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ABSTRACT Enterococcus faecalis is a commensal bacterium of the human gastrointes
tinal tract that causes opportunistic infections. The E. faecalis genetic changes associ
ated with pathogenicity, particularly gut-to-bloodstream translocation, remain poorly 
understood. Here, we performed a genome-wide association study (GWAS) of 736 
whole-genome sequences of fecal and bloodstream E. faecalis isolates from hospitalized 
and nonhospitalized individuals, respectively, to identify E. faecalis genetic signatures 
associated with the patient’s hospitalization status and body isolation source. We found 
that infection by hospitalization status and extraintestinal infection are heritable traits, 
with ~40% and ~30% of their variation explained by E. faecalis genetics, respectively. 
Furthermore, a GWAS using linear mixed models did not pinpoint any clear overrepre
sentation of individual genetic changes by hospitalization status or body isolation source 
after controlling for the population structure. However, we observed elevated signals 
in a genomic region containing a prophage element. However, the lineages themselves 
and their associated virulence factors and antibiotic resistance genes showed variable 
frequency among blood and fecal isolates and in hospitalized and nonhospitalized 
individuals. Altogether, our findings indicate that E. faecalis infection by hospitalization 
status and body sites is partially influenced by the overall genetic background of the 
isolates and antibiotic resistance patterns rather than genetic variation at individual loci, 
which suggests a greater role of other host and environmental factors and ultimately the 
opportunistic pathogenic lifestyle of this versatile host generalist bacterium.

IMPORTANCE Enterococcus faecalis causes life-threatening invasive hospital- and 
community-associated infections that are usually associated with multidrug resist
ance globally. Although E. faecalis infections cause opportunistic infections typically 
associated with antibiotic use, immunocompromised immune status, and other factors, 
they also possess an arsenal of virulence factors crucial for their pathogenicity. 
Despite this, the relative contribution of these virulence factors and other genetic 
changes to the pathogenicity of E. faecalis strains remain poorly understood. Here, we 
investigated whether specific genomic changes in the genome of E. faecalis isolates 
influence its pathogenicity—infection of hospitalized and nonhospitalized individuals 
and the propensity to cause extraintestinal infection and intestinal colonization. Our 
findings indicate that E. faecalis genetics partially influence the infection of hospitalized 
and nonhospitalized individuals and the propensity to cause extraintestinal infection, 
possibly due to gut-to-bloodstream translocation, highlighting the potential substantial 
role of host and environmental factors, including gut microbiota, on the opportunistic 
pathogenic lifestyle of this bacterium.
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E nterococcus faecalis is a versatile generalist commensal bacterium that colonizes 
the gastrointestinal tract and other niches in humans and animals and survives 

in the environment, including nosocomial settings (1). E. faecalis is a subdominant 
core member of the human gut microbiota, usually acquired early after birth, and 
its origin dates to the Paleozoic era ~400 to 500 million years ago (2). Although E. 
faecalis predominantly exhibits a commensal lifestyle, it is a conditional or opportunistic 
pathogen (3, 4). It causes life-threatening opportunistic infections, including bacteremia, 
endocarditis, intra-abdominal infection, pneumonia, and meningitis infections typically 
associated with high mortality (5, 6). Since the 1970s, E. faecalis has emerged as a leading 
cause of community-acquired and nosocomial infections, most of which have become 
increasingly difficult to treat due to intrinsic and acquired antibiotic resistance, making it 
a major threat to public health globally (4, 6–9). Such increasing antibiotic resistance has 
reignited calls to develop enterococcal vaccines.

The commensal-to-pathogenic switch of E. faecalis is marked by its overgrowth in the 
gut and subsequently translocation into the bloodstream via the intestinal epithelium 
(10). Such extraintestinal translocation can lead to bacteremia, infective endocarditis, and 
infections in other distal tissues from the intestines. However, the specific mechanisms 
driving E. faecalis bloodstream invasion, survival, and virulence are still being uncovered 
(3, 5, 11, 12). Observational studies have shown that antibiotics, such as cephalosporins, 
promote overgrowth and extraintestinal translocation of E. faecalis into the bloodstream 
(13, 14), an observation supported by in vivo murine experimental models (14–16). Such 
overgrowth of E. faecalis reflects the impact of ecological side effects of broad-spectrum 
antibiotics in driving dysbiosis of the gut microbiota, a phenomenon similarly observed 
with Clostridioides difficile (formerly known as Clostridium difficile) (17, 18). E. faecalis also 
harbors a diverse arsenal of putative virulence factors (19–21), which foster its adaptation 
and survival in the harsh clinical and midgut environments and potentially promote 
extraintestinal translocation into the bloodstream. These virulence factors appear to 
be enriched in the dominant epidemic E. faecalis lineages (22, 23), highlighting their 
importance to the success of these clones. For example, the gelatinase (gelE) gene 
encodes a metalloprotease exoenzyme commonly associated with epidemic clones (22) 
and is important for infective endocarditis (24) and extraintestinal translocation into 
the bloodstream (25). Other exotoxins, namely, hemolysin and enterococcus surface 
protein, are also important for virulence in endocarditis (26) and biofilm formation (27), 
respectively, although the role of the former on intestinal colonization and translocation 
has been questioned (28, 29). Acquisition of extrachromosomal elements, including 
pathogenicity islands (30, 31) and plasmids (32), has also been associated with viru
lence and survival in nosocomial settings (33). Understanding the distribution of these 
known and novel E. faecalis virulence factors in strains sampled from different tissues 
and individuals with contrasting pathogenicity could potentially reveal mechanisms for 
enterococcal pathogenicity and uncover therapeutic targets.

Remarkable advances in whole-genome sequencing and computational biology have 
revolutionized population genomics since the sequencing of the first enterococcal 
genome (34). To date, the feasibility of large-scale whole-genome sequencing and 
analysis has facilitated detailed population-level studies to uncover the genetic basis 
of bacterial phenotypes (35). For example, the application of genome-wide associa
tion studies (GWAS) to bacteria has revealed genetic variants associated with diverse 
phenotypes, including antimicrobial resistance (36), host adaptation (37), and pathoge
nicity (38). A key feature of the GWAS approach is that it can identify novel genetic 
variants associated with phenotypes through systematic genome-wide screening, which 
does not bias the analysis toward “favorite” genes and mutations commonly studied in 
different laboratories. Although previous studies have attempted to compare the genetic 
and phenotypic differences between E. faecalis isolates causing intestinal colonization 
and invasive disease (39), clinical and nonclinical strains (40), and isolates of diverse 
origins (41), these studies were limited by the small sample sizes and use of low-resolu
tion molecular typing methods such as pulsed-field gel electrophoresis. Recent studies 
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of E. faecalis and Enterococcus faecium species identified unique mutations associated 
with outbreak strains, highlighting the potential effects of specific genetic changes on 
pathogenicity (12, 42). Despite the increasing affordability of population-scale micro
bial sequencing, the genetic basis of E. faecalis infection in individuals with different 
hospitalization statuses, i.e., pathogenicity and extraintestinal infection, including those 
due to extraintestinal translocation, remains poorly understood. The application of GWAS 
approaches to discover the genetic changes driving the pathogenicity and virulence of E. 
faecalis could expedite antibiotic and vaccine development.

Here, we leveraged a collection of 736 whole-genome sequenced E. faecalis isolates 
sampled from the feces and blood specimens of hospitalized and nonhospitalized 
individuals (43). We undertook a GWAS of the isolates to investigate if specific genomic 
variations, including single-nucleotide polymorphisms (SNPs) and insertions/deletions, 
were associated with infection by hospitalization status and body isolation source. We 
show a predominantly higher differential abundance of virulence factors and antibiotic 
resistance in E. faecalis isolates from hospitalized than from nonhospitalized individuals, 
as well as isolates from blood than from feces. This largely reflects the effects of the 
genetic background or lineages, as no specific individual genetic changes showed 
population-wide effects on the infection of individuals by hospitalization status or 
isolation source. Additionally, we found that infection in individuals depends on their 
hospitalization status and extraintestinal infection, which are heritable traits partially 
explained by E. faecalis genetics. Altogether, our findings provide evidence suggesting 
that the collective effects of several genetic variants, genetic background or lineages, 
and gut ecological factors drive the pathogenicity and extraintestinal infection of E. 
faecalis rather than the population-wide effects of individual bacterial genetic changes. 
These findings have broader implications for E. faecalis disease prevention strategies, 
specifically the need to target all genetic backgrounds when designing vaccines to 
achieve optimal protection against severe enterococcal invasive diseases.

RESULTS

Clinical and genomic characteristics of E. faecalis isolates

To investigate the population genomics of E. faecalis pathogenicity, marked by infection 
of individuals by hospitalization status and body isolation source, we compiled a data 
set of 736 whole genome sequences of E. faecalis isolates sampled from blood and 
fecal specimens of hospitalized and nonhospitalized individuals between 1996 and 2016 
(43) (Fig. 1A; Data Set S1). We included isolates from countries where both fecal and 
bloodstream isolates were collected, but not necessarily from the same individual. In 
total, our final data set comprised isolates from Europe: the Netherlands (n = 300) and 
Spain (n = 436) (Fig. 1B). By infection of individuals, 485 isolates were obtained from 
hospitalized patients, while 251 isolates were sampled from nonhospitalized individuals 
(Data Set S1). Regarding the isolation of E. faecalis from human body sites, 440 isolates 
were sampled from the blood, while 296 isolates were from feces. Nearly all the isolates 
from nonhospitalized individuals were collected from feces, while those from blood were 
from hospitalized individuals. Such a discrepancy in sampling of the E. faecalis isolates by 
hospitalization status and body isolation source reflected the fact that invasive sampling, 
such as collecting blood samples, was less likely to be performed for the nonhospital
ized than the hospitalized patients. In addition, considering that E. faecalis is a major 
cause of nosocomial infections, there is a greater likelihood that the isolation of E. 
faecalis in hospitalized individuals may be a consequence of acquisition in the hospital 
environment by already hospitalized individuals with weaker immunity rather than only 
a reflection of its intrinsic pathogenicity (Fig. 1C).
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FIG 1 Characteristics of E. faecalis isolates included in this study. (A) Summary of the convenient sample of E. faecalis isolates collected from individuals in the 

Netherlands and Spain, showing the frequency of isolates from hospitalized and nonhospitalized individuals, and blood and feces. The map was generated 

using the R package rworldmap. (B) Temporal distribution of the E. faecalis isolates in each country. The radius of each black circle represents the square root 

of the number of isolates selected per year for whole-genome sequencing. (C) Association between E. faecalis isolates by the sampling site and pathogenicity 

or hospitalization status. (D) Association of the E. faecalis isolates by hospitalization status and sequence type (ST) based on the multi-locus sequence typing 

scheme approach. (E) Association of the E. faecalis isolates by ST and isolation source. (F) Association of the E. faecalis isolates by STs and clades or lineages 

defined using Population Partitioning Using Nucleotide K-mers (PopPUNK) by Pöntinen et al. (43). (G) Association of the E. faecalis isolates by hospitalization 

status and PopPUNK clades or lineages. (H) Association of the E. faecalis isolates by body isolation source and the PopPUNK clades or lineages.
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E. faecalis infections by hospitalization status and body isolation source are 
heritable phenotypes predominantly explained by genetic background or 
lineages

To assess the overall genetic basis of the infection in individuals with different hospi
talization statuses, we quantified the proportion of the variability in the phenotypes 
explained by E. faecalis genetics. We calculated the narrow-sense heritability (h2) based 
on the kinship matrix generated using unitig sequences (44). After adjusting for the 
geographical origin and year of isolation of the isolates, we found a heritability of h2 

= 0.40 [95% confidence interval (CI): 0.23 to 0.57] and h2 = 0.30 (95% CI: 0.15 to 0.45) 
for infection by hospitalization status and body isolation source, respectively. Next, we 
calculated the heritability for infection of individuals by hospitalization status and body 
isolation source using only the Spanish cohort, which had an even number of isolates 
from hospitalized and nonhospitalized individuals as well as from blood and feces. 
We found consistent, but slightly higher, estimates of heritability for both infection of 
individuals by hospitalization status (h2 = 0.43, 95% CI: 0.23 to 0.63) and body isolation 
source (h2 = 0.28, 95% CI: 0.12 to 0.45) than estimated based on the combined data 
set. These findings suggest that E. faecalis infections by hospitalization status and body 
isolation source are moderately heritable traits partially explained by genetics.

Infections of individuals with E. faecalis by hospitalization status and body 
isolation source vary across lineages

We sought to investigate the distribution of the hospitalization and body isolation 
source phenotypes in the context of the E. faecalis population structure. We generated 
a maximum-likelihood phylogenetic tree using 251,983 core genome SNPs, exclusively 
containing nonambiguous nucleotide and deletion characters, and annotated it with the 
hospitalization status and body isolation source phenotypes. The isolates were widely 
distributed across different genetic backgrounds based on the country of origin as 
well as body isolation source and hospitalization status, a finding consistent with the 
literature that the severity of E. faecalis infections is not restricted to specific lineages, in 
contrast to the genetic separation between commensal and hospital-adapted lineages 
observed in E. faecium (45, 46) (Fig. 2). We then performed an in-depth analysis 
of the E. faecalis population structure using lineage definitions based on the Popula
tion Partitioning Using Nucleotide K-mers (PopPUNK) genomic sequence clustering 
framework (47) by Pöntinen et al. (43). Our isolates clustered into 96 clades, which 
corresponded to 121 sequence types (STs) or clones defined by the E. faecalis multi-locus 
sequence typing scheme (MLST) (48) (Fig. 2). There was no single dominant ST present 
at a frequency of >50% compared to the others among the isolates sampled from 
hospitalized and nonhospitalized patients and isolates from feces and blood (P > 0.05) 
(Fig. 1D and E). As expected, the clusters defined by the MLST scheme were concordant 
with the PopPUNK clades or lineages, although the latter were less granular than the 
former as they are defined based on genome-wide variation and therefore are robust 
to subtle genomic variation (Fig. 1F). Therefore, as similarly observed with the STs, there 
was no single dominant clade present at a frequency of >50% compared to the rest 
associated with the E. faecalis isolates from hospitalized and nonhospitalized patients 
and isolates from feces and blood (P > 0.05) (Fig. 1G and H).

We then compared the relative frequency of individual STs and PopPUNK clades 
between isolates collected from hospitalized patients and nonhospitalized individuals. 
We found three clades more common in hospitalized patients than in nonhospitalized 
individuals, namely, clades 2 (adjusted P = 1.20 × 10−05), 6 (adjusted P = 4.80 × 10−08), and 
7 (adjusted P = 0.0003). In contrast, two clades, clade 1 (adjusted P = 0.027) and clade 
4 (adjusted P = 3.40 × 10−10), were more common in nonhospitalized individuals than 
in hospitalized patients (Fig. 3A; Table S1). Due to the correlation between the hospitali
zation status of the individuals and the isolation source, we found similar patterns in 
the relative abundance of the clades between blood and fecal isolates (Fig. 3B; Table 
S2). We found a higher abundance of ST6 (clade 2; adjusted P = 1.50 × 10−05), ST9 
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(clade 7; adjusted P = 0.0082), and ST28 (clade 6; adjusted P = 1.20 × 10−08) among 
hospitalized patients than among nonhospitalized individuals (Fig. 3C and D; Table S2). 
Similar patterns were observed among isolates sampled from blood compared to feces. 
Conversely, we found that ST25 (clade 4) was enriched in nonhospitalized patients 
compared to nonhospitalized individuals (adjusted P = 0.014) as well as in isolates 
sampled from blood compared to feces (adjusted P = 7.80 × 10−05) (Fig. 3C and D; Table 
S2). Together, these findings suggest that certain E. faecalis genetic backgrounds are 
overrepresented in patients by hospitalization status and isolation source, suggesting 
that the lineage, which correlates with the presence of virulence factors and antibiotic 
resistance determinants, partially influences extraintestinal infection of E. faecalis.

FIG 2 Maximum-likelihood phylogenetic tree of 736 E. faecalis isolates from the Netherlands and Spain. Each circular ring at the tip of the phylogenetic tree, 

from innermost to outermost, represents the country of origin for each E. faecalis isolate (the Netherlands and Spain), clade or lineage defined by the PopPUNK 

genomic sequence clustering framework (47) by Pöntinen et al. (43), ST based on the E. faecalis MLST scheme (48), body isolation source (blood and feces), 

and pathogenicity defined based on hospitalization status (hospitalized and nonhospitalized). The phylogeny was rooted at the midpoint of the longest branch 

between the two most divergent E. faecalis isolates.
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Only a few virulence factors show variable prevalence in individuals with 
different hospitalization statuses and isolation sources

As a generalist host species, E. faecalis exhibits high levels of recombination (48), which 
may facilitate the acquisition of genes promoting colonization and virulence, driving the 
success of its clones (23) We hypothesized that certain known virulence factors would 
be enriched among E. faecalis isolates from hospitalized patients, especially those with 

FIG 3 Relative abundance of E. faecalis lineages and virulence factors by hospitalization status and body isolation source. (A) Relative frequency of E. faecalis 

clades or lineages among isolates collected from blood and feces. (B) Relative frequency of E. faecalis clades or lineages among isolates collected from 

hospitalized and nonhospitalized individuals. (C) Relative frequency of E. faecalis ST among isolates collected from blood and feces. (D) Relative frequency of E. 

faecalis STs among isolates collected from hospitalized and nonhospitalized individuals. (E) Relative frequency of a catalog of known E. faecalis virulence factors 

from the virulence factor database (VFDB) (49) among hospitalized and nonhospitalized individuals. (F) Relative frequency of E. faecalis virulence factors from 

VFDB among isolates collected from blood and feces. All the error bars in each plot represent 95% binomial proportional confidence intervals. The asterisks 

above the frequency of some genes show the statistical significance of the difference in proportions based on the test for the equality of two proportions 

defined as follows: P < 0.001 (***), P < 0.01 (**), and P < 0.05 (*).
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bloodstream infection, compared to nonhospitalized individuals without bloodstream 
infection. We used a candidate gene approach to compare the enrichment of a catalog 
of E. faecalis virulence factors obtained from the virulence factor database (VFDB) (49) 
by individuals’ hospitalization status and body isolation source. We found that three 
genes, namely, ecbpA (adjusted P = 5.70 × 10−08), EF0149 (adjusted P = 0.0019), and 
EF0485 (adjusted P = 0.0026), which play a role in epithelial surface adherence, were 
more common in extraintestinal infection than in intestinal colonization (Fig. 3E and 
F; Table S3). No genes encoding known exoenzyme and biofilm-associated proteins 
showed differential enrichment in either hospitalized patients relative to nonhospitalized 
individuals or extraintestinal infection compared to intestinal colonization (Fig. 3E and 
F; Table S3). However, all four exotoxin-encoding genes were enriched in hospitalized 
compared to nonhospitalized individuals, namely, cylL-l (adjusted P = 1.20 × 10−06), cylL-s 
(adjusted P = 1.20 × 10−06), cylM (adjusted P = 1.20 × 10−06), and cylR2 (adjusted P = 1.20 
× 10−06) (Fig. 3E; Table S3). Similar patterns were observed among the isolates sampled 
from extraintestinal infection and intestinal colonization (Fig. 3F; Table S3). Additionally, 
nine capsule biosynthesis genes (cpsC to cpsK) were more common among hospitalized 
than among nonhospitalized individuals as well as isolates from the extraintestinal 
infection than from the intestinal colonization (Fig. 3E and F; Table S3). These find-
ings are partly consistent with previous studies (22, 23), although the present study 
investigated a larger catalog of virulence factors. Therefore, we conclude that certain 
virulence factors are associated with individuals with different hospitalization statuses 
and possibly promote extraintestinal translocation of E. faecalis into the bloodstream in 
hospitalized individuals.

Distribution of antibiotic resistance genes in E. faecalis isolates by hospitali
zation status and body isolation source

Hospitalized patients are more exposed to antibiotics in hospitals than nonhospitalized 
individuals, as more antibiotics are used in hospital settings than outside. Therefore, it is 
likely that E. faecalis isolates from hospitalized patients are more likely to have acquired 
resistance than isolates from nonhospitalized individuals. Because most patients were 
probably hospitalized because of other complaints and developed the E. faecalis 
infection during hospitalization, we hypothesized that E. faecalis isolates sampled from 
hospitalized individuals and extraintestinal infection would show a higher frequency of 
antibiotic resistance traits than isolates from nonhospitalized individuals and intestinal 
colonization. The rationale behind this hypothesis was that antibiotic-susceptible E. 
faecalis strains are more likely to be cleared from the gut following antibiotic use, 
leaving more space for the surviving antibiotic-resistant strains to cause extraintestinal 
infection and subsequently cause severe disease (Fig. 1C; Table S4). This would be due 
to the surviving antibiotic-resistant strains. We investigated this hypothesis by compar
ing the abundance of antibiotic resistance genes for seven antibiotic classes, namely, 
glycopeptides (vancomycin), aminoglycosides, macrolides, tetracyclines, phenicols, and 
oxazolidinones (linezolid), in E. faecalis isolates from hospitalized and nonhospitalized 
individuals, blood, and feces. Regressing the number of antibiotic classes susceptible to 
the hospitalization status while adjusting for the country of origin showed resistance 
to more antibiotic classes among isolates from hospitalized than from nonhospitalized 
individuals (effect size β = 1.43, P < 3.63 × 10−12) (Fig. 4A; Table S4). As expected, 
due to the correlation between hospitalization status and body isolation source (Fig. 
1C; Table S4), we found a similar pattern for isolation source, i.e., isolates from blood 
harboring resistance traits to a higher number of antibiotic classes than isolates from 
feces (effect size β = 1.37, P = 2.89 × 10−10) (Fig. 4B; Table S4). Next, we compared 
the relative abundance of genotypically antibiotic-resistant isolates for each antibiotic 
class among E. faecalis isolates from hospitalized and nonhospitalized individuals. We 
found a higher relative abundance of genotypically inferred antibiotic-resistant isolates 
in hospitalized than in nonhospitalized individuals for aminoglycosides (adjusted P = 
5.51 × 10−09), macrolides (adjusted P = 3.77 × 10−09), phenicols (adjusted P = 8.59 × 10−05), 

Research Article Microbiology Spectrum

November/December 2023  Volume 11  Issue 6 10.1128/spectrum.00201-23 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

08
 J

an
ua

ry
 2

02
4 

by
 1

93
.1

46
.2

33
.2

13
.

https://doi.org/10.1128/spectrum.00201-23


and tetracyclines (adjusted P = 6.75 × 10−05). However, we observed no differences for 
glycopeptides, i.e., vancomycin (adjusted P = 1), which had almost negligible resistance 
in the isolates (Fig. 4C; Table S4). Again, we observed similar patterns in blood and fecal 
isolates (Fig. 4D; Table S4).

There is no evidence of population-wide effects of individual E. faecalis 
genetic changes on infection of individuals by hospitalization status and 
body isolation source

Having demonstrated differences in the prevalence of virulence factors, likely driven by 
lineage or strains’ genetic background effects, we next undertook a GWAS using linear 
mixed models to identify individual E. faecalis genetic changes with population-wide 

FIG 4 The abundance of E. faecalis antibiotic resistance genes by hospitalization status and body isolation source. (A) Distribution of the number of antibiotic 

resistance genes (see Materials and Methods) per E. faecalis isolates from hospitalized and nonhospitalized individuals. (B) Relative abundance or frequency of 

genotypically resistant E. faecalis isolates from hospitalized and nonhospitalized individuals. (C) Distribution of the number of antibiotic resistance genes per E. 

faecalis isolates collected from blood and feces. (D) Relative abundance or frequency of genotypically resistant E. faecalis isolates collected from blood and feces. 

All the error bars in each plot represent 95% binomial proportional confidence intervals.
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events on infection of individuals with varying hospitalization status. We hypothesized 
that genetic variation in known and unknown virulence factors would be dispropor
tionately distributed among E. faecalis isolates from hospitalized and nonhospitalized 
individuals. In total, we selected 99,730 out of 252,278 SNP variants and 462,374 out 
of 1,089,909 unitig sequences, which capture variation in both the core and accessory 
genomes and are present at a frequency of 5% to 95% of the isolates for the GWAS. 
Contrary to our hypothesis, we found no statistically significant differences in the 
distribution of SNPs and unitigs between isolates from hospitalized and nonhospitalized 
individuals independent of the strain genetic background in the GWAS using linear 
mixed models (50) (Fig. 5A and B). Inspection of the quantile-quantile (Q-Q) plots 
revealed no issues with population structure (Fig. S1A and B). Altogether, these findings 
demonstrated that the infection of individuals with varying hospitalization status with 
E. faecalis is not driven by individual genetic changes independently of their genetic 

FIG 5 Association of E. faecalis genomic variants, hospitalization status, and body isolation source. (A) Manhattan plot summarizing the statistical association 

of SNP with pathogenicity or hospitalization status. The statistical significance of each SNP is log-transformed [−log10(P-value)] and plotted against its position 

in the V583 E. faecalis reference genome (34). (B) Manhattan plot summarizing the statistical association of unitigs with pathogenicity. (C) Manhattan plot 

summarizing the statistical association of SNPs with extraintestinal infection or body isolation source. (D) Manhattan plot summarizing the statistical association 

of unitigs with extraintestinal infection or body isolation source. The red and blue dotted lines represent the genome-wide significance and suggestive 

threshold, respectively.
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background, suggesting that all E. faecalis strains are intrinsically adapted for extraintesti
nal infection, partly through translocation into the bloodstream.

We then carried out an additional GWAS to identify genetic changes associated 
with extraintestinal infection with E. faecalis strains by comparing fecal and blood
stream isolates. Like the GWAS based on the hospitalization status, we found no 
SNPs and unitigs associated with the isolation source independent of the strains’ 
genetic background (Fig. 5C and D). However, we found the strongest signal in an 
~48.1 Kb genomic region from positions ~1,390,000 to 1,450,000 bp in the V583 E. 
faecalis genome (34). Since horizontal gene transfer is a critical process in the mobili
zation of pathogenicity-associated genes (31, 51), we hypothesized that this region 
may represent a pathogenicity island. Re-annotation of the nucleotide sequence for 
this region revealed several phage-associated genes, which suggested the potential 
integration of a bacteriophage. Similarly, the Q-Q plots showed no issues with adjusting 
for the population structure (Fig. S1AB). We then performed phage prediction using the 
entire V583 E. faecalis genome sequence to annotate the SNPs and unitig sequences 
identified in the GWAS. We found a total of nine prophage sequences in the genome, 
including one with intact attLand attR attachment sites and integrase sequences located 
at genomic positions 1,398,051 to 1,446,151 bp. This prophage showed high genetic 
similarity to prophages including PHAGE_Entero_phiFL3A_NC_013648, PHAGE_Lis
ter_B054_NC_009813 (27), and PHAGE_Lactob_LBR48_NC_027990. Furthermore, most 
of the phage-associated genes and protein sequences showed high genetic similarity to 
those found on prophages associated with several bacterial genera, including Entero
coccus, Lactobacillus, Bacillus, Listeria, and Staphylococcus. These findings highlighted a 
potential virulence locus that should be prioritized for further investigation to under
stand its role in E. faecalis pathogenicity.

DISCUSSION

Tremendous advances in sequencing technology and analytical approaches have 
occurred over the past two decades since the sequencing of the first enterococcal 
genome—E. faecalis strain V583 (34). However, despite the increasing availability of 
population-level E. faecalis genomic data sets, no systematic studies have investiga
ted the population-wide effects of individual genetic changes on infection in individ
uals with varying hospitalization status and extraintestinal infection and the overall 
contribution of E. faecalis genetics to these phenotypes (5). Such studies could reveal 
critical pathways for E. faecalis virulence, including survival in the bloodstream through 
evasion of innate host immune defenses, and inform the development of therapeutics 
(12). Here, we address this knowledge gap by investigating the effects of known and 
novel virulence factors, lineages, and the entire repertoire of E. faecalis genomic changes 
in a large collection of human fecal isolates, representing a snapshot of the E. faecalis 
diversity in the gut, and isolates sampled from blood specimens of individuals with 
different hospitalization statuses. Our findings demonstrate that the abundance of 
certain virulence and antibiotic resistance determinants is higher in E. faecalis isolates 
associated with severe disease and extraintestinal infection, largely driven by the effects 
of the strains, lineages, or genetic background effects but not the population-wide 
effects of individual genetic changes.

E. faecalis is a versatile pathogen that survives in a wide range of challenging niches, 
including the human gut, blood, and environment, such as in clinical settings. Such 
adaptation and survival of E. faecalis in these diverse environments are modulated by 
several mechanisms, including antimicrobial resistance (52), intracellular survival (53–56), 
and biofilm formation (27). Although several virulence factors of E. faecalis have been 
described (24–27), how (and if this happens) these factors contribute to infection of 
individuals with varying hospitalization status and extraintestinal infection, especially 
through gut-to-bloodstream translocation, remains poorly understood. Previous genetic 
studies shed light on how the distribution of virulence factors shapes the adaptation of 
E. faecalis clones to different environments despite the limitation of small sample sizes 
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(39, 41). In this study, we demonstrate enrichment of known virulence genes in isolates 
associated with different hospitalization statuses using a larger collection of isolates. 
These include genes encoding for aggregation substance adherence factors (EF0485 
and EF0149) (32); lantipeptide cytolysin subunits CylL-L and CylL-S (cylL-l and cylL-s), 
cytolysin subunit modifier (cylM), and cytolysin regulator R2 (cylR2) exotoxins (57); and 
polysaccharide capsule biosynthesis genes (cpsC to cpsK) involved in immune modula
tion or antiphagocytosis (58). These findings suggest that the variable abundance of 
these virulence genes in hospitalized and nonhospitalized individuals could influence E. 
faecalis pathogenicity, possibly because they primarily contribute to intestinal coloniza
tion, survival, and fitness or competitiveness in different intestinal compartments in 
the dysbiotic gut of hospitalized patients. Once the strains harboring these genes are 
established in higher numbers in the gastrointestinal tract, this promotes transmission, 
which in turn promotes the evolution and fixation of these virulence genes in the 
population. Interestingly, the observed higher antibiotic resistance, especially amino
glycosides, in isolates from blood and hospitalized individuals than from feces and 
nonhospitalized individuals suggests that antibiotic-resistant E. faecalis strains are more 
likely to survive and overgrow after the use of these antibiotics, consistent with findings 
reported elsewhere (14–16, 39, 59, 60). Conversely, while the distribution of the virulence 
factors and clades, or STs, was observed, the observation from the GWAS of E. faecalis 
pathogenicity, after adjusting for the genetic background of the isolates, implied that 
no individual genetic changes influence the severity of diseases at the population level. 
These findings are consistent with the notion that genetic traits influencing virulence 
are less likely to be selected than those promoting colonization as similarly seen in 
other pathogens (61). Altogether, these findings suggest that the distribution of the E. 
faecalis virulence factors may largely depend on the genetic background, implying that 
the lineage effects on pathogenicity may be more pronounced than the population-wide 
effects of individual genetic changes. Alternatively, there may be a predominance of 
certain lineages in some individuals, as seen with other opportunistic pathogens (62), 
whose risk factors for infection, including hospital exposure history, antibiotic treatment, 
and other underlying conditions, make them favorable for the selection of E. faecalis 
strains enriched in antibiotic resistance genes and other adaptive traits.

Likewise, the distribution of known E. faecalis virulence factors by isolation source 
mirrored the patterns observed for infection in individuals with varying hospitalization 
status due to the correlation between these phenotypes. These findings suggested that 
no individual genetic changes are overrepresented in blood and gut niches independent 
of the genetic background, which implied that while individual genetic changes may 
have an impact on extraintestinal infection, their effect at the population level is likely 
minimal. However, some genetic changes could be linked to specific lineages, making 
disentangling their effects from the genetic background a challenge. However, the 
absence of genetic changes statistically associated with the body isolation source, after 
adjusting for the population structure, suggests that these variants are not likely under 
positive selection because extraintestinal infection represents an evolutionary dead-end 
for E. faecalis (63). Therefore, even if such genetic changes exist, they may be rare and 
likely exhibit small effect sizes, making their detection challenging without analyzing 
large data sets with thousands of genomes. We speculate that the observed strong 
but nonstatistically significant signals in a single prophage, integrated at chromosome 
coordinates 1,398,051 to 1,446,151 bp in the V583 E. faecalis genome (34), could 
exemplify a potential locus with small population-wide effects on virulence. Indeed, 
prophages play a critical role in the pathogenicity of E. faecalis (64–67) and other 
bacterial pathogens, such as Staphylococcus aureus (37, 68). Therefore, further studies 
using even larger genomic data sets than the present study and adjusting for other 
important covariates, such as prior antibiotic usage and immune status, are required 
to fully investigate the impact of the identified E. faecalis prophage in modulating 
extraintestinal infection. Crucially, such studies should prospectively collect samples 
to minimize confounding effects due to cohort and temporal variability between the 
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number of cases and controls for a robust GWAS, which was one of the limitations of 
this study. Furthermore, definitive E. faecalis genetic signals for extraintestinal infection 
may be identified by comparing isolates obtained from the blood of patients with 
feces from individuals with confirmed negative blood cultures as controls. Inclusion 
of E. faecalis strains from community-acquired infections could also overcome the 
confounding effects due to factors related to hospitalization, such as E. faecalis from 
individuals with community-acquired bacteremia who are at a higher risk of developing 
infective endocarditis (69). Altogether, our findings demonstrate that no individual E. 
faecalis genetic changes exhibit a population-wide statistical association with extrain
testinal infection, implying that all E. faecalis strains are capable of translocating into 
the bloodstream and causing severe diseases, consistent with their known opportun
istic pathogenic lifestyle. Although E. faecalis genetic changes that are important for 
survival in the blood may exist, these would not be fixed in the population, especially 
if they had no impact on colonization, as individual strains would have to accidentally 
“re-discover” them repeatedly. Therefore, vaccination strategies targeting all rather than 
specific genetic backgrounds would lead to increased protection from severe E. faecalis 
diseases.

The estimated heritability based on unitig sequence variation of ~40% for infec
tion in individuals with different hospitalization statuses and ~30% for body isolation 
source suggests that the contribution of E. faecalis genetics to these phenotypes is 
not negligible but relatively modest compared to that observed for other phenotypes, 
such as antimicrobial resistance (70). Our findings are consistent with findings from a 
recent bacterial GWAS of pathogenicity in Streptococcus pneumoniae (71) and Group 
B Streptococcus (Streptococcus agalactiae) (72). However, other studies have found 
negligible heritability for pathogenicity in Neisseria meningitidis (61), which suggests 
that the evolution of the pathogenicity trait is neutral. Previous studies have suggested 
that antibiotic resistance plays a major role in bloodstream invasion (14–16, 59, 60). 
Indeed, broad-spectrum antibiotic use disrupts the stable gut microbial community by 
removing typically antibiotic-susceptible competitor species, leading to the overgrowth 
and dissemination of E. faecalis into the bloodstream (59, 60). Therefore, follow-up 
studies of E. faecalis isolates sampled from feces of healthy individuals and bloodstream 
of patients, adjusting for other important variables such as antibiotic use, are required 
to determine specific genetic changes modulating pathogenicity and virulence and 
account for potential missing heritability. These studies will be better placed to assess 
the relative effect of host and gut environmental factors, such as microbiota pertur
bations due to antibiotic use, compared to the population-wide impact of individual 
genetic changes in modulating E. faecalis virulence and pathogenicity (73).

We acknowledge the limitations of this study, which primarily stem from the sampling 
biases due to the use of preexisting sequencing data sets. Firstly, there was uneven 
distribution of blood and fecal isolates from hospitalized and nonhospitalized individu
als. Secondly, due to the retrospective nature of the study, we did not have access 
to detailed clinical information, including comorbidities, previous antibiotic use, and 
the individual’s age. Adjusting for these factors would further strengthen our findings. 
Thirdly, our sample size is modest as it is based on a collection of E. faecalis isolates from 
only two countries in Europe. However, our data set size is similar to or larger than those 
described in previous studies (68, 74), which demonstrated sufficient power to detect 
statistically significant associations between specific individual loci and phenotypes. We 
recommend follow-up studies with larger sample sizes, balanced data sets by hospitaliza
tion status and body isolation source, and most importantly, including detailed clinical 
information, especially antibiotic use, comorbidities, and an individual’s age, to adjust for 
potential confounding effects in the GWAS analysis.

Our exploratory findings derived from a geographically and temporally diverse 
whole-genome data set of E. faecalis isolates suggest that the pathogenicity of E. 
faecalis infections may not be primarily driven by the specific population-wide effects 
of individual genetic changes. These results may further illustrate the opportunistic 
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pathogenic lifestyle of E. faecalis, whereby infection of individuals with different 
hospitalization statuses and body isolation sources could be an accidental consequence 
of gut colonization dynamics as seen in other gut commensals (63). Due to the 
absence of specific individual genetic variants associated with body isolation source and 
hospitalization status, ultimately, the commensal-to-pathogen switch and virulence of E. 
faecalis may be predominantly modulated by multiple genetic variants, i.e., polygenic, 
genetic background or lineages, epigenetic mechanisms, host factors, and the gut milieu, 
including the ecological side effects of broad-spectrum antibiotics on the gastrointesti
nal microbiota.

MATERIALS AND METHODS

Sample characteristics and microbiological processing

For this study, we selected a total of 736 human E. faecalis isolates from a collection 
of whole-genome sequences from isolates collected from several European countries 
described by Pöntinen et al. (43). We included isolates from countries where both fecal 
and blood specimens were collected, namely, the Netherlands (n = 300) and Spain (n 
= 436). The isolates represent collections from the University Medical Center Utrecht, 
Utrecht, The Netherlands (n = 300); the European Network for Antibiotic Resistance and 
Epidemiology at the University Medical Center Utrecht, Utrecht, The Netherlands (n = 
6); the Hospital Ramòn y Cajal, Madrid, Spain (n = 375); and Spain (n = 55). By isolation 
source, 296 isolates were sampled from feces, while 440 were from blood. Of these, 
485 were collected from hospitalized patients, while 251 were from nonhospitalized 
individuals. The isolates were collected over a 21-year period (1996 to 2016); therefore, 
our data set was both geographically and temporally diverse. We did not use clinical 
metadata related to the patients, and all isolate identifiers were de-identified; therefore, 
additional institutional review board approval was not required.

Genome sequencing, molecular typing, assembly, and annotation

Short-read sequencing was done at the Wellcome Sanger Institute using the Illumina 
HiSeq X paired-end sequencing platform. As part of our quality control procedures, 
we used Kraken (version 0.10.66) (75) to check for potential species contamination. We 
assembled sequence reads that passed quality control using Velvet de novo assem
bler (version 1.2.10) (76) and annotated the resultant draft assemblies using Prokka 
(version 1.14.6) (77). To generate multiple sequence alignments for the whole genome 
sequences, we mapped the reads against the V583 E. faecalis reference genome (34) 
using the Snippy (version 4.6.0) haploid variant calling and core genome pipeline 
(https://github.com/tseemann/snippy). We performed in silico genome-based typing of 
the isolates using MLST, using ST or clone definitions in the MLST database (https://
pubmlst.org/efaecalis) (48, 78), implemented in SRST2 (79).

Phylogenetic reconstruction and population structure analysis

To generate a phylogeny of the E. faecalis isolates, we first identified genomic positions 
containing SNPs using SNP-sites (version 2.3.2) (80). Next, we used the SNPs to con
struct a maximum-likelihood phylogenetic tree using IQ-TREE (version 2.1.2) (81). We 
selected the general time reversible and Gamma substitution models. We processed 
and rooted the generated phylogeny at the midpoint of the longest branch using the 
APE package (version 4.3) (82) and phytools (version 0.7.70) (83). We annotated and 
visualized the rooted phylogeny using the “gridplot” and “phylo4d” functions implemen
ted in phylosignal (version 1.3) (84) and phylobase (version 0.8.6) packages (https://
cran.r-project.org/package=phylobase), respectively. We used PopPUNK (version 1.2.2) to 
define the population structure of the isolates (47).
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Antibiotic resistance and virulence gene profiles

We identified genotypic antibiotic resistance for seven major antibiotic classes, namely, 
glycopeptides (vancomycin), aminoglycosides, macrolides, tetracyclines, phenicols, and 
oxazolidinones, as described by Pöntinen et al. (43). We screened the sequencing reads 
for the presence and absence of antibiotic resistance genes using ARIBA (version 2.14.4) 
(85) and the ResFinder 3.2 database (86). We included additional genes conferring 
resistance to vancomycin, namely, vanA [European Nucleotide Archive (ENA): acces
sion: AAA65956.1], vanB (ENA accession: AAO82021.1), vanC (ENA accession number: 
AAA24786.1), vanD (ENA accession: AAD42184.1), vanE (ENA accession: AAL27442.1), 
and vanG (ENA accession: NG_048369.1), and linezolid, namely, cfrD (ENA accession: 
PHLC01000011). We compared the abundance of antibiotic resistance genes per isolate 
using a generalized linear regression model with a Poisson log link function with 
pathogenicity or hospitalization status and country of origin as covariates, the latter 
to adjust for geographical differences. We used the test of equal proportions to compare 
the relative abundance of genotypic antibiotic resistance for each antibiotic class among 
hospitalized and nonhospitalized individuals, as well as blood and feces.

We also assessed the presence and absence of E. faecalis virulence genes obtained 
from the VFDB (49). These included genes encoding proteins involved in adherence 
to the epithelial surfaces (ace, ebpA, ebpB, ebpC, ecbA, EF0149, EF0485, efaA, and srtC), 
exoenzymes (EF0818, EF3023, gelE, and sprE), biofilm formations (bopD, fsrA, fsrB, and 
fsrC), immune modulation or antiphagocytosis (cpsA-K), and exotoxins (cylL-l, cylL-s, cylM, 
and cylR2) between isolates from hospitalized and nonhospitalized individuals and those 
associated with intestinal colonization and extraintestinal infection. We used BLASTN 
(version 2.9.0+) (87) to determine the presence and absence of the virulence genes. 
To avoid incorrectly missing genes potentially split between multiple contigs during de 
novo genome assembly, we considered all the highest scoring pairs with a minimum 
length of 100 bp using BioPython (88). We used the test of equal proportions to compare 
the relative abundance of genotypic antibiotic resistance for each antibiotic class among 
hospitalized and nonhospitalized individuals, as well as blood and feces.

Genome-wide association study

To generate the input SNP data for the GWAS, we used VCFtools (version 0.1.16) (89) to 
convert bi-allelic SNPs into the pedigree file accepted by PLINK software (90). We filtered 
out genomic positions with SNPs with a minor allele frequency of <5% or missing variant 
calls in >10% of the isolates using PLINK (version 1.90b4) (90). Next, we identified unitig 
sequences, variable-length k-mer sequences generated from nonbranching paths in a 
compacted De Bruijn graph. First, we build a De Bruijn graph using assemblies of all 
the isolates based on 31 bp k-mer sequences using Bifrost (version 1.0.1) (91). We then 
queried the generated De Bruijn graph using the query option in Bifrost to generate the 
presence and absence patterns of each identified unitig in the assemblies of each isolate. 
We then combined the presence and absence patterns of all the isolates into a single 
file and then merged them with the phenotype data (isolation source or hospitalization 
status) to generate PLINK-formatted pedigree files, which were used for the downstream 
GWAS analysis. We used the same threshold for variant frequency to filter out rare unitigs 
before the GWAS.

We undertook GWAS analyses using SNPs and unitigs to identify genetic variants 
associated with pathogenicity (hospitalization) and extraintestinal infection of E. faecalis. 
We used FaST-LMM (FastLmmC, version 2.07.20140723) (50), which uses a linear mixed 
model for the GWAS. For both methods, we specified a kinship matrix based on the 
unitig presence and absence data to adjust for the clonal population structure of the 
isolates, which is a major confounder in bacterial GWAS analyses (35). Since the GWAS 
tools used in this study were originally developed to mostly handle human diploid 
DNA data, we coded the variants as human mitochondrial DNA (which is haploid) by 
specifying the chromosome number as 26 (92, 93). To control the false discovery rate, 
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we used the Bonferroni correction method to adjust the statistical significance (P-values) 
inferred by each GWAS method based on the likelihood ratio test. We specified the 
genome length of the E. faecalis V583 reference genome (3,218,031 bp) as the maximum 
possible number of genomic variants possible, assuming that variants can independently 
occur at each genomic position. Since this assumption may not necessarily be true, our 
approach is likely to be more conservative than the Bonferroni correction based on the 
number of tested variants; therefore, it may minimize false positives but may slightly 
increase false negatives. The advantage of our approach is that by using the same 
number of possible variants based on the genome length, a consistent P-value threshold 
can be used to adjust different types of genetic variation, i.e., SNPs, accessory genes, 
k-mers, and unitigs, to simplify interpretation and comparison of statistical significance 
across different studies.

We visualized the GWAS results using Manhattan plots generated using standard 
plotting functions in R (version 4.0.3) (https://www.R-project.org/). Specific genomic 
features associated with each SNP and unitig were analyzed further by comparing the 
genomic sequences to the V583 E. faecalis reference genome (34) using BLASTN (version 
2.5.0+) (94) and BioPython (version 1.78) (88). To identify potential issues arising due 
to the population structure, we generated Q-Q plots to compare the observed and 
expected statistical significance using qqman (version 0.1.7) (95). We calculated the 
overall proportion of the variance of the phenotype explained by E. faecalis genetics, i.e., 
narrow-sense heritability, using GCTA (version 1.93.2) (44).

Statistical analysis

We compared the number of E. faecalis antibiotic resistance genes per isolate among 
hospitalized and nonhospitalized patients and blood and fecal isolates using a Poisson 
generalized linear regression model with a log link. We used the rest for equality of 
proportions to assess whether a single dominant lineage is present at a frequency of 
>50%. We compared the frequency of STs and lineages in isolates from hospitalized and 
nonhospitalized patients and blood and fecal isolates using the chi-squared test.
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