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Abstract
Water stress is a major factor affecting grapevine yield and quality. Standard methods for measuring water stress, such as 
midday stem water potential (ΨSWP), are laborious and time-consuming for intra-block variability mapping. In this study, 
we investigate water status variability within a 2.42-ha commercial Cabernet Sauvignon block with a standard vertical 
trellis system, using remote sensing (RS) tools, specifically canopy fraction-based vegetation indices (VIs) derived from 
multispectral unmanned aerial vehicle (UAV) imagery, as well as standard reference methods to evaluate soil and plant water 
status. A total of 31 target vines were monitored for ΨSWP during the whole growing season. The highest variability was at 
véraison when the highest atmospheric demand occurred. The ΨSWP variability present in the block was contrasted with soil 
water content (SWC) measurements, showing similar patterns. With spatial and temporal water stress variability confirmed 
for the block, the relationship between the ΨSWP measured in the field and fraction-based VIs obtained from multispectral 
UAV data was analysed. Four UAV flights were obtained, and five different VIs were evaluated per target vine across the 
vineyard. The VI correlation to ΨSWP was further evaluated by comparing VI obtained from canopy fraction (VIcanopy) ver-
sus the mean (VImean). It was found that using canopy fraction-based VIs did not significantly improve the correlation with 
ΨSWP (NDVIcanopy r = 0.57 and NDVImean r = 0.53), however fractional cover (fcover) did seem to show a similar trend to plant 
water stress with decreasing canopy size corresponding with water stress classes. A subset of 14 target vines were further 
evaluated to evaluate if additional parameters (maximum temperature, relative humidity (RH), vapour pressure deficit, SWC 
and fractional cover) could serve as potential water stress indicators for future mapping. Results showed that the integration 
of NDVIcanopy and NDREmean with additional information could be used as an indicator for mapping water stress variability 
within a block.

Introduction

The study of spatial variability has received significant atten-
tion in the last two decades due to the fast-growing field of 
Remote Sensing (RS). The correct use of RS technologies 
could reduce the overall cost of agronomic management 
(Cinat et al. 2019). In viticulture, the use of proximal and 
RS tools for monitoring vineyards has become increasingly 
popular and offers a non-destructive and efficient way of 
collecting data, which can provide valuable insight into 

the variability in and among vineyards. With-in vineyard, 
or intra-block variability is not a new concept, and RS has 
already proven its potential in spatio-temporal evaluation 
(Khaliq et al. 2019), however the accuracy of mapping true 
vineyard variability for the purpose of precision viticulture 
(PV) still remains a challenge, particularly due to compo-
nents (soil, shadows, cover corps) interfering with the calcu-
lation of vegetation indices (VIs). RS data enable the char-
acterization of plant physiology through the computation 
of VIs, such as the widely recognized normalize vegetation 
index (NDVI). NDVI takes advantage of the distinct reaction 
of vegetation to the visible (red) and near-infrared bands, 
closely linked to the conditions of crops (Matese and Di 
Gennaro 2015). Unmanned aerial vehicle (UAV) imagery 
has been widely utilized in various agricultural applications, 
specifically were VIs have been used for assessing plant vig-
our, biomass production, disease detection, nitrogen content 
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analysis and crop water stress evaluation. The disadvantages 
of UAVs however, include their dependence on the sensing 
technologies they carry for data acquisition, the need for fly-
ing permits and compliance with regulations, and limitations 
in operation during adverse weather conditions (Tardaguila 
et al. 2021; Poblete-Echeverría and Tardaguila 2023; Gau-
tam and Pagay 2020).

Most recent studies place focus on how to incorporate 
machine learning or classification algorithms in these 
approaches (Filippetti et al. 2013; Gatti et al. 2017; Di Gen-
naro et al. 2018; Romboli et al. 2017; Cinat et al. 2019; 
Karpina et al. 2016; Matese et al. 2019; Kerkech et al. 2020). 
The effectiveness of VIs has been explored across different 
RS platforms, including aircraft, satellite-based and UAV 
observations (Matese et al. 2015; Tardaguila et al. 2021). 
However, UAVs have emerged as a popular RS tool due to 
their ability to acquire images at low altitudes with high 
spatial resolution (Pádua et al. 2018; Cinat et al. 2019). 
UAVs are considered the most advanced platform for RS, 
and their application continue to progress with advancement 
in technology (Matese et al. 2018). Moreover, UAVs offer 
advantages such as low manufacturing costs and greater flex-
ibility in acquiring frequent temporal data, overcoming some 
limitations associated with satellite-based observations. In 
a recent review article published by Giovos et al. (2021), 
113 publications reviewed made use of RS to calculate VIs, 
specifically NDVI, for one of three applications, monitoring, 
estimating vine water stress or delineation of management 
zones (Caruso et al. 2017; Di Gennaro et al. 2019; Khaliq 
et al. 2019; Sozzi et al. 2020; Giovos et al. 2021).

Grape berries under mild or moderate water deficit dur-
ing the ripening period, is known to concentrate sugars and 
some phenolics, whereas severe water stress can adversely 
affect the quality of berries reducing sugar and aroma levels, 
as well as lowering grape yields (e.g., van Leeuwen et al. 
2009, 2018). Therefore, precision irrigation techniques 
that consider the spatial variability of soil and plant char-
acteristics will help farmers avoid overwatering or under-
watering their vineyards at the key developmental stages. 
Additionally with the agriculture sector consuming 70% of 
the worlds water resources with intensity and frequency of 
droughts still on the rise, the need for precision irrigation 
techniques is becoming more crucial (Gilbert 2012; Stocker 
et al. 2013; Gago et al. 2015). Monitoring water status in 
future will therefore become necessary during grapevine 
developmental stages to ensure grape quality and sustain-
ability when accessible irrigation water is limited (Espinoza 
et al. 2017; Rodrı́guez-Pérez et al. 2018; Zúñiga et al. 2018; 
Ezenne et al. 2019). While emphasizing the importance of 
monitoring and mapping spatial variability associated with 
water stress response in grapevines, it is also essential to 
consider extending these efforts to capture the seasonal 
dynamics. Ideally, the goal is to comprehensively map 

spatial variability over time scales, including the seasonal 
variation. By incorporating the temporal aspect into the 
analysis, we can not only develop effective vineyard man-
agement practices, but also optimize yield and quality for 
sustainable production.

In context of grapevine water stress assessment, under-
standing the physiological responses of grapevine to mild 
or moderate water stress is crucial for optimizing deficit 
irrigation timing and amount (Chaves et al. 2007, 2010). 
Biophysical restrictions, such as inadequate soil water 
availability, are likely to cause grapevine canopies to reflect 
less light, resulting in smaller NDVI values compared to 
larger, healthier, and well water canopies (Baluja et al. 2012; 
Gautam and Pagay 2020). However, unlike individual vine 
detection which enables the estimation of biophysical and 
geometrical parameters, the calculation of NDVI involves 
averaging the values across the entire area of interest without 
focusing solely on the canopy fraction (Pádua et al. 2020). 
Previous studies have demonstrated the successful applica-
tion of UAV-based RS for soil moisture monitoring, water 
consumption, use efficiency, and surface energy budget anal-
ysis in grapevines (Hassan-Esfahani et al. 2015; Thorp et al. 
2018; Gago et al. 2015). A study conducted by Tang et al. in 
2022, which focused on leaf water potential, demonstrated 
great potential. They developed a unified machine learning 
model using multispectral RS imagery and weather data, 
which was able to capture patterns both within and across 
fields by using Random Forest analysis capturing 77% of 
the variance. These are just a few examples highlighting the 
potential of UAV-based RS in improving vineyard manage-
ment for water resource utilization.

However, accurately identifying and delineating various 
components of vineyards, such as canopy, soil, shadows, and 
cover crops, remains one of the most actively studied chal-
lenges in literature as these components may introduce inter-
ferences and lead to biased crop status assessments when 
calculating VIs. When satellite or aircraft-based observa-
tion are made, RS indices are affected by these mixed pix-
els (components) mainly due to lack of resolution (Suárez 
et al. 2008; Rossini et al. 2013; Santesteban et al. 2017; 
Zarco-Tejada et al. 2013). This challenge, as explained by 
Dobrowski et al. (2002), is due to the discontinues nature 
of vine rows, their moderate coverage, soil influences, 
background and shade that pose a challenge to RS analy-
sis and therefore suggested that pixels should be separated. 
Although this problem (mixed pixels) mainly persists in 
low-resolution data, that cannot be separated, for example 
satellite-based images, high-resolution UAV data allow for 
easier classification of these conditions. Once these elements 
are classified (for example pure grapevine vegetation) they 
can be used to apply other classification approaches in their 
pixels (Burgos et al. 2015). To overcome these challenges of 
pure vs mixed pixel, researchers have actively explored new 
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methodologies that aim to address these limitations with 
photogrammetric processing techniques for detecting inter-
row spaces or missing plants (de Castro et al. 2018; Cinat 
et al. 2019; Pádua et al. 2020). Kerkech et al. (2020) looked 
at optimized image registration and deep learning segmen-
tation approaches as an application for disease detection in 
grapevine. Maimaitiyiming et al. (2020) proposed canopy 
zone-weighting (CZW) methods in estimating physiological 
indicators making use of neural net classifier Canny edge 
detection to extract pure vine canopy data. In more recent 
studies a strong focus was placed on developing new auto-
mated methodologies to achieve precise representation of 
vineyard components, particularly using machine learning 
algorithms and classification methods to automate the pro-
cess and minimize human involvement. These innovative 
approaches include the utilization of (artificial neuron net-
work) ANN models, (Hue, saturation, and value) HSV-based 
algorithms, (digital elevation model) DEM models, K-means 
unsupervised algorithms, techniques, additionally, combina-
tions of these techniques have also been explored (Huang 
et al. 2011; Calvario et al. 2017; de Castro et al. 2018; Cinat 
et al. 2019; Pádua et al. 2022).

Despite numerous efforts by researchers to address the 
complications arising from mixed pixels there continues to 
be ongoing exploration for more streamlined and precise 
approaches. In recent years, the concept of fractional cover 
(fcover) has emerged as a potential solution to this limitation. 
fcover refers to the proportion of the land surface covered by 
a given vegetation type, in this case grapevine canopy (Liu 
et al. 2012). The fcover can be estimated using various RS 
techniques as previously mentioned (ANN-models, HSV-
based algorithms, DEM models and K-means), but these 
studies however did not focus on individual vines but on 
inter-block or regional scale by evaluating seasonal models 
for prediction purposes. It is important to note that moni-
toring and evaluating vines throughout the season could 
improve the application of crucial corrective management 
actions to limit or manage variations effectively. fcover ena-
bles the quantification of the vegetation in a particular area, 
which informs on growth and development by monitoring 
the plant responses to environmental stressors, such as water 
deficit. The assumption is that by providing information on 
the spatial distribution and density of vegetation, linked to 
water stress, informed decisions about irrigation strategies 
and management practice could ensure optimal vine health 
and grape production.

In the pursuit of advancing vineyard management tech-
niques, this study takes a distinctive approach by utilizing 
RS tools typically used for larger-scale mapping and apply-
ing them to intra-block mapping. In this study, the objective 
was to apply and test fraction-based segmentation analysis to 
achieve pure canopy VI of n = 31 individual target vines in a 
commercial vineyard. Field data measurements of ΨSWP and 

soil water content (SWC) were correlated to pure (VIcanopy) 
and mixed pixel (VImean) data and compared to evaluate if 
exclusion of soil and other objects through pure canopy 
extraction could improve the use of VIs as water stress indi-
cators for the monitoring of intra-block variability over a 
typical season. Additional micrometeorological data (maxi-
mum temperature, relative humidity (RH), vapour pressure 
deficit) were collected on a subset of the target vines (n = 14) 
to evaluate their potential to serve as water status indicators 
for variability mapping.

Materials and methods

Site description

During the 2019–2021 growing seasons, a field experiment 
was implemented on Thelema Mountain vineyards, a com-
mercial farm situated in the Stellenbosch wine region of 
South Africa at coordinates 33°54′11.8″S—18°55′12.4″E 
and an elevation of 430 m above sea-level. The selected 
block was a 2.42 ha Cabernet Sauvignon vineyard planted 
in 2003 on a standard vertical shoot positioning (VSP) trellis 
system with a North/South row direction. The vine spac-
ing was 2 m and the inter-row width was 2.5 m. The first 
season of monitoring in this vineyard is fully described in 
Jasse et al. (2021). Based on the seasonal ΨSWP data from 
the 2019/2020 season (reported in Jasse et al. 2021), water 
stress was observed, and the block was mapped according 
to three water stress classes (Fig. 1). In the second season 
(2020/2021; this study) n = 31 target vines were selected 
within these three water stress classes for further data col-
lection. The target vines were monitored on a weekly basis 
for ΨSWP and SWC. This data served as ground truthing, 
using reference methods, to allow comparison with RS data 
collected for the site.

Field measurements

Stem water potential

Midday stem water potential (ΨSWP) was used as the refer-
ence method to define the water status of the vines. Meas-
urements were taken weekly around midday (12:00 to 13:00 
local time), from November to March by means of a pressure 
chamber (PMS Instrument Company, model 1505D, Albany, 
USA). Healthy leaves from the middle of the canopy, facing 
the shaded side were selected. To limit leaf transpiration 
each selected leaf was covered with aluminium foil inside 
a plastic zip bag at least 1 h before midday measurements 
(Choné et al. 2001).
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Soil water content

In-soil monitoring was done by using a Neutron probe. Rela-
tive SWC measurements were obtained from November to 
March, at 20 and 40 cm depth (root zone) using a Neutron 
Probe (CPN International, model 503DR Hydroprobe, CA, 
USA). Measurements were taken for all target vines (Fig. 1). 
PVC plastic pipes with 50 mm diameter and endcaps, were 
inserted at a depth of 50 cm at the target vines. The perma-
nent wilting point (PWP) and field capacity (FC) was deter-
mined using Soil Plant Atmosphere Water (SPAW) software 
developed by Saxton et al. (2006).

Temperature and relative humidity

Daily meteorological data for the block were measured 
hourly by a standard commercial weather station located 
within 300 m of the field experiment. Additionally, tem-
perature (Temp) and RH variables were measured during the 
season using Tinytag® loggers (TinyTag Plus 2—TGP4500, 
Gemini Data Loggers (UK) Ltd., Chichester, United King-
dom). Sensors were installed in the bunch zone of 14 target 
vines (Fig. 1). These loggers were installed form November 

2020 to March 2021, logging every 15 min. Maximum tem-
perature and corresponding RH was mapped to give context 
to water stress in this study. Vapour pressure deficit (VPD) 
was calculated for each target vine, using the available 
microclimate data to explore the atmospheric demand for 
water.

Remote sensing

Unmanned aerial vehicle (UAV) flights

Visible–near infrared (VIS–NIR) spectral information 
acquired with UAV was obtained from a commercial com-
pany (Caelumn Technologies, South Africa). The UAV was 
equipped with a Phantom 4 Pro with MicaSense RedEdge 
TM3 Multispectral camera (MicaSence Inc., Seattle, WA, 
USA), 20Mp HD camera. The multispectral bands included 
in order blue (460–510  nm), green (545–575  nm), red 
(630–690 nm), near infrared (820–860 nm), and red edge 
(712–722 nm) to capture different analytical layers. Ground 
checkpoints served as reference points to georeferenced each 
individual vine within the World Geodetic System (WGS). 
For enhanced precision, Caelumn Technologies incorporated 
ground control points. UAV image capture was scheduled 
between 11 am and 2 pm, closely aligned with solar noon, to 
minimize the influence of shadows. Consistency was main-
tained by employing the same flight plan across all drone 
flights. Images were taken at 60 m with a resultant pixel size 
of 5 cm resolution. The drone image was calibrated using 
a reflectance image obtained on the flight day and multi-
spectral images were mosaicked and geo-corrected using 
Agisoft PhotoScan® Software (version 1.2.5 Agisoft LLC, 
St Petersburg, Russia). UAV flights were captured four times 
during the season. Figure 2 depicts a summary of measure-
ments taken during the growing season, with a main focus 
on four developmental stages, to evaluate the suitability of 
VI to accurately map the water status variability present in 
the block. Winter pruning occurred in August, while the 
remainder of the block was uniformly managed with two top 
actions at the beginning of the year.

UAV vine segmentation

The method used for vineyard segmentation and individ-
ual target vine identification is shown in Fig. 3. The steps 
include image acquisition, mosaicking and geo-correction 
as explained in section “Unmanned aerial vehicle (UAV) 
flights”. QGIS (QGIS 3.16.8, Hannover) software was used 
to manually isolate the georeferenced target vines from RGB 
and multispectral images. The segmentation and classifica-
tion of images, a crucial step in the image analysis process, 
were carried out with specific attention to detail. To achieve 
this, a systematic approach was employed using the QGIS 

Fig. 1   The spatial map is coloured according to three water stress 
classes (Class 1 > −0.9  MPa; Class 2 between −0.9 and −1.2  MPa 
and Class 3 < −1.2  MPa), based on midday stem water potential 
(SWP) as reported in Jasse et al. (2021). Red numbered dots on the 
map indicate the locations of n = 31 target vines, where reference 
measurements were conducted during the 2020–2021 season. Addi-
tionally, micrometeorological data were collected for n = 14 of the 
target vines, spanning all three water classes; these vines are indi-
cated by white circle around the numbered red dots
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software. First, a project file named “QGIS Drone cutting” 
was established. Within this project, a 2.5 m × 2 m poly-
gon was created using the rectangle function with precise 
measurements. This polygon served as a template to ensure 
accuracy and consistency. It was then georeferenced and 
adjusted to match the location of each target vine, effectively 
creating a tailored cutting template. Using this template, vec-
tor clipping was performed, enabling the isolation of indi-
vidual target vines from the larger dataset. Importantly, this 
process was executed for both the multispectral and RGB 
drone images. The RGB-polygon was converted into a black 
and white mask using MATLAB colour thresholding app to 
isolate only the canopy fraction (fcover). Calculated VIs are 
listed in Table 1. The chosen VIs (NDVI, NDRE, GNDVI, 
NGRDI, and SAVI) were selected based on previous 
research indicating their potential sensitivity to water stress 
and their demonstrated ability to detect changes in plant 
health and water content (Ahmad et al. 2021; Cogato et al. 
2022; Espinoza et al. 2017; Pagay and Kidman 2019; Tang 
et al. 2022; Tiozzo Fasiolo et al. 2023). Values calculated for 
the whole polygon area (VImean) correspond to an average 

of all pixels represented in the polygon (2.5 m × 2 m). The 
canopy area (VIcanopy) considered only the canopy fraction 
consisting of pure pixels. The fcover mask was overlayed with 
multispectral image to isolate the pure canopy pixels.

Statistical analysis

To get a basic overview of the variability present in the 
2020–2021 season, R software (R v4.1.2; R Core Team, 
2019) was used to analyse the weekly ΨSWP in the form of 
boxplots. Basic descriptive analysis was done to calculate 
average, minimum and maximum as well as % coefficient 
of variation (%CV). Next the ΨSWP dates that correlated 
with UAV flights were visually mapped using QGIS (QGIS 
3.16.8, Hannover) to evaluate spatial water stress patterns. 
The same was done to evaluate SWC patterns.

Multivariate data analysis was used to explore RS data 
comparing VImean and VIcanopy using principal component 
analysis (PCA) plots in SIMCA (SIMCA version 16.0.2 
from MKS Data Analytics and Solutions). Furthermore, 
relationships between field ΨSWP measurements and VIcanopy 

Fig. 2   Provides a summary of measurements taken from November 
2020 to March 2021, represented by days of the year (DOY). The 
measurements include midday ΨSWP and soil water content (SWC), 
which were regularly recorded and indicated by black tick marks. At 
four developmental stages (E-L33, E-L34, E-L35 (véraison), E-L38 
(harvest)), all parameters including ΨSWP, SWC and UAV flights were 

conducted, with resulting fcover data for n = 31 target vines. Addition-
ally, maximum Temperature (Temp) and relative humidity (RH) as 
well as vapour pressure deficit (VPD) was available for these days 
for n = 14 target vines. *E–L stage: Eichhorn–Lorenz scoring system 
(Eichhorn and Lorenz 1977; Coombe 1995). **Values available for 
n = 14 target vines
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and VImean was explored by Pearson correlation coefficients 
(r) for individual dates (n = 31) as well as combined for the 
season (n = 124). fcover was further explored by spatial maps 
(QGIS) to compare the ΨSWP and SWC maps.

Additional (n = 14) field data for maximum tempera-
ture, RH and VPD were first explored by spatial maps 
(QGIS). Lastly to evaluate the potential of combined water 
stress indicators, the n = 14 meteorological data were 
combined with SWC for 20 and 40 cm, fcover, NDVImean, 
NDREmean, NDVIcanopy, and NDREcanopy for all four dates 
(n = 56). A pairwise scatterplot matrix was constructed 

using the ggcorrplot packaging in R software. All statisti-
cal tests were conducted at the level of significance, and 
all reported p-values are two-tailed.

Fig. 3   Image acquisition and segmentation of individual target vines 
are presented as follow: image acquisition was done with a MicaS-
cence RedEdge multispectral camera. The RGB and MSI output was 
further processed using QGIS software to identify the individual 
target vines using georeferenced location and additional white rock 
markers. A 2.5 m × 2 m polygon was used to cut the individual target 

vines form the RGB and MSI. The RGB polygon was first converted 
to a black and white mask in MATLAB to isolate fcover. The entire 
polygon was used to calculate the VImean (mixed pixel), whereas the 
black and white mask was used to only calculate the VIcanopy (pure 
pixel) of the fcover

Table 1   Vegetation indices (VIs) used in this study to calculate either VIcanopy or VImean

Abbreviation Vegetation index (VI) Equation References

NDVI Normalized difference vegetation index NDVI =
NIR−Red

NIR+Red
Rouse et al. (1974)

GNDVI Green normalized difference vegetation index GNDVI =
NIR−Green

NIR+Green
Gitelson and Merzlyak (1997)

NDRE Normalized difference red edge index NDRE =
NIR−rededge

NIR+rededge
Barnes et al. (2000)

NGRDI Normalized green–red difference index NGRDI =
Green−red

Green+red
Motohka et al. (2010)

SAVI Soil adjusted vegetation index SAVI = 1.4 ×
NIR−red

NIR+red+0.4
Huete (1988)
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Results

Overview of the intra‑block variability in water 
status

ΨSWP measurements done during the season (2020–2021) 
are summarized in Fig. 4. The boxplots (Fig. 4a) indicated 
an increase in ΨSWP variability during the season. The CV 
for ΨSWP measurements across the season ranged from 
10.18% to 26.25%. The maximum variability was present 
during the véraison period (DOY 18, 25, 32) with DOY 25 
having the highest CV 26.25%. Outliers present in DOY 39 
and 60 were noted as P13 and P14 which were represented 
in the previous season by the water stress Class 2 and 3, 
with P14 being the most stressed target vines throughout. 
The boxplot (Fig. 4b) shows the average variation in ΨSWP 
across the months for November (CV 15.68%), Decem-
ber (CV 23.10%), January (23.16%) and February (CV 
23.70%) increasing towards harvest.

Spatial variability maps for ΨSWP and SWC (20 and 
40 cm) on the days corresponding to UAV drone flights 
(DOY: 363, 11, 25, 53) are presented in Fig. 5. ΨSWP 
maps are coloured according to the thresholds of the three 
water stress classes (class 1 > −0.9 MPa, class 2 between 
−0.9 and −1.2 MPa and class 3 < −1.2 MPa) with added 
descriptive analysis data for average, %CV, minimum and 
maximum values for each day. Spatial map for DOY 363 
shows although variability was present (CV 23.4%) all 
target vines ΨSWP levels were > −0.9 MPa (blue) with no 
water stress present in the block at that stage. First signs 
of medium stress (yellow) are present at DOY 11 at the 
top area of the block having values representative of Class 
2. At DOY 25, all three water classes (blue, yellow, red) 
are present in the block with stress increasing from the 

bottom to the top part of the block. At DOY 53, severe 
stress (Class 3) was prominent in the top part of the block 
showing the same trend of stress that was present in the 
previous season. SWC values are presented in Fig. 5 for 
two depths (20 and 40 cm) and are coloured according 
to five levels. PWP and FC is noted in the figure for each 
depth as well as irrigation and rain events. The 20 cm 
depth ranged between 30 and 90 mm with irrigation and 
rain events contributing to an increase in water measured. 
All points were above the PWP, although the top of the 
block indicated dryer areas (30–60 mm) toward the end 
of the season corresponding with ΨSWP maps. The 40 cm 
depth ranged between 90 and 150 mm with the deeper soil 
drying out towards the end of the season without any point 
reaching below PWP although some plants experienced 
high stress according to class 3 represented at the top of 
the block (ΨSWP). Throughout the season it is notable that 
the top part of the block has lower SWC that the bottom; 
this was visible in both the 20 and 40 cm depths. We also 
see the impact of irrigation as the season progressed. The 
differences in the three classes are small yet the corre-
sponding ΨSWP for the last two dates are more pronounced, 
confirming the SWC alone cannot give you a good view 
of water stress.

Remote sensing

Exploring vegetation indices

The five VIs (NDVI, GNDVI, NGRDI, NDRE and SAVI) 
used in this study were obtained using a mean approach 
(i.e. an average of the whole area assigned for the vine) 
and a selective approach (i.e. pure canopy, excluding the 
soil pixels). Table 2 summarizes the average VI values 
for VImean and VIcanopy during the season. Overall, very 

Fig. 4   ΨSWP measurements taken from November 2020 (DOY 307) 
to March 2021 (DOY 60). a Intra-block variability visible during the 
season becoming more severe towards the end of the season. This is 
indicated by the whiskers in the boxplot increasing in length showing 

an increase in the range of values. b Average monthly ΨSWP present 
in the block for November, December, January, and February. Circles 
represent extreme outliers which are linked to Plant 13 and 14. Black 
arrows indicate the four EL-stages when UAV flights were conducted
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low values were obtained for VImean. compared to VIcanopy, 
which was expected due to a large portion being bare 
soil. NDVI values present normal to moderate vegetation 
during DOY 363 for early stages when grapevine is still 
actively growing. Thereafter, an overall decline is seen 

toward harvest indicating maturation or senescence as the 
season progressed.

The data were evaluated with multivariate data analysis 
by performing a PCA (Fig. 6). For both VIcanopy and VImean 
separation was observed between the phenological stages 

Fig. 5   The figure illustrates the spatial distribution of ΨSWP pat-
terns across the block, along with corresponding SWC information 
for four specific DOY. The maps depict ΨSWP coloured according to 
three water stress classes. Additionally, SWC data are presented for 

two depths (20 and 40 cm). The figure includes reference points such 
as permanent wilting point (PWP), field capacity (FC) and saturation 
point. Days of irrigation and rainfall events are indicated according to 
DOY

Table 2   Display average 
calculated VIs for VImean and 
VIcanopy for four dates

n = 31 target vines for each date

DOY 363 DOY 11 DOY 25 DOY 53

Vegetation index Mean Canopy Mean Canopy Mean Canopy Mean Canopy

NDVI 0.060 0.394 0.041 0.361 0.009 0.281 −0.003 0.279
GNDVI 0.031 0.110 −0.010 0.074 −0.007 0.076 −0.025 0.077
NGRDI 0.032 0.269 0.075 0.255 0.017 0.189 0.023 0.189
NDRE 0.035 −0.086 0.002 −0.117 0.013 −0.168 0.059 −0.121
SAVI 0.063 0.290 0.031 0.236 −0.012 0.194 −0.012 0.194
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as well as water stress classes. VIcanopy showed slightly bet-
ter separation for component 1 with 32.4% (Fig. 6a) of the 
variance explained compared to VImean 28.5% (Fig. 6d). 
Although VImean seemed to have better groupings for pheno-
logical stage, VIcanopy could clearly be grouped according to 
water stress classes (1, 2 and 3). This could be due to values 
for VIcanopy being similar (per class) due to the excluding of 
mixed pixels mostly represented by the soil area. In both VI 
grouped in the early stages (E-L33, E-L34) more towards 
NDVI and GNDVI driving the separation in the first and 
second quadrant visible in the loading’s plots (Fig. 6c, f) 
linking to active growth and lower water stress levels. Also 
visible in Fig. 6 are the two extreme plants (P13, P14) that 
experienced highest water stress according to the reference 
methods (E-L38).

To further explore the relationship between VIs and 
water stress, a Pearson correlation analysis was performed 
(Table 3). The analysis evaluated the correlation between 
each of the five VIs obtained from VImean and the VIcanopy 
with ΨSWP, SWC and fractional cover (fcover) as a measure 

of water stress for separate dates (n = 31) as well as all 
dates combined (n = 124). The results of the analysis pro-
vide insight into the strength of the relationships between 
the different VIs and ΨSWP. In general data showed bet-
ter correlation between VImean with ΨSWP compared to 
VIcanopy. The best correlations were found on DOY 53, 
when all water stress classes were present. Considering 
the VImean, which incorporates information from the sur-
rounding areas such as the soil, could potentially exhibit 
a better correlation with ΨSWP. When all data points are 
grouped, the correlation increase for NDVImean r = 0.53 
and NDVIcanopy r = 0.57, respectively. Visual representa-
tion of NDVImean and NDVIcanopy can be seen in Fig. 7. 
Here we observed that the spatial map for VImean exhib-
ited a better correspondence with ΨSWP maps, although 
the agreement was not exceptionally strong. Notably, this 
correspondence became clearer towards the end of the 
growing season when clear distinctions between the water 
stress classes were present. VIcanopy did not show good 
corresponding maps.

Fig. 6   Multivariate data analysis used to perform principal compo-
nent analysis on the VImean and VIcanopy data. PCA for VIcanopy (a) and 
VImean (d) coloured according to four developmental stages for DOY 
363 (E-L33), DOY 11 (E-L34), DOY 25 (E-L35), DOY 53 (E-L38). 

PCA for VIcanopy (b) and VImean (e) coloured according to water stress 
classes 1, 2 and 3 with corresponding loadings plot for VIcanopy (c) 
and VImean (f)
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The role of fractional cover

While VIcanopy did not show the best potential in the moni-
toring of water stress, VImean does not provide a complete 
picture of the water stress conditions of the vines. One 
limitation is that VImean measures are based on average 
of spectral signatures, whereas VIcanopy provides context 
on fractional cover (fcover) by segmenting the canopy. In 
this section, we mapped (Fig. 8) the fcover obtained from 
the UAV imagery to characterise the water stress in the 
vineyard. The spatial maps revealed interesting patterns 
in the distribution of vegetation across the study area. In 
the early stages (Fig. 8a) of the growing season, the fcover 
appeared to correspond with areas of the bottom of the 
block that in general had higher SWC, showing bigger 
fcover values. As the season progressed, the fcover became 
more stable across the block (Fig. 8b) except for the (class 
3) water stress area showing smaller fcover at the top of the 
block also corresponding to the area that had lower SWC. 
The spatial maps suggest that fcover appear to be driven by 
variations in plant stress levels, with areas of higher stress 
showing lower fcover. This suggests that fcover can serve as a 

potential indicator of plant stress. It is however important 
to note that the response of the canopy to water stress is 
not immediate and that it takes time for changes in water 
availability to reflect in the vegetation cover. Therefore, 
monitoring changes in fcover over time by using spatial 
maps can provide a good indication of water stress levels 
on an intra-block level.

To show the relationship between fcover and ΨSWP, three 
target vines (P2, P26, P14), representing water stress class 
1, 2 and 3, respectively, were compared for fcover and the 
corresponding ΨSWP value (Fig. 9). Class 1 (>−0.9 MPa) 
with low water stress, had an initial increase in fcover which 
stabilized towards harvest. The same can be seen for the 
corresponding ΨSWP, with increase in canopy size the ΨSWP 
values increase stabilizing toward harvest never not chang-
ing water stress class. Class 2 (−0.9 to −1.2 MPa) showed 
increase in fcover during the season with a more prominent 
reduction in fcover towards harvest. ΨSWP values gradu-
ally increased during the season. Class 3 (<−1.2 MPa) 
showed a definite decrease in fcover with noticeable increase 
of ΨSWP throughout.

Table 3   Display Pearson correlations between calculated VIs for VImean and VIcanopy and midday stem water potential (ΨSWP), SWC and frac-
tional cover (fcover) measurements for individual dates (n = 31) as well is for the seasonal combined data set (n = 124)

Significance levels are indicated by * p < 0.1, ** p ≤ 0.05 and *** p ≤ 0.01

DOY 363 DOY 11 DOY 25 DOY 53 All

n = 31 n = 31 n = 31 n = 31 n = 124

Vegetation index Mean Canopy Mean Canopy Mean Canopy Mean Canopy Mean Canopy

NDVI −0.04 −0.15 0.31** 0.05 −0.25 0.02 0.62*** 0.35** 0.53*** 0.57***

GNDVI −0.09 −0.13 0.36 0.32 −0.34* 0.00 −0.07 −0.17 0.30*** 0.24***

NGRDI 0.06 −0.10 −0.11 −0.25 0.19 0.17 0.64*** 0.28 0.19** 0.47***

NDRE −0.35** −0.17 −0.18 −0.30 −0.23 −0.48*** 0.22 0.03 −0.13 0.14
SAVI −0.08 −0.13 0.20** −0.06 −0.39** 0.14 −0.36** 0.07 0.22** −0.22**

Fig. 7   The figure illustrates the spatial distribution of NDVI for both mean and canopy patterns across the block, for four specific DOY
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Variation recorded in temperature and relative 
humidity

In addition to fcover, other environmental factors can influ-
ence plant water status and can serve as indicators of water 
stress. Here, we evaluated the relationship between ΨSWP 
and micrometeorological conditions by evaluating available 
weather station data compared to conditions in the canopy 
zone. Maximum temperature, corresponding RH and daily 
VPD was obtained from a nearby weather station (Fig. 10). 
Maximum temperature for the block ranged between 25 and 
32 °C, RH between 34% and 40% and daily VPD ranged 
between 0.7 and 1.6 kPa.

In order to understand the effect of microclimate in the 
canopy zone on a spatial context, we evaluated the relation-
ship between ΨSWP to maximum temperature, correspond-
ing RH and VPD for each of the 14 target vines. Individual 
vines showed clear spatial variability with maximum tem-
peratures in the canopy ranging from 33 to over 40 °C across 
the season (Fig. 11a–d). Corresponding RH ranged from 
25 to above 40% (Fig. 11e–h). VPD measured in the indi-
vidual canopies ranged from 3 to 8 kPa (Fig. 11i–l) with a 
CV 28.81%. The size and density of a vineyard’s canopy 

have a profound impact on the microclimate (Smart 1985). A 
dense canopy with ample foliage provides significant shade, 
effectively reducing the intensity of direct sunlight exposure 
(Smart et al. 1988). This results in lower maximum tem-
peratures within the canopy, as the shade prevents exces-
sive heating during hot periods. Additionally, the canopy’s 
density can trap moisture, leading to higher RH levels in the 
immediate vicinity. The influence of canopy size on VPD is 
also notable, as a larger and denser canopy helps maintain 
higher humidity levels by reducing water evaporation from 
the soil and transpiration from the leaves.

Potential water stress indicators

Following the analysis of VIs, NDVI exhibited the strong-
est correlation with ΨSWP with little difference between 
VIcanopy (r = 0.57) or VImean (r = 0.53) for grouped time 
points (n = 124). To explore the potential of using VIs 
along with fcover and micrometeorological environmental 
parameters such as maximum temperature, RH, VPD and 
soil moisture as water stress indicators, a pairs plot (scat-
ter matrix plot) analysis was performed with only relevant 
VIs reported (Fig. 12). This allows for the visualization 

Fig. 8   Spatial maps of fcover (%) for the target vines for the four UAV 
flights at the different growth stages during the season. The colour 
scale represents the percentage of vegetation cover for the allocated 

polygon for each of the target vines on a DOY 363 b DOY 11 c DOY 
25 d DOY 53
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of multiple pairwise relationships between variables in a 
dataset. Each variable is plotted against all other variables. 
The diagonal plots show the distribution of each variable, 
while the upper and lower triangles show scatterplots of the 
pairwise combinations. Here we examined if the possible 
predictor variables had a linear association with the response 
variable which would indicate that a multiple linear regres-
sion model may be suitable. By identifying the parameters 
that show strong correlation with ΨSWP, we aim to improve 

accuracy of future models for water stress monitoring and 
mapping. This analysis lays groundwork for work utilizing 
multilinear regression or machine learning models for pre-
dicting and mapping ΨSWP with bigger data sets.

The pairwise scatterplot results are presented in Fig. 12. 
A significant correlation (p < 0.001) was observed between 
ΨSWP and RH, NDVIcanopy, and NDVImean. Furthermore, 
there were notable correlations at the p < 0.01 level of 
significance between maximum temperature, VPD, and 
SWC_40 cm. Notably, both NDVIcanopy and NDVImean exhib-
ited similar trends, displaying significant correlations with 
maximum temperature (r = −0.341, −0.356), RH (r = 0.581, 
0.475), VPD (r = −0.387, −0.361), as well as SWC_20 cm 
(r = −0.277 and 0.341), respectively. These results high-
light the intricate interplay between various environmental 
factors.

Discussion

Site-specific irrigation as defined by Cohen et al. (2005) is 
an irrigation practice that aims to provide irrigation at the 
smallest manageable scale matching in timing and amount 
to the actual crop need to achieve the desired crop response. 
Recent research by Pereyra et al. (2022) has demonstrated 
the potential benefits of site-specific irrigation on a small 
scale (intra-block), thanks to mapping carried out using 

Fig. 9   Display the comparison 
between fractional cover (%) 
and stem water potential (ΨSWP) 
for three target vines, P2, P26 
and P14. Each representing one 
of the stress water classes (Class 
1 >−0.9 MPa, Class 2 between 
−0.9 and −1.2 MPa and Class 
3 <−1.2 MPa). The develop-
mental progress of fractional 
cover for each class from DOY 
363 to DOY 53 is in grey, with 
corresponding ΨSWP values 
represented by a black line
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precision viticulture technologies. To effectively imple-
ment precision irrigation strategies, monitoring parameters 
through spatial mapping can aid in decision-making. Tradi-
tional methods, such as stem water potential (ΨSWP), are not 
easily upscaled for monitoring intra-block variability, mak-
ing non-destructive and fast methods necessary. Our study 
links to a recent study done by Borgogno-Mondino et al. 
(2022) aimed at testing the effectiveness of RS imagery in 
estimating and mapping ΨSWP in pomegranate plants. Their 
results showed promising capability of spectral indices of 
estimating ΨSWP readings. Interestingly their data showed 
that native data (mixed pixels) were found to be more effec-
tive in predicting ΨSWP than de-noised (un-mixed, pure 
pixels).

To explore the relationship between plant spectral indi-
ces obtained from high-resolution UAV multispectral data 
and midday stem water potential (ΨSWP), which is com-
monly used in irrigation decision-making, we designed a 
field experiment considering temporal and spatial intra-
block variability. Additionally, we investigated the differ-
ence between pure (VIcanopy) and mixed (VImean) canopy 
pixels by utilizing canopy-based fraction segmentation. 
Water status variability in the block was confirmed for the 
2020–2021 season, with maximum variability reached dur-
ing véraison (DOY 25) with a coefficient of variance of 
26.25%. At this stage, the range of ΨSWP was between −0.48 
and −1.4 MPa, which included all three water stress classes 

(Class 1 >−0.9 MPa; Class 2 between −0.9 and −1.2 MPa 
and Class 3 <−1.2 MPa), respectively, corresponding to lit-
erature levels of non-stress, moderately stressed and severely 
stressed vines (Van Leeuwen et al. 2009; Myburgh 2016). 
The evolution of SWC observed in our study was consistent 
with the findings of Davenport et al. (2008) which suggest 
that the spatial variability of soil water tends to decrease 
when water availability is higher, and water stress in the 
plant is lower. This phenomenon was particularly evident 
in the early stages of the growing season when SWC was 
relatively stable across the vineyard block, which could be 
attributed to the influence of winter precipitation (Fig. 4).

The relationship between ΨSWP, SWC, and fcover that were 
observed in our data is consistent with the findings of previ-
ous studies that showed soil water availability influenced 
grapevine vegetative growth, cessation of shoot growth, 
reduction in leaf size, as well as high or early onset of leaf 
senescence (Kizildeniz et al. 2015; Wilson et al. 2020). Our 
study showed that most VIs displayed a negative correlation 
with ΨSWP indicating that the more stress the plant expe-
rienced due to water restrictions, VI values lowered. Less 
available water induces stress in the plants having lower 
fractional cover as they have less access to soil moisture, 
this can cause reduction in photosynthesis and growth, also 
reducing chlorophyll content.

Jones (2004) pointed out that greater precision in appli-
cation of irrigation can potentially be obtained using 

Fig. 11   Spatial variability shown by differences in maximum temperature (Max Temp), corresponding RH and VPD for individual target vines 
(n = 14) measured in the canopy zone. Spatial maps shown temporally for DOY 363 to DOY 53
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plant-based responses. In this sense, the use of reflectance 
indices can be a better indicator of water stress in compari-
son with measurements of soil water status (De Bei et al. 
2011). Phenological stages such as, bud break, vegetative 
growth, flowering, fruit set, véraison, and harvest affect the 
vegetation characteristics. VIs assess changes in vegetation 
greenness, reflecting vigour and leaf area (Johnson et al. 
2003; Zarco-Tejada et al. 2005; Ratana et al. 2006). These 
stages correspond to physiological processes in the grape-
vine growth cycle, resulting in changes in the plant. Soil 
water availability is crucial for plant development and phe-
nology. Monitoring VIs over time, especially during critical 
phenological stages like véraison, can provide insight into 
soil conditions. VImean data suggest that that including the 
soil (mixed pixel) does indirectly account for changes in the 

canopy size during phenological stages (Fig. 7). Sustained 
decreases in VIs during specific stages may indicate water 
stress and lower ΨSWP. Prolonged water deficit can trigger 
acclimation responses, including growth inhibition as seen 
in fcover of water stress class 3. The comparison between 
values from VIcanopy and VImean to ΨSWP relationship con-
sistently showed a stronger relationship to VImean for indi-
vidual dates. Although these VI values were very low (due 
to soil interferences), they did seem to show more potential 
in the monitoring of water stress than the pure canopy pix-
els as in accordance with (Borgogno-Mondino et al. 2022). 
Regarding canopy characterization from VI, it is important 
to note the VI is primarily sensitive to the density as it is 
only representative of the top of the canopy rather than 
its size or shape. This suggest that the water status of two 

Fig. 12   Pairwise scatterplot matrix showing the correlation between 
variables of interest (ΨSWP, Temp, RH, fcover, NDVIcanopy, NDVImean, 
NDREcanopy and NDREmean). Each scatterplot displays the relation-
ship between two variables, with correlation coefficient (r) and p-val-
ues shown. *Asterisks () indicate the level of statistical significance 

for the Pearson correlation coefficient between two variables. The 
number of asterisks correspond to the level of significance, with one 
asterisk indicating p  <  0.05, two asterisks indicating p  <  0.01 and 
three asterisks indicating p < 0.001. For no asterisk, the correlation is 
not statistically significant at the 0.05 level
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canopies with the same VIcanopy could vary depending on 
their shape or size. Pure pixels VIs provide a valuable means 
of accurately assessing canopy density, chlorophyll content 
and overall plant health due to their focus on vegetation-
specific characteristics and generally tend to have higher VI 
values (Hall et al. 2002, 2003) However, they do not directly 
account for the size or vigour of the vegetation, as these 
factors can be influenced by soil properties and other vari-
ables. Incorporating mixed pixel approaches that consider 
both vegetation and soil components can indirectly account 
for size and provide a more comprehensive understanding 
of plant growth dynamics. However, mixed pixels includ-
ing cover crop and not bare soil, can lead to biased values 
(Khaliq et al. 2019). Alternatively, combining pure pixel 
VIs with measures such as fcover, which integrates informa-
tion about vegetation size, we can achieve better correlation 
with soil water potential and obtain a more comprehensive 
evaluation of vegetation vigour and its relationship to soil 
moisture conditions. When the dataset was combined for the 
season, no significant differences in correlation was found 
for NDVImean and NDVIcanopy (r = 0.53 vs r = 0.57), having 
the strongest correlation of all the VIs. Stronger correlations 
were also found by Hall et al. (2008) when phenological 
stages were combined instead of evaluating correlations of 
individual phenological stages. A few small-scale UAV stud-
ies with multispectral imagery have also found that various 
VIs are significantly correlated with grapevine water stress 
levels (Baluja et al. 2012; Espinoza et al. 2017).

The use of VIs raises several questions regarding appli-
cation. VIs appears to show better correlations when cor-
relating with biophysical parameters such as biomass yield 
when pure extraction methods such as photogrammetry or 
pixel classification algorithms (e.g., ANN, RF, thresholding, 
or DEM-models), are employed. These approaches exhibit 
significant success in distinguishing between groups and 
rows, particularly in studies focusing on bare soil, com-
pared to more challenging scenarios involving cover crops 
and shaded pixels, but their effectiveness in assessing water 
stress still seems limited. Most studies only obtained moder-
ate correlations, and only when seasonal data are grouped. 
To improve correlations, integrated methods incorporating 
additional parameters are suggested. Canopy temperature 
is a well-known indicator of plant water status and has 
been considered as a potential tool for irrigation schedul-
ing (Costa et al. 2010; Jones 1999). Other factors, such as 
solar radiation, water availability, and RH, also strongly 
influence grapevine growth and development. In our study, 
we found that the highest temperatures were experienced 
during January (E-L34 and E-L35) with increasing VPD 
levels as the temperature increased. This corresponds to 
increasing ΨSWP trends towards harvest, providing context 
for spatial patterns in relation to water stress. To evaluate the 
potential of additional parameters as water stress indicators 

for future mapping, we monitored 14 target vines. These 
results showed that the integration of NDVI with additional 
information on maximum temperature, RH and fcover could 
be used to map water stress variability. The findings also 
revealed interesting correlation between NDVImean and 
SWC_20 cm, surpassing those observed by NDVIcanopy. 
These results suggest that mixed pixels not only reflect vari-
ation in canopy size but also indirectly capture soil prop-
erties, such as soil moisture (Hall et al. 2003; Towers and 
Poblete-Echeverrı́a 2021). This indirect relationship may be 
attributed to the potential influence of larger canopies and 
shading perhaps reducing soil evapotranspiration. Thus, the 
inclusion of NDVImean offers a promising avenue to indi-
rectly incorporate both canopy characteristics and soil prop-
erties for simplified mapping of water stress. The findings 
is consistent with Acevedo-Opazo et al. (2008) who sug-
gested to include three sections when evaluating water stress 
variability: (1) description of plant water status based on 
direct measurements on plants (ground truthing); (2) plant 
water status assessment based on auxiliary information (i.e. 
weather, soil, and plant vegetative expression); and (3) a 
proposal for combining local reference measurements and 
auxiliary information to characterise the spatial variability 
of the vine water status in the vineyard scale.

Conclusion

This study evaluated if fraction-based segmentation, to 
obtain pure canopy VIs of individual target vines, could be 
used to map water status variability using pure VIs within 
a commercial vineyard block. This was done by correlating 
field data measurements of midday ΨSWP and SWC with pure 
(VIcanopy) and mixed pixel (VImean) data. When analysing 
pure canopy pixels, the VI values may provide more accurate 
representation of canopy density and chlorophyll content 
as well as overall health, although size may indirectly be 
accounted for in mixed pixel data. The use of VIs in context 
of assessing water stress raises several important considera-
tions. Although pure extraction methods are successful in 
classifying pixels distinguishing between different groups 
(inter-row, canopy, soil) it has been observed that VIs tend to 
exhibit stronger correlations with mixed pixels in the appli-
cation of evaluating water stress. The analysis of environ-
mental parameters, such as maximum temperature, RH and 
VPD, in relation to ΨSWP provide further insights into the 
microclimate’s influence on plant water status. The pairwise 
scatterplot analysis revealed significant correlations between 
ΨSWP, maximum temperature, RH, VPD, SWC_40  cm, 
NDVIcanopy and NDVImean. The findings suggest that mul-
tispectral data, along with environmental parameters, have 
the potential to be utilized for precision irrigation manage-
ment and monitoring water stress at a finer spatial scale. 
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However, it was acknowledged that the limitations of VI 
measurements, such as the masking of important variations 
in vegetation characteristics, need to be addressed either by 
using mixed pixels or considering the use of fcover. Overall, 
our study adds to the existing literature by demonstrating the 
potential of high-resolution UAV multispectral data and VI 
to monitor intra-block variability in water stress as a guide 
for precision irrigation management practices. The high spa-
tial resolution offered by UAV sensors, often reaching the 
centimetre level, is a remarkable advantage. This capabil-
ity not only allows for the segmentation of pure pixels but 
also greatly enhances the differentiation of various objects 
within the image, including details within canopies (Khaliq 
et al. 2019). This emphasis on spatial resolution highlights 
its significance in RS applications for precision agriculture 
and environmental monitoring. Future research should focus 
on assessing the influence of diverse vineyard microclimate 
on the interplay between environmental parameters, VIs, and 
water stress. Additionally, exploring data fusion techniques 
for the integration of data from multiple sources, such as RS, 
weather stations, and soil moisture sensors, offers the poten-
tial to enhance the accuracy of water stress assessments, 
thereby optimizing decision-making processes in vineyard 
management. In conclusion, the research conducted in this 
study, in line with findings of Van Leeuwen et al. (2019), 
highlights the potential of utilizing vineyard attributes in 
their interrelations with irrigation regimes for implementing 
smart irrigation practices.
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