococci

Mapping of the assembled genomes of the 17 mecC-carrying non-aureus staphylococci
and mammaliicocci with the reference S. aureus LGA251 indicated three distinct clusters
(Figure 3). Of these, two contained two S. xylosus strains from the UK (cluster 1), four
M. lentus strains from Tunisia (cluster 2), and eight M. sciuri strains from Austria, Tunisia,
and Brazil (cluster 3). The remaining strains (M. sciuri-ERR3350388, S. warneri, and S.
ediphicus) existed as standalone on the tree (with wide SNP difference from other strains)
(Supplementary Table S1, Figure 3).
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Analysis of a midpoint-rooted phylogenomic tree of the three clusters confirmed
the close relatedness (<20 SNPs) and potential transmission of mammaliicoccal strains in
livestock farms, as in the case of M. lentus in Algerian camels and M. sciuri from different
types of livestock in Tunisia and Brazil (Supplementary Table S1, Figure 3). Moreover,
phylogenetic analysis further showed the genetic proximity (<40 SNPs) of M. sciuri strains
from Austria, Brazil, and Tunisia (Figure 3). These findings highlight the intercontinental
circulation of related M. sciuri strains between various livestock species, as confirmed by
the phylogenetic analysis (Figure 3). However, further studies are important to elucidate
the pathway of transmission of the genetically related strains to fully understand the factors
that facilitated their presence in these countries.

4. Conclusions

This systematic review enhances our comprehension of the epidemiology and genetic
organization of mecC within the non-aureus staphylococci and mammaliicocci. From our
in silico analyses of the mecC gene, distinct variation in the SCCmec elements of non-
aureus staphylococci from other (carrying SCCmec-mecC) hybrids tends to be genus-specific.
Furthermore, utilizing core genome phylogenetic analysis, it was determined that the
mecA/mecC cassette has been acquired by non-aureus staphylococci and mammaliicocci
on separate occasions. The potential implications of clonal development of a lineage of
mecA/mecC carrying strains across multiple dairy farms in a vast geographical region with
the dissemination of the MDR phenotype is envisaged.

It was observed that most mecC-carrying non-aureus staphylococci and mammaliicocci
were detected in mastitis cases. Therefore, veterinarians and veterinary microbiology
laboratories must remain vigilant regarding the potential existence of mecA/mecC strains
originating from mastitis as a potential niche for this resistance trait.

In summary, enhancing genome-based surveillance of mecC-carrying non-aureus
staphylococci and mammaliicocci is vital to ascertaining their origins and impact on human
and animal health.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12010066/s1, Figure S1: Identification and selection
flowchart of articles on the mecC-carrying non-aureus staphylococci and mammaliicocci; Table S1:
SNPs matrix of 17 genomes of mecC-carrying non-aureus staphylococci and mammaliicocci.
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