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Abstract

A popular hypothesis suggests that the nervous system of dif-
ferent organisms, from neural tissue to whole brains, may
operate at or near a critical point. During the last decade,
maximum entropy techniques have allowed to go beyond
merely finding statistical signatures of criticality, to models
directly inferred from data recorded in neural cultures, pro-
viding stronger evidence of criticality in neural activity. Nev-
ertheless, these modeling techniques are restricted to neural
cultures and have not been extended to neural tissue in liv-
ing organisms. In this paper, we extend this line of research
by analyzing signatures of criticality in a pairwise maximum
entropy model inferred from neural recordings of C. elegans
during freely-moving locomotion. From the analysis of the
inferred models we find some signatures of criticality, as a
divergence of the heat capacity of the system. Other indica-
tors, such as Zipf’s distributions, were not found. However,
inspecting a similar analysis based in a 2D lattice Ising model
we suggest that this could be due to the restricted number of
samples in our data set. The availability of larger recordings
of the C. elegans neural system during free locomotion could
provide more conclusive results.

Introduction
Several studies have reported evidence that neural systems
operate at or near critical points, poised at transitions in their
parameter space (Mora and Bialek, 2011; Beggs, 2008).
Criticality refers to a distinctive set of properties found at
the boundary separating regimes with different dynamics. A
classical example is the transition between an ordered and a
disordered phase. Some of these properties include power-
law divergences of some quantities (such as the heat capac-
ity or correlation-length of the system) described by critical
exponents and fractal behaviour (Salinas, 2001).

Evidence of criticality in neural networks was first found
in model simulations (Chialvo and Bak, 1999; Bak and
Chialvo, 2001; Bertschinger and Natschlger, 2004; Lin and
Chen, 2005). Since, signatures of criticality have been
found in recordings of cortical neuron cultures, in the form
of power law distributions of avalanche sizes (Beggs and
Plenz, 2003; Beggs, 2008; Timme et al., 2016), as well
as in recorded brain activity from humans and other ani-

mals (Chialvo, 2014; Scott et al., 2014), although the pres-
ence of signatures of criticality in the brain is still controver-
sial and not fully resolved (Dehghani et al., 2012; Beggs and
Timme, 2012). As well, criticality has been found in dynam-
ical models using human or animal connectomes, including
the C. Elegans connectome (Moretti and Muoz, 2013). Fur-
thermore, during the last decade, a series of experiments
inferring maximum entropy models reproducing the statis-
tics of neural cultures have allowed a deeper characteriza-
tion of criticality in neural networks, inferring statistical me-
chanics models displaying criticality in the thermodynamic
limit (Schneidman et al., 2006; Yu et al., 2011; Tkacik et al.,
2015). All these results suggest that biological neural net-
works are poised near critical points as a mechanism, and
it is suggested that this may allow them to optimize infor-
mation processing (Beggs, 2008). Highly correlated net-
works would generate a limited range of possible states,
while weakly correlated dynamics would prevent informa-
tion flow in large systems. In between, systems at criticality
present unique features combining integration and segrega-
tion of information.

The pervasive finding of signatures of criticality in ner-
vous systems supports the provocative hypothesis predicting
that brains and organisms will self-organize to operate near
critical points. Nevertheless, unlike the case of controlled
cultures of a limited number of neurons, criticality has not
been studied much in statistical mechanics models reproduc-
ing real data from an operative neural system. Thus, the hy-
pothesis of criticality in the brain is largely unresolved since
the models capturing these statistical signatures of critical-
ity are substantially low-dimensional compared to the neural
structure of interest and/or restricted to an unrealistic simple
range of behaviours (Chialvo, 2014). Moreover, experimen-
tal evidence of criticality in the nervous system of humans
and other animals is generally restricted to measurements in
static situations where the subject is not freely moving nor
interacting in normal conditions with its environment.

In this paper, we further explore the presence of critical-
ity in the nervous system of freely moving organisms by
applying inference of maximum entropy models to neural
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activation data from the nematode Caenorhabditis elegans.
We analyze an Ising model whose connectivity is inferred
from data published by Nguyen et al. (2016b): whole-brain
recordings of C. elegans during free locomotion. Up to date,
publicly available neural recordings of the freely moving an-
imal are still limited to a few minutes in duration and a few
thousand samples. This makes impractical finding statisti-
cal indicators of criticality such as scaling laws. Instead,
maximum entropy models deal with data scarcity by infer-
ring models that capture measurable statistical quantities of
the data (such as means and pairwise correlations of neural
activation) without making additional assumptions. These
models have been successfully applied to map the activity of
networks of neurons (Schneidman et al., 2006; Tkacik et al.,
2015) and other biological systems, such as antibody pro-
tein sequences (Mora et al., 2010) and flocks of birds (Bialek
et al., 2012).

In this paper, we find evidence of criticality in the C. ele-
gans nervous system. Due to the limited size of the dataset,
the results are not conclusive. Our work suggests the useful-
ness of an analysis on datasets of larger duration and finer
resolution.

Model
In order to inspect how C. elegans neurons are operating,
we derive statistical mechanics models of the system from
the published dataset. The objective of these models is to
infer macroscopic properties from microscopic descriptions
of the system that cannot be accessed directly from the data.

We use publicly available recordings of a freely-moving
C. elegans, genetically modified to express the calcium in-
dicator GCaMP6s (see Materials and Methods). The activa-
tion ai(t) of N = 56 neurons from the head of the worm
(out of 302 in the whole neuron system) was captured for a
period of approximately 5 minutes with a sampling rate of
6Hz, giving a total of T = 1872 samples. Since we are in-
terested in macroscopic statistical properties of the system,
we do not focus in which specific neurons are analyzed, but
rather in the collective behaviour of groups of neurons.

Since our data is limited, we simplified the data to binary
variables to maximize the accuracy of the statistical descrip-
tions. Prior to that, we found the presence of low frequency
transients combined with faster frequency oscillations in the
data (see Figure 1 top). As Nguyen et al. (2016b,a) suggest,
the movement of the worm could introduce some artifacts
that the system might be interpreting as calcium transients.
For example, the compression or expansion of the neurons
could lead to changes to the density of the fluorescent pro-
tein. On the other hand, part of this low-frequency activity
may correspond to neural activity at the frequency of the
worm’s movement. Thus, for the rest of the paper we use
two versions of the data. The first version is the raw activ-
ity measured from GCaMP6s fluorescence. The second is
a filtered version of the activity, where the original signal

is taken through a high-pass Butterworth filter with a cutoff
frequency of 0.06Hz (Figure 1).

Even with binary variables, the number of states of such
a system is dauntingly large (2N states). Thus, obtaining a
good estimate of P (s) from data for measuring power laws
or other indicators of critical activity is unrealistic. The prin-
ciple of maximum entropy is a strategy that addresses this
problem by assuming a model that is as random as possible,
but that agrees with some average observables of the data.
As we will see, maximum entropy models can be used to
naturally map the statistics of a given data onto known sta-
tistical mechanics models, which will ease the study of their
macroscopic properties.
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Figure 1: Example of the activation ai(t) of two arbitrary
neurons unfiltered (top) and applying a high pass Butter-
worth filter with a cutoff frequency of 0.06Hz (bottom).

From discretized signals (see Materials and Methods), we
extract the means and correlations present in the data and in-
fer the pairwise maximum entropy models (i.e. Ising models
for binary variables) that reproduce them. This is the least-
structured model that is consistent with the mean activation
rate and correlations of the nodes in the network. The max-
imum entropy distribution consistent with a known average
energy is the Boltzmann distribution P (s) = Z−1e−βE(s),
where s is a state of the network, Z is the partition function
and β = 1/(TkB), being kB Boltzmann’s constant and T
the temperature. Without loss of generality we can set the
temperature β = 1. The energy of an Ising model with
pairwise interactions is defined as E(s) = −

∑
i hisi −∑

i<j Jijsisj , where ‘magnetic fields’ hi represent influ-
ences in the activation of individual nodes and ‘exchange
couplings’ Jij stand for the tendencies correlating the activ-
ity between nodes. The resulting distribution of the maxi-
mum entropy model is:

P (s) =
1

Z
exp

[
β
∑
i

hisi +
∑
i<j

Jijsisj

]
(1)

where the hi and Jij are adjusted to reproduce the measured
mean and correlation values between nodes in the network.
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Figure 2: Ising model for the raw version of the neural acti-
vations. (A) Correlations Cij = 〈sisj〉− 〈si〉〈sj〉 present in
the data. (B) Coupling constants, Jij . (C) Mean activation
values. (D) Neuron fields hi. (E) Distribution of correla-
tion coefficients, Cij . (F) Distribution of coupling values,
Jij . We can observe how, although strong correlations are
present in the system, connectivity is relatively sparser.

From the neural activation data of the worm, we inferred
an Ising model P (s) that solves the corresponding inverse
Ising problem. We do this using an adaptive cluster expan-
sion (Barton et al., 2016) and Monte Carlo sampling to fit
the parameters hi and Jij that reproduce the means and cor-
relations found in the series of states s (see Materials and
Methods).

In Figures 2 and 3 we can observe the inferred models.
The models reproduce the correlations found in the neural
activation within the margin of error given by the number of
samples (see Figure 4). The description of the relative error
can be found in the Materials and Methods section.

Results
Once we have extracted a model of the worm’s neural acti-
vation, P (s), we explore the thermodynamic (macroscopic)
properties associated with it. The Ising model allows us to
find evidence of the critical behaviour of the model by ex-
ploring divergences in quantities as the heat capacity of the
system when it approaches the thermodynamic limit. A di-
vergence of the heat capacity implies that the system is max-
imally sensitive to internal parametric changes. By introduc-
ing a fictitious temperature value, changing the inverse tem-
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Figure 3: Ising model for the filtered version of the neu-
ral activations. (A) Correlations Cij = 〈sisj〉 − 〈si〉〈sj〉.
(B) Coupling constants, Jij . (C) Mean activation values.
(D) Neuron fields hi. (E) Distribution of correlation coef-
ficients, Cij . (F) Distribution of coupling values, Jij . In
comparison with the unfiltered model, stronger correlation
values are removed, as well as couplings with larger values
and most bias.

perature parameter β (previously assumed to be equal to 1),
we can explore the parameter space of the system computing
its heat capacity of the system as:

C(T ) =
∂〈E(s)〉

∂T
= β2〈E(s)2〉 − 〈E(s)〉2 (2)

In order to estimate whether the heat capacity diverges at
the thermodynamic limit, we compute networks of different
sizes N = 4, 8, 16, 32. For each size, we generate 10 dif-
ferent networks, select random combinations of nodes, and
compute the heat capacity of the system at different values
of β using a Metropolis Monte Carlo sampler. In Figure 5
we observe how the normalized heat capacity of the system
changes as the system grows. For the filtered activity, it is
not clear that there is a divergence of the heat capacity, since
the curves for N = 32 and N = 56 are similar (Figure 5A).
On the other hand, the heat capacity of the system increases
with size for filtered neural activity, approaching the operat-
ing temperature at β = 1. This suggests that the system is
poised near a critical point.

Another classical signature of criticality is found when the
probability distribution of P (s) follows Zipf’s law. Due to
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Figure 4: Characterization of the relative error in the pair-
wise correlations between the real data and that generated
by the obtained Ising models. The relative error is defined as
the ratio between the deviations of the predicted observables
from the data and the expected statistical fluctuations due to
finite sampling (see Materials and Methods). (A) The error
from the model generated using the raw activity. (B) The
error from the model generated using the filtered activity.

the limited number of samples in the data, it is impossible
to find power law scaling directly there since most samples
appear only one or twice in the series. On the other hand,
the inferred Ising models describe a huge probability distri-
bution function which is not directly computable (with 256

states). Instead, we first searched for power law scaling in
the probability distribution in the unfiltered and filtered case
by creating a probability distribution from limited sets of
Metropolis Monte Carlo samples, which did not yield re-
sults compatible with the Zipf law (Figures 6, panels A and
B).

Finally, we tested the presence of power law structures
in the probability distribution of the samples present in the
data, using equation 1. The results suggests that the model
resembles Zipf’s law for a limited range of samples (around
two orders of magnitude) falling rapidly afterwards for both
the unfiltered an filtered case (Figure 6C-D). This could be
an indicator that the system is not at a critical point. Alter-
natively, the system could be near a critical point. However,
the limited samples available might preclude the model to
learn part of the long-range correlations necessary to display
a consistent Zipf’s law distribution. In the following section,
we test this intuition using a 2D lattice Ising model.
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Figure 5: Normalized Heat Capacity C/N of the Ising
model of the network of all neurons and subnetworks with
a random subsets of neurons for the (A) raw and (B) fil-
tered models. We observe that C/N shows a peak which
approaches 1 as we consider larger networks. Similarly, the
maximum value of the peak increases with larger networks.
This suggests a divergence of the heat capacity in the ther-
modynamic limit.

Comparison with a 2D lattice Ising model
How does the number of samples influence in the detection
of signatures of criticality? Is it possible that maximum en-
tropy models inferred from a limited number of samples dis-
play signatures of criticality in the divergence of the heat ca-
pacity but are not able to capture the Zipf’s distribution of
the probability density function?

In order to test this idea we generate 2000 samples of a
7x7 lattice Ising model at the critical temperature. As in
the case of C. elegans neurons, we extracted a model of
the 49 units, as well as 10 models with N random neurons,
with N = 4, 8, 16, 32. Repeating the same analysis we per-
formed in the models inferred from the neurons of the C. el-
egans, we find similar results than in the filtered case.

First, we observe a similar divergence of the heat capacity,
which becomes larger and with a peak closer to the operat-
ing temperature β = 1 as the number of units of the model
increases (Figure 7).

Furthermore, if we analyze the probability distribution of
the model, we do not find clear signs of power law distribu-
tions (Figure 8). This may suggest that, working on a limited
number of samples, the divergence of the heat capacity is a
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Figure 6: Probability distribution P (s) (solid line)generated
with 100000 Monte Carlo samples, in comparison with
Zipf’s distribution (dashed line) for the models of the (A)
unfiltered and (B) filtered neural activity. Probability distri-
bution P (s) for the states s found in the recordings of the
worm for the models of the (C) unfiltered and (D) filtered
neural activity.

better indicator of criticality. Contrarily, long-range correla-
tions necessary for generating power laws in the probability
distribution might not be easily captured with limited sam-
ples. Nevertheless, this hypothesis should be further tested,
both in theoretical models as well as in larger recordings of
freely-moving C. elegans neural activity when those become
technologically possible.

Discussion
In this paper we have inferred a pairwise maximum entropy
model from neural activation data extracted from a freely
moving C. elegans. As far as we are aware, this is the first
such attempt.

We analyze the presence of criticality in the model under
two conditions. The first extracts a model of binarized sam-
ples from the raw neural activity, and the second adds a high-
pass filtering steps in order to remove low-frequency arti-
facts generated by worm motion (though this filtering may
be removing activity from the neurons at that frequency).

From both sets of data, we extracted Ising models repli-
cating the statistical structure of the nervous system of the
worm. The models obtained displayed a divergence of the
heat capacity of the system mapping filtered data, suggesting
that the nervous system of the C. elegans is near a point of
criticality. Results are not clear for the case without filtering,
suggesting that the combination of low-frequency transients
from the worm’s body and discretization of the data may be
distorting its statistical content (as well, comparing Figures
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Figure 7: Normalized Heat Capacity C/N of the 7x7 lattice
Ising model. As expected, we observe that the maximum
value of the peak increases with larger networks, suggest-
ing a divergence of the heat capacity in the thermodynamic
limit.
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Figure 8: Probability distribution P (s) (solid line) generated
with 100000 Monte Carlo samples (A) and for the states s
found in the recordings of 2000 samples of the Ising model
(B), in comparison with Zipf’s distribution (dashed line).

2 and 3 we can observe how correlations strongly increase
throughout the system when filtering is not applied). Nev-
ertheless, some of the slow fluctuations may be the prod-
uct of criticality in the nervous system. Future analysis
may explore more advanced filtering techniques to discrimi-
nate between external noise and intrinsic fluctuations in low-
frequency contents of the signal. In addition, the generality
of the results shall be tested to compare the behaviour of
different individual worms. In any case, the presented re-
sults show some evidence that the brain of a freely-moving
C elegans worm might be posed at criticality. Generally,
the brain has been shown to be at criticality in rest state, but
some evidence points that long-range correlations associated
with criticality might disappear with movement (Botcharova
et al., 2015). New available data in freely-moving animals
offers the opportunity to study in detail the presence of crit-
icality during movement, or even while interacting with the
animal’s environment.

Analyzing the probability distribution of the inferred
model does not yield the presence of clear power laws in
neither the filtered or unfiltered case. Thus not being con-
clusive for the assessment of criticality in the nervous sys-
tem of C. elegans. However, we hypothesize that the lim-
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ited length of the data (only presenting around 1900 sam-
ples) might prevent the model to learn the long-range cor-
relations present in power law distribution. Analyses of a
restricted number of samples generated from an Ising model
in a 2D lattice at the critical temperature seem to support
this intuition. Replicating this analysis with larger datasets
or better methods for analyze the scaling of the data under
limited samples might help to corroborate this idea (Lev-
ina and Priesemann, 2017). In addition, in this preliminary
study only one worm was analyzed, so future analysis in-
cluding recordings from other worms, further experiments
and the availability of more extensive data of neural activity
in freely moving C. elegans should validate or dismiss the
analysis presented here. As well, a model of the C. elegans
nervous system inferred directly from the data may offer
other interesting possibilities, for example allowing a com-
parison between the worm’s connectome and the inferred
pairwise structure of the Ising model identifying coupling
and inhibitory tendencies, or to better understand the rela-
tions between topology and dynamics in the neural activity
of C. elegans.

Materials and Methods
Data acquisition. We used the data corresponding with

worm 1 available from Nguyen et al. (2016b). In this study
were analyzed four Caenorhabditis elegans modified genet-
ically to express the calcium indicator GCaMP6s in order
to register the calcium transients related to neural dynamics.
The four worms were freely behaving on their environments
and also the position and body-shapes were registered. Fur-
thermore, the data from an additional transgenic worm capa-
ble to express calcium insensitive GFP protein was provided
as a control worm. In our case, worm 1 was analyzed since
it presented larger recordings of neural activity.

Discretization of neural activity. A calcium imaging
technique was used to record changes in intracellular cal-
cium levels of each neuron. In order to make the mini-
mum assumptions analysing this non-spiking activity, we
discretized the activation of each neuron into a set of two
possible binary states according to a threshold θ. The thresh-
old was determined by computing the mean entropy of clus-
ters of 1, 2 and 3 neurons for different values of θ. For the
three cluster sizes, the entropy peaked around the same value
for each worm. We chose θ to maximize the entropy of the
discretized data, in order to capture as much information as
possible from the original data.

Inference of maximum entropy models. We used
adaptive cluster expansion (Barton et al., 2016) for fitting the
parameters hi and Jij that reproduce the means and correla-
tions found in the discretized neural data mentioned above.
We used l2 normalization with a value of 1/T , being T

the number of samples available. After applying adaptive
cluster expansion, we adjusted the resulting values through
Boltzmann Learning (Ackley et al., 1985) by computing the
means and correlations of the model using 800000 samples.

Convergence of the model is defined in terms of the rel-
ative error found in the one-point and pairwise correlations
between the model and the actual data, defined as:

εpi =
|pim − pid|

δpi

εpij =
|pijm − pijd

δpij
|

(3)

where δpi =
√

pi(1−pi)
T and δpij =

√
pij(1−pij)

T are the
expected statistical fluctuations due to finite number of sam-
ples T . In Figure 4 it is shown the relative error εpij of
correlations in the model.

We define the normalized maximum error as:

εmax = max{i,j}

[
1√

2log (M)

(
εpi , εpij

)]
(4)

where M is the total number of one- and two-point corre-
lations, i.e. the number of pi and pij values.

We first apply adaptive cluster expansion until we reach
a cluster size of 12 and afterwards Monte Carlo Boltzmann
learning until εmax < 1.
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