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Some investment projects aim not only to produce goods but more importantly, to update and efciently supply products in
accordance with market demand. A double time delay diferential dynamics model is formulated for continuous renewal in-
vestment projects based on the fowchart of the capital appreciation process and the assumed transfer functions. By analyzing the
mathematical model, it can be determined that a unique local asymptotically stable positive equilibrium point exists for the
continuous investment project. In accordance with the Hopf branching theorem, the model displays periodic behavior in
proximity to its positive equilibrium point under certain conditions. Te simulation results are compared under various
conditions, and the validity of the relevant conclusions is confrmed.

1. Introduction

Te act of investment is widely recognized as one of the most
prevalent and pivotal economic endeavors in contemporary
society. Te hysteresis efect of investment income is a crucial
factor contributing to economic fuctuations. Te objective of
investors is to maximize their return on investment. To
maximize the long-term proftability of the project, it is
imperative to enhance the competitiveness of its products
through regular updates in order to thrive in the market.

Using the investment in the antivirus software project as
an example, due to the continuous emergence of viruses, it is
imperative to consistently update the antivirus functionality
of such software. Otherwise, it risks being rendered obsolete
by market forces. Tere are numerous comparable projects
that cannot all be enumerated. Te process of updating
project products involves two crucial components: research
and development (R&D) and production, both of which
necessitate fnancial support. Sustained investment is im-
perative for the continuous enhancement of products. Te
realization of investment returns is contingent upon the
efective supply of project products to meet demand. Failure
to efectively supply products to meet demand may result in
investment failure.

Te objective of this study is to utilizemathematical models
to investigate the phenomenon of investment characterized by
delayed returns and continuous infusions of capital.

Numerous mathematical models have been developed to
address the investment problem. Classical models, such as
the geometric Brownian motion model [1–3] and the
constant elasticity of variance model [4], are commonly
employed in fnancial modeling. Vigna and Haberman [1]
utilized the geometric Brownian motion model and sto-
chastic optimal control principle to investigate the optimal
investment of pension asset allocation plans in discrete time.
Building on this foundation, Haberman and Vigna [2] as-
sumed a hypothetical asset allocation model that invests in
two types of assets—risky assets and risk-free assets— and
derived an asset allocation formula for the optimal in-
vestment problem. Tomson [3], assuming continuous
rather than discrete time, applied dynamic programming
principles to obtain the optimal investment strategy with the
goal of maximizing expected utility at retirement. Te CEV
(constant elasticity of variance) model represents an en-
hanced version of the GBM model for pricing risk assets.
Cox et al. [4] proposed that the CEVmodel has been utilized
in the computation of various theories, including option
pricing and implied volatility. In addition to the CEVmodel,
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another investment model that has garnered signifcant
attention is the Heston stochastic volatility model, initially
proposed by Heston [5]. Te key distinction between the
Heston model and the CEVmodel lies in their consideration
of random volatility for risk assets as well as assuming
randomness in return rates. To better align with real-world
fnancial market dynamics, volatility is assumed to follow
a mean-reverting process, enabling a more accurate expla-
nation of phenomena such as peaks and fat tails observed in
fnancial markets. Furthermore, this model allows for the
calibration of its parameters through options traded within
the market. Lin and Yang [6] and Zhang et al. [7], among
others, incorporated the Heston model into their in-
vestigation of DC pension schemes, exploring its optimal
investment problem and proposing an optimal investment-
consumption strategy.

Te classical model presented above is subject to certain
limitations. In the Heston model, risk asset prices and vol-
atilities are stochastic, with a complex conditional distribution
that poses signifcant challenges for solution. Te CEV model
in its current form fails to adequately incorporate multiple
factors and lacks the ability to promptly capture real-time
market dynamics, thus limiting its applicability in refecting
the most recent changes in fnancial markets. Te lag in
investment returns is inadequately captured.

In recent years, the diferential dynamics theory has been
applied by scholars (see [8–11]) to investigate various
economic issues. For example, the authors in [8–10] used the
time lag theory [12] to establish a business cycle model and
explore the laws of the business economy. Te stability
analysis of the competition model with two delays is pre-
sented in [11].Te inclusion of a time delay in the diferential
dynamics model not only alters the stability of the original
model but also induces oscillatory or periodic cyclic solu-
tions, making it more suitable for practical implementation
in commercial systems based on delay diferential equations.

Te pursuit of investment income serves as the impetus
driving investors to actively engage in projects, while the key
to realizing investment benefts lies in the efective supply of
project products to meet demand. According to the fow of
investment funds, these funds are allocated towards research
and development projects as well as commodity production
endeavors. Successful research and development projects are
utilized in the production of commodities, which are sub-
sequently supplied to meet market demand. Te value of
capital generally exhibits a gradual increase throughout its
fow. In the event of an unsuccessful investment, the value of
the currency will gradually depreciate throughout its cir-
culation. Similar to the spread of infectious diseases [13–17],
the number of infected individuals may increase, decrease,
or stabilize over time. Terefore, this paper employs the
theory of infectious disease dynamics to investigate the
dynamic model of continuous project investment renewal.

Te present study primarily contributes to the research
in two key aspects.

(1) Te diferential dynamics theory is employed to
investigate the dynamic changes of capital during the
investment process.

(2) Te temporal intervals required for research or
production are expressed with varying degrees of
latency.

It is worth noting that the conceptual framework
adopted in this paper diverges from that in [18]. While the
study [18] primarily examines the fow direction of funds,
our study places greater emphasis on analyzing shifts in
supply and demand dynamics. Tis approach aligns more
closely with the rational consumer’s perspective.

2. Model Construction and Its Basic Results

Tis article solely focuses on long-term operational projects
that necessitate consistent investment. Te investment
project is presumed to encompass four primary compo-
nents: funding, research and development (R&D), pro-
duction, and demand. To establish the mathematical model,
it is necessary to make the following assumptions for the
four components:

(1) Assuming F(t), R(t), P(t), and D(t) represent the
amount of funding, R&D, production, and demand
at time t, respectively.

(2) Te average research and development (R&D) du-
ration of the project is τ1, while the average pro-
duction time for the product is τ2.

(3) Te fund amount is subject to an upper limit, de-
termined by the input rate of F · (u − vF), and the
transfer rate to R&D is denoted as kF.

(4) Te rate of R&D consumption is denoted as aR,
while the transfer rate to production is represented
by mR.

(5) Te consumption rate of the production part is
denoted as bP, while the efective supply rate from
the production part to the demand part is repre-
sented by nPD.

(6) Te consumption rate of the demand component for
the product is denoted as cD.

Based on assumptions (1)–(6), a warehouse diagram can
be constructed to illustrate the relationships among fund,
R&D, production, and demand, as depicted in Figure 1.

Te diferential dynamicmodel presented in Figure 1 can
be derived as follows:

dF

dt
� F(t)(u − vF(t)) − kF(t),

dR

dt
� kF(t) − aR(t) − mR t − τ1( 􏼁,

dP

dt
� mR t − τ1( 􏼁 − bP(t) − nP t − τ2( 􏼁D(t),

dD

dt
� nP t − τ2( 􏼁D(t) − cD(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where u, v, k, m, n, a, b, c, τ1, τ2 are all positive.
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Te frst equation in model (1) is mathematically
equivalent to

F(t) � F(0) exp 􏽚
t

0
[u − k − vF(s)]dt􏼨 􏼩. (2)

Hence, if F(0)> 0, then it follows that F(t)> 0. Te same
conclusion can be drawn that if D(0)> 0, then D(t) > 0.

Remark 1. R(t) and P(t) can exhibit both negative and
positive values. When R(t) and P(t) exhibit negative values,
it indicates that the fund is insufcient to satisfy the demands
of both R&D as well as production activities. At present, it is
imperative to explore alternative funding sources (such as
acquiring loans) in order to compensate for the fnancial
defcit.

Note that

R
4
0 � (F, R, P, D) | F ∈ [0, +∞), R ∈ (− ∞, +∞), P ∈ (− ∞, +∞), D ∈ [0, +∞){ }. (3)

Tis paper exclusively examines model (1) only on R4
0. In

addition, it is assumed that model (1) satisfes the following
initial conditions:

F(t) � ϕ1(θ), R(t) � ϕ2(θ), P(t) � ϕ3(θ), D(t) � ϕ4(θ),

(4)

where (ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ)) ∈ C([− τ, 0], R4
0), ϕi(0)

> 0, τ � max τ1, τ2􏼈 􏼉, i � 1, 2, 3, 4. C([− τ, 0], R4
0) is the

Banach space of continuous functions mapping the interval
[− τ, 0] into R4

0.
According to the existence and uniqueness theorem

[19–22] of diferential equation solutions, model (1) has
a unique solution (F(t), R(t), P(t), D(t)) that satisfes the
initial conditions (4).

Te following conclusions can be obtained by solving the

equations

F(u − vF) − kF � 0,

kF − aR − mR � 0,

mR − bP − nPD � 0,

nPD − cD � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Model (1) has one zero-equilibrium point E0(0, 0, 0, 0).
If the following assumptions

H1: u − k> 0, H2: kmn(u − k) − bcv(a + m)> 0, (5)

hold on, there exists a unique positive equilibrium point
E∗(F∗, R∗, P∗, D∗), where

F
∗

�
u − k

v
,

R
∗

�
k(u − k)

v(a + m)
,

P
∗

�
c

n
,

D
∗

�
kmn(u − k) − bcv(a + m)

cnv(a + m)
.

(6)

In contrast to its representation in other disciplines
[23, 24], the equilibrium point E∗ in this paper represents
the steady-state values of capital, research and development,
production, and demand within an investment project. E0
denotes the absence of any project investment.

Theorem 2. When τ1 � τ2 � 0, all solutions of model (1)
with initial conditions F(0)> 0, R(0)> 0, P(0)> 0, D(0)> 0
are positive for all t≥ 0.

Proof. When τ1 � τ2 � 0, model (1) can be transformed into
the following equations:

dF

dt
� F(t)(u − vF(t)) − kF(t),

dR

dt
� kF(t) − aR(t) − mR(t),

dP

dt
� mR(t) − bP(t) − nP(t)D(t),

dD

dt
� nP(t)D(t) − cD(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Te frst equation of model (7) is equivalent to

F(t) � F(0) exp 􏽚
t

0
[u − k − vF(s)]ds􏼨 􏼩. (8)

Terefore, if F(0)> 0, then it follows that F(t)> 0.
Similarly, it can be proved that if D(0)> 0, D(t)> 0.

From the second equation of model (7), we can get

dR

dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌R�0
� kF> 0. (9)

Fund (F) kF mR

aR bP

cDF (u-vF)
R&D (R) Production (P) Demand (D)

nPD

Figure 1: Schematic representation of the process of capital appreciation.
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Terefore, if R(0)> 0 then it follows that R(t)> 0.
Similarly, it can be proved that if P(0)> 0, P(t)> 0. Tis
ends the proof. □

Theorem  . When τ1 � τ2 � 0, all feasible solutions of model
(7) with the initial conditions F(0)> 0, R(0)> 0, P(0)> 0,

D(0)> 0 are bounded and enter the region

Ωε � (F, R, P, D) ∈ R
4
+: F + R + P + D≤

u

v
+ ε,∀ε> 0􏼚 􏼛.

(10)

Proof. Defne a function

V(t) � F(t) + R(t) + P(t) + D(t), (11)

such that

dV

dt
� F(t)(u − vF(t)) − kF(t) − aR(t) − bP(t)

− cD(t)<F(t)(u − vF(t)).

(12)

According to the comparison principle [21], we can
obtain

lim sup
t⟶+∞

V(t)≤
u

v
. (13)

Tus, V(t)≤ (u/v) + ε, as t⟶ +∞. It implies that the
region

Ωε � (F, R, P, D) ∈ R
4
+: F + R + P + D≤

u

v
+ ε,∀ε> 0􏼚 􏼛,

(14)

is a positively invariant set of the model (7). Te proof is
completed.

Te characteristic equation of model (1) at the positive
equilibrium point E∗ is

J F
∗
, R
∗
, P
∗
, D
∗

( 􏼁 − λE
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

− vF
∗

− λ 0 0 0

k − a − me− λτ1 − λ 0 0

0 me− λτ1 − b − nD
∗
e

− λτ2 − λ − c

0 0 nD
∗
e

− λτ2 − λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (15)

Tat is

λ + vF
∗

( 􏼁 λ + a + me− λτ1􏼐 􏼑 λ2 + b + nD
∗
e

− λτ2􏼐 􏼑λ + ncD
∗
e

− λτ2􏽨 􏽩 � 0. (16)

□
Theorem 4

(1) When τ1 � τ2 � 0, if assumptionsH1, H2 hold on,

the positive equilibriumE∗ is locally asymptotically
stable.

(2) When τ1 � τ2 � 0 and u − k< 0, the zero-equilibrium
point E0 is locally asymptotically stable.

Proof

(1) When τ1 � τ2 � 0, equation (16) is transformed into

λ + vF
∗

( 􏼁(λ + a + m) λ2 + b + nD
∗

( 􏼁λ + ncD
∗

􏽨 􏽩 � 0.

(17)

Let λi(i � 1, 2, 3, 4) be roots of equation (17), it has

λ1 � − vF
∗ < 0, λ2 � − (α + m)< 0,

λ3 + λ4 � − b + nD
∗

( 􏼁< 0, λ3λ4 � ncD
∗ > 0.

(18)

Terefore, all roots of equation (17) have negative
real parts. According to the Hurwitz theorem
[12–14], it is well-established that the positive
equilibrium point E∗ exhibits local asymptotic sta-
bility when τ1 � τ2 � 0.

(2) When τ1 � τ2 � 0, the characteristic equation of
model (1) at the zero-equilibrium point E0 is

(u − k − λ)(a + m + λ)(b + λ)(c + λ) � 0. (19)

Te solutions to the above equation are as follows:

λ1 � u − k, λ2 � − (a + m), λ3 � − b, λ4 � − c. (20)
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Terefore, when u − k< 0, the zero-equilibrium point is
locally asymptotically stable.

Te proof is fnished. □

3. Existence and Local Stability of
Hopf Bifurcations

Theorem 5. If the assumptions τ1 > 0, τ2 � 0, H1, H2 and
H3: m − a> 0 hold, there exists τ10 > 0, which makes the
following conclusions true. Te model (1) is locally asymp-
totically stable at the positive equilibrium point E∗ when
τ1 ∈ [0, τ10) and unstable when τ1 > τ10. Model (1) undergoes
a Hopf bifurcation at E∗ when τ1 � τ10.

Proof. When τ1 > 0, τ2 � 0, the transformation of equation
(16) can be expressed as the following equation:

λ + vF
∗

( 􏼁 λ + a + me
− λτ1􏼐 􏼑 λ2 + b + nD

∗
( 􏼁λ + ncD

∗
􏽨 􏽩 � 0.

(21)

According to the proof process of Teorem 4, equation
(21) has three roots with negative real part, and the other
root that satisfes the following equation:

λ + a + me
− λτ1 � 0. (22)

Let λ � ω1i(ω1 > 0) be the solution of equation (22), then
the following form can be obtained:

ω1i + a + m cos ω1τ1( 􏼁 − i sin ω1τ1( 􏼁􏼂 􏼃 � 0. (23)

Separating the real and imaginary parts from the above
equation, we get

cos ω1τ1( 􏼁 � −
a

m
,

sin ω1τ1( 􏼁 �
ω1

m
.

(24)

It follows that ω1 satisfes

ω2
1 � m

2
− a

2
. (25)

If assumption H3 holds, the equation (26) has at least
one positive root ω10. By substituting ω10 into (25), we can
get

τ1l �
2nπ
ω10

+
1
ω10

arccos −
a

m
􏼒 􏼓, l � 0, 1, 2, · · · . (26)

Assume that τ10 is the smallest positive value in τ1l. Taking
the derivative of τ1 at both ends of equation (22), we can get

dλ
dτ1

􏼠 􏼡

− 1

�
e
λτ1

λm
−
τ1
λ

. (27)

Substituting λ � ω10 into the above formula, we can
obtain

Re
dλ
dτ1

􏼠 􏼡

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ1�τ10 ,λ�ω10i

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�
sin ω10τ10( 􏼁

mω10
�

1
m

2 > 0. (28)

According to the Hopf bifurcation theorem [12, 16–25],
Teorem 5 holds. Te proof is completed. □

Theorem 6. If the assumptions τ1 � 0, τ2 > 0, H1, H2, and
H4: 2bcv(a + m) − kmn(u − k)< 0 hold, there exists τ20 > 0,
which makes the following conclusion true. When
τ2 ∈ [0, τ20), the positive equilibrium point E∗ is locally
stable. When τ2 > τ20, E∗ lose stable, model (1) undergoes
a Hopf bifurcation when τ2 � τ20.

Proof. If τ1 � 0, τ2 > 0, equation (17) can be transformed
into

λ + vF
∗

( 􏼁(λ + a + m) λ2 + b + nD
∗
e

− λτ2􏼐 􏼑λ + ncD
∗
e

− λτ2􏽨 􏽩 � 0. (29)

It is easy to know that equation (29) has two negative real
roots, and the remaining two roots satisfy the following
equation:

λ2 + bλ + nD
∗
(λ + c)e

− λτ2 � 0. (30)

Let λ � ω2i(ω2 > 0) be the root of equation (30), it has

− ω2
2 + bω2i + nD

∗ ω2i + c( 􏼁 cos ω2τ2( 􏼁 − i sin ω2τ2( 􏼁􏼂 􏼃 � 0.

(31)

Separating the real and imaginary parts of the above
equation, then there is

− ω2
2 + cnD

∗ cos ω2τ2( 􏼁 + ω2nD
∗ sin ω2τ2( 􏼁 � 0,

bω2 + ω2nD
∗ cos ω2τ2( 􏼁 − cnD

∗ sin ω2τ2( 􏼁 � 0.

⎧⎨

⎩ (32)

By eliminating cos(wτ) and sin(wτ) from formula (32),
we can get

ω4
2 + b

2
− nD

∗
( 􏼁

2
􏽨 􏽩ω2

2 − cnD
∗

( 􏼁
2

� 0. (33)

Because assumption H4 holds

b
2

− nD
∗

( 􏼁
2

�
2bcv(a + m) − kmn(u − k)

cv(a + m)
· b + nD

∗
( 􏼁< 0. (34)

Furthermore, equation (33) has at least one positive root
ω20, substituting ω20 into equation (32), we get

τ2l �
2nπ
ω20

+
1
ω20

arccos
(c − b)ω2

20

nD
∗

c
2

+ ω2
20􏼐 􏼑

⎛⎝ ⎞⎠, l � 0, 1, 2, · · · .

(35)
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Assume that τ20 is the minimum positive value in
τ2l(l � 0, 1, 2, · · ·). Taking the derivative of λ with respect to
τ2 in equation (30), there is

Re
dλ
dτ2

􏼠 􏼡

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌λ�ω20i,τ2�τ20

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� Re

2
nD∗(λ + c)e− λτ2

+
b

nD∗λ(λ + c)e− λτ2
+

1
λ(λ + c)

−
τ2
λ

􏼢 􏼣
λ�ω20i,τ2�τ20

⎧⎨

⎩

⎫⎬

⎭

�
2

nD
∗ ·

c · cos τ20ω20( 􏼁 + ω20 · sin τ20ω20( 􏼁

c
2

+ ω2
20

+
b

nD
∗ ·

− ω20 · cos τ20ω20( 􏼁 + c · sin τ20ω20( 􏼁

ω20 ω2
20 + c

2
􏼐 􏼑

−
1

ω2
20 + c

2 .

(36)

Because λ � ω20i, τ2 � τ20 are the solutions of the fol-
lowing equation system (32):

c · cos ω20τ20( 􏼁 + ω2 · sin ω20τ20( 􏼁 �
ω2
20

nD
∗, − ω2 · cos ω2τ2( 􏼁 + c · sin ω2τ2( 􏼁 �

bω20

nD
∗ . (37)

Substituting the above formula into (36), we can obtain

Re
dλ
dτ2

􏼠 􏼡

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌λ�ω20i,τ2�τ20

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�
2ω2

20 + b
2

− nD
∗

( 􏼁
2

nD
∗

( 􏼁
2

c
2

+ ω2
20􏼐 􏼑

�
ω4
20 + cnD

∗
( 􏼁

2

ω2
20 nD

∗
( 􏼁

2
c
2

+ ω2
20􏼐 􏼑
> 0. (38)

Terefore, the conclusion of Teorem 5 holds. Tis ends
the proof.

According to the proof process of Teorems 5 and 6, in
conjunction with the characteristic equation (16), we es-
tablish the following conclusions. □

Theorem 7. If assumptions H1 − H4 hold on, when
τ1 ∈ (0, τ10) and τ2 ∈ (0, τ20), the positive equilibrium E∗ is
locally asymptotically stable; when τ1 ∈ (0, τ10), τ2 � τ20 or
τ1 � τ10, τ2 ∈ (0, τ20) or τ1 � τ10, τ2 � τ20, model (1) un-
dergoes a Hopf bifurcation. In other cases, E∗ loses stability.

4. Numerical Simulation

In order to validate the accuracy of the analytical conclusions
presented in Sections 2 and 3, this section primarily con-
ducts numerical simulations based on model (1). If the
parameters

u � 5, v � 1.5, k � 3, m � 1, n � 1.5, a � 0.9, b � 1, c � 0.6,

F(0) � 4, R(0) � 3, P(0) � 2, D(0) � 1.

(39)

In parameter group (39), with u � 2 and all other pa-
rameters held constant, the numerical simulation of model
(1) is presented in Figure 2. Te local asymptotic stability of
the zero-equilibrium point is demonstrated in Figure 2 when
τ1 � τ2 � 0 and u − k< 0.

According to the data in parameter group (39), the
verifcation of the establishment of H1 − H4 can be readily
accomplished. Te positive equilibrium point E∗ is

E
∗

� F
∗
, R
∗
, P
∗
, D
∗

( 􏼁 � (1.33, 11, 0.40, 2.84). (40)

Using the formulae (25), (26), (33), and (35), we get

ω10 � 0.44, τ10 � 6.17,ω20 � 178, τ20 � 0.41. (41)

When τ1 � 0, τ2 � 0, the numerical simulation of model
(1) is shown in Figure 3. Figure 3 demonstrates that for
τ1 � 0, τ2 � 0, the solution of model (1) exhibit not only
boundedness but also local asymptotic stability. Te con-
clusions of Teorems 2 and 3 are confrmed by the fndings
presented in Figure 3.

When τ1 � 21< τ10, τ2 � 0, the numerical simulation of
model (1) is shown in Figure 4.

In Figure 4, despite the initial high degree of fuctuation
in the moving point, its fuctuations gradually diminish and
stabilize over time, thus confrming the validity of Teorem
4’s conclusion.

Figures 3 and 4 confrm that the positive equilibrium
point of model (1) is locally asymptotically stable when
τ1 < τ10, τ2 � 0.

If τ1 � 6.17 � τ10, τ2 � 0, the model (1) exhibits periodic
solutions that exhibit fuctuations around a positive equi-
librium point. E∗, and its numerical simulation is shown in
Figure 5.
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Figure 5 shows that the model (1) has a cyclic periodic
solution. Specifcally, it induces the emergence of a Hopf
bifurcation at the positive equilibrium point. Te conclu-
sions of Teorem 5 are indirectly validated.

If τ1 � 0, τ2 � 0.38< τ20, E∗ is locally asymptotically
stable, and its numerical simulation is shown in Figure 6. If
τ1 � 0, τ2 � 0.41 � τ20, model (1) has periodic solutions, and
its numerical simulation is shown in Figure 7.

Te validity of Teorem 6 is confrmed by Figure 6.
Specifcally, for τ1 � 0 and τ2 < τ20, the positive equilibrium
point of model (1) exhibits local asymptotic stability. In the
case of τ1 � 0 and τ2 � τ20, model (1) still undergoes Hopf
bifurcation near the positive equilibrium point.
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Figure 2: When τ1 � 0, τ2 � 0 and u − k< 0, E0 is locally as-
ymptotically stable.
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Figure 3: When τ1 � 0, τ2 � 0, E∗ is locally asymptotically stable.
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Figure 4: When τ1 � 21, τ2 � 0, E∗ is asymptotically stable.
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Figure 5: When τ1 � 6.17, τ2 � 0, model (1) has a periodic
solution.
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Figure 6: When τ1 � 0, τ2 � 0.38, E∗ is locally asymptotically
stable.
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Figure 7: When τ1 � 0, τ2 � 0.41, model (1) has a periodic
solution.
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Figure 8: When τ1 � 3, τ2 � 0.36, model (1) has periodic solutions.
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If τ1 � 3< τ10 and τ2 � 0.36< τ20, the equilibrium point
E∗ is locally asymptotically stable, as demonstrated by nu-
merical simulation in Figure 8. However, if τ1 � 6.17 � τ10
and τ2 � 0.41 � τ20, model (1) undergoes a Hopf bifurcation,
as shown in Figure 9. Finally, when τ1 � 7> τ10 and
τ2 � 0.5> τ20, E∗ loses stability and its numerical simulation
is presented in Figure 10.

Figure 8 illustrates that the positive equilibrium point of
model (1) is locally asymptotically stable as long as τ1 < τ10
and τ2 < τ20. However, Figure 9 demonstrates that if τ1 � τ10
or τ2 � τ20, Hopf bifurcation will occur near the positive
equilibrium point in model (1). Moreover, Figure 10 in-
dicates that when either τ1 > τ10 or τ2 > τ20, the positive
equilibrium point of model (1) becomes unstable. Te
validity of Teorem 7 is confrmed.

As depicted in Figure 3, the investment process exhibits
minimal dynamic fuctuations when both the R&D cycle (τ1)
and the production cycle (τ2) are set to zero. It is evident
from Figures 3, 5, and 7 that the investment dynamics tend
to exhibit stability over time when both the R&D cycle τ1 and
the production cycle τ2 are less than their respective
thresholds of τ10 and τ20. Figures 4, 6, and 8 demonstrate
that when the R&D cycle (τ1 � τ10) or the production cycle
(τ2 � τ20), remain constant, cyclic fuctuations occur in the
R&D quantity, production quantity, and demand quantity
despite a consistent investment fund allocation. Figure 10
illustrates that as the R&D cycle τ1 exceeds τ10 and the
production cycle τ2 surpasses τ20, there will be an in-
creasingly volatile fuctuation in both production quantity
and demand quantity. Furthermore, it is evident that the

disparity in production funding will continue to widen,
ultimately resulting in investment failure. Likewise, in cases
where the R&D cycle τ1 exceeds τ10 or the production cycle
τ2 surpasses τ20, the investment will also prove unsuccessful.

Te aforementioned analysis demonstrates that the R&D
and production cycles exert a decisive infuence on the
dynamic trajectory of investment projects.

Subsequently, we will investigate the impact of param-
eter modifcations on the model through numerical simu-
lations. Te alteration of parameters has two primary
impacts on the model, specifcally, the impact on the
equilibrium point and the impact on the degree of oscillation
in the integral curve.

Furthermore, the fuctuation degree of the integral curve
is also infuenced by time delays τ1 and τ2. It is easy to know
that the oscillation amplitude and width of the integral curve
are positively correlated with τ1 and τ2, as depicted in
Figures 3–9.

Under the conditions of H1 − H2, with τ1 � τ2 � 0 and
an unchanged initial value, we examine the impact on model
(1), resulting from changes in parameter set (42).

In parameter group (42), the value of parameter u ranges
from 4 to 7 in increments of 0.5, and Figure 11 displays the
numerical simulation results of model (1) under this con-
dition while keeping other parameters constant. Te alter-
ations in the positive equilibrium point are presented in
Table 1.

As depicted in Figure 11, the length and width of the
amplitude remained relatively stable as u increased. How-
ever, signifcant changes have occurred in the equilibrium
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Figure 9: When τ1 � 6.17, τ2 � 0.41, model (1) has periodic solutions.

20 40 60 80 100 120 140 160 180 2000
t

-40

-20

0

20

40

60

F (t)
R (t)

P (t)
D (t)

Figure 10: When τ1 � 7, τ2 � 0.5, model (1) loses stability.
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Figure 11: Numerical simulation diagram of model (1), when τ1 � τ2 � 0, u � 4: 0.5: 7.

Table 1: As the value of u increases, E∗(F∗, R∗, P∗, D∗) are the corresponding values.

u 4 4.5 5 5.5 6 6.5 7
F∗ 0.67 1 1.33 1.67 2 2.33 2.67
R∗ 1.05 1.58 2.11 2.63 3.16 3.68 4.21
P∗ 0.40 0.40 0.40 0.40 0.40 0.40 0.40
D∗ 1.09 1.96 2.84 3.72 4.60 5.47 6.35
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point, as evidenced by the specifc value alterations pre-
sented in Table 1. It is easy to know that F∗, R∗, D∗ increase
with the increase of u, while the value of P∗ remains
the same.

Similarly, it can be observed that when the remaining
parameters are held constant and only one parameter is
incrementally adjusted, the shape of F(t), R(t), P(t), and
D(t) curves will remain relatively stable. However, the
equilibrium point E∗(F∗, R∗, P∗, D∗) undergoes changes
under various circumstances, as detailed in Table 2.

Te aforementioned analysis assumes that variations in
the parameters u, v, k, m, n, a, b, and c exert minimal in-
fuence on the fuctuations of the curves F(t), R(t), P(t),

and D(t). However, their impact on the equilibrium point is
substantial. Te magnitude of the delay in model (1) is
a determining factor for the level of volatility, ascertaining its
signifcance.

5. Properties of the Hopf Bifurcation

Based on the aforementioned analysis, it can be inferred that
model (1) experiences a Hopf bifurcation at E∗ when either
τ1 � τ10 or τ2 � τ20. Te normal form theory and the center
manifold theory [25, 26] are employed in this section to
investigate the properties of Hopf bifurcation for model (1)
at the positive equilibrium point E∗. Without loss of gen-
erality, this paper exclusively focuses on the branch direction
of Hopf bifurcation and the stability of the corresponding
periodic solution in model (1) when τ1 � τ10, τ2 ∈ [0, τ10].

Let t⟶ t/τ1, u1(t) � F(τ1t) − F∗, u2(t) � R(τ1t) − R∗,

u3(t) � P(τ1t) − P∗, u4(t) � D(τ1t) − D∗, τ1 � τ10 + μ, μ ∈
R, then model (1) can be transformed into

du1(t)

dt
� τ10 + μ( 􏼁 − vF

∗
u1(t) − vu

2
1(t)􏽨 􏽩,

du2(t)

dt
� τ10 + μ( 􏼁 ku1(t) − au2(t) − mu2(t − 1)􏼂 􏼃,

du3(t)

dt
� τ10 + μ( 􏼁 − bu3(t) − nP

∗
u4(t) − nD

∗
u3 t −

τ2
τ1

􏼠 􏼡 + mu2(t − 1) − nu3 t −
τ2
τ1

􏼠 􏼡u4(t)􏼢 􏼣,

du4(t)

dt
� τ10 + μ( 􏼁 nD

∗
u3 t −

τ2
τ1

􏼠 􏼡 + nu3 t −
τ2
τ1

􏼠 􏼡u4(t)􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

Since the calculation process described in this paper
closely follows that of article [18], only the essential cal-
culation formulae are presented herein.

Te following are the build functions:

L(μ, ϕ) � τ10 + μ( 􏼁 A0ϕ(0) + B0ϕ −
τ2
τ1

􏼠 􏼡 + C0ϕ(− 1)􏼠 􏼡,

F(μ, ϕ) � τ10 + μ( 􏼁

− vϕ21(0)

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Table 2: Te associations between equilibrium points (F∗, R∗, P∗, D∗) and incremental parameters.

u v k m n a b c

F∗ Increase Decrease Decrease Constant Constant Constant Constant Constant
R∗ Increase Decrease Nonmonotonicity Decrease Constant Decrease Constant Constant
P∗ Constant Constant Constant Constant Decrease Constant Constant Increase
D∗ Increase Decrease Nonmonotonicity Increase Increase Decrease Decrease Decrease
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A0 �

− vF
∗ 0 0 0

k − a 0 0
0 0 − b − nP

∗

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B0 �

0 0 0 0
0 0 0 0
0 0 − nD

∗ 0
0 0 nD

∗ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

C0 �

0 0 0 0
0 − m 0 0
0 m 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(43)

where ϕ � (ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ)) ∈ C([− 1, 0],R4).

Ten, equation (42) can be reformulated as the vector dif-
ferential equation [18, 27–29] _u(t) � Lμ(ut) + F(μ, ut).

Let q(θ) � (1, q1, q2, q3)
T exp(iω10τ10θ) be the eigen-

vector of A(0) corresponding to iω0 and q∗(s) � D0
(1, q∗1 , q∗2 , q∗3 )T exp (iω10τ10s) be the eigenvector of A∗(0)

corresponding to − iω10, then there are

A0 + B0 exp − iω10τ10( 􏼁 + C0 exp − iω10τ10( 􏼁 − iω10E0( 􏼁q(0) � (0, 0, 0, 0)
T
,

q
∗
(0)( 􏼁

T
A0 + B0 exp − iω10τ10( 􏼁 + C0 exp − iω10τ10( 􏼁 + iω10E0( 􏼁 � (0, 0, 0, 0),

(44)

where E0 is the identity matrix. By solving the above twomatrix equations, we can obtain

q1 �
k

a + m exp − iω10τ10( 􏼁 + iω10
, q2 �

a22m exp − iω10τ10( 􏼁

a11a22 − a12a21
q1, q3 � −

a21m exp − iω10τ10( 􏼁

a11a22 − a12a21
q1,

q
∗
1 �

vF
∗

− iω10

k
, q
∗
2 �

a + m exp − iω10τ10( 􏼁 − iω10

m exp − iω10τ10( 􏼁
q
∗
1 , q
∗
3 �

nP
∗

iω10
q
∗
2 ,

(45)

where

a11 � b + nD
∗ exp − iω10τ10( 􏼁 + iω10, a12 � nP

∗
, a21 � nD

∗ exp − iω10τ10( 􏼁, a22 � − iω10. (46)

Te essential formula [18] for calculation is presented as
follows:

g20 � − 2τ10Dv, g11 � − 2τ10Dv, g02 � − 2τ10Dv, g21 � − 2τ10Dv W
(1)
20 (0) + 2W

(1)
11 (0)􏼐 􏼑. (47)

In the expression of g21, it is necessary to calculate
W20(θ), W11(θ), θ ∈ [− 1, 0]. According to the calculation
process in references [18, 27–29],
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W20(θ) �
g20q(0)

− iω10τ10
exp iω10τ10θ( 􏼁 +

g20q(0)

− 3iω10τ10
exp − iω10τ10θ( 􏼁 + E1 exp 2iω10τ10θ( 􏼁,

W11(θ) �
g11q(0)

iω10τ10
exp iω10τ10θ( 􏼁 +

g11q(0)

− iω10τ10
exp − iω10τ10θ( 􏼁 + F1,

(48)

where

A0 + B0 + C0( 􏼁e
− 2iω10τ10 − 2iω10E0􏽨 􏽩E1 � − 2

− v

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A0 + B0 + C0( 􏼁F1 � −

− v

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

So, we get

E1 � 2

− vF∗ − 2iω10 0 0 0

k − a − me− 2iω10τ10 − 2iω10 0 0

0 me− 2iω10τ10 − b − nD∗e− 2iω10τ10 − 2iω10 − nP∗

0 0 nD∗e− 2iω10τ10 − 2iω10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1
v

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F1 �

− vF∗ 0 0 0

k − a − m 0 0

0 m − nD∗ − b − nP∗

0 0 nD∗ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1
v

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(50)

In summary, the key parameters g20, g11, g02, g21 can be
represented by the parameters in model (1). Ten the fol-
lowing parameters [18, 27–29] can be calculated:

c1(0) �
i

2m10τ10
g20g11 − 2 g11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

−
1
3

g02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓 +
g21

2
,

μ2 � −
Re c1(0)􏼈 􏼉

Re λ′ τ10( 􏼁􏼚 􏼛

, β2 � 2Re c1(0)􏼈 􏼉, T2 � −
Im c1(0)􏼈 􏼉 + μ2Im λ′ τ10( 􏼁􏼚 􏼛

m10τ10
.

(51)

Theorem 8. For model (1), if H1 − H4 hold, then

(1) if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is su-
percritical (subcritical).

(2) if β2 < 0 (β2 > 0), then the bifurcating periodic solu-
tions are stable (unstable).

(3) if T2 > 0 (T2 < 0), then the period of the bifurcating
periodic solutions increases (decreases).

6. Conclusions

Tis paper presented a practical diferential dynamics model
with two hysteresis based on the direction of investment
fund fows and value growth processes. Te analysis of the
model yielded several conclusions.

(1) Te realization of investment profts is contingent
upon the efective supply of products tomeet demand.
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(2) Te duration of research and development (R&D)
as well as production signifcantly infuenced the
outcome of investments, potentially leading to
either success or failure. To ensure successful in-
vestment, it was imperative to rigorously control
the maximum time allocated for R&D and
production.

(3) When cyclic dynamics occurred in R&D, pro-
duction, or demand quantities, it may indicate
a potential investment failure. Terefore, shortening
the R&D and production time was necessary.

However, the research method used in this study has
certain limitations, mainly due to its reliance on theoretical
construction and model analysis. For example, the coefcients
within the model have not yet been determined based on
empirical data, and further exploration is needed to control the
parameters within a more favorable range. Te future research
direction involves designing or applying algorithms for pa-
rameter estimation, while further investigation is needed to
explore how to achieve parameter control in this paper.
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