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Abstract

We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein

assembly prediction challenge. The Round offered 37 targets, including 14 homodi-

mers, 3 homo-trimers, 13 heterodimers including 3 antibody–antigen complexes, and

7 large assemblies. On average �70 CASP and CAPRI predictor groups, including

more than 20 automatics servers, submitted models for each target. A total of

21 941 models submitted by these groups and by 15 CAPRI scorer groups were eval-

uated using the CAPRI model quality measures and the DockQ score consolidating

these measures. The prediction performance was quantified by a weighted score

based on the number of models of acceptable quality or higher submitted by each

group among their five best models. Results show substantial progress achieved

across a significant fraction of the 60+ participating groups. High-quality models

were produced for about 40% of the targets compared to 8% two years earlier. This

remarkable improvement is due to the wide use of the AlphaFold2 and

AlphaFold2-Multimer software and the confidence metrics they provide. Notably,

expanded sampling of candidate solutions by manipulating these deep learning infer-

ence engines, enriching multiple sequence alignments, or integration of advanced

modeling tools, enabled top performing groups to exceed the performance of a stan-

dard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, perfor-

mance remained poor for complexes with antibodies and nanobodies, where

evolutionary relationships between the binding partners are lacking, and for com-

plexes featuring conformational flexibility, clearly indicating that the prediction of

protein complexes remains a challenging problem.

K E YWORD S

AlphaFold, blind prediction, CAPRI, CASP, deep learning, protein assemblies, protein complexes,

protein-protein interaction
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1 | INTRODUCTION

Protein–protein interactions and multi-protein assemblies, which

often include other macromolecular components such as DNA or

RNA, play crucial roles in cellular processes1 and their disruption

or deregulation often cause disease.2,3 Characterizing these interac-

tions and elucidating their functions at the molecular and cellular

levels have therefore been important goals in molecular biology and

medicine.

Of critical importance to these endeavors are atomic-resolution

3D structures of these assemblies. These structures are produced by

experimental techniques such as x-ray crystallography, and more

recently by cryo-electron microscopy (cryo-EM), with the resulting

structural models deposited into the worldwide Protein Data Bank

(wwPDB).4 Unfortunately, however, little or no structural information

is available for most of the protein complexes that form in the cell or

that can be characterized by modern proteomics and other methods.

The recent spectacular technical advances in single-molecule

cryo-EM techniques, specifically geared at determining the structure

of large macromolecular assemblies at atomic resolution5,6 should

enable to narrow this gap. An increasingly important role in the efforts

to populate the uncharted landscape of protein complexes has also

been played by computational methods for predicting the structure of

these complexes. The last two decades have witnessed a steady pro-

gress of these methods. These methods include increasingly efficient

ab-initio docking algorithms,7,8 which build atomic resolution models

of a protein complex taking as input the amino acid sequence of the

protein components, or template-based methods that model

the structure of a target complex using as template the known struc-

ture of a complex between related proteins.9,10 Data-driven docking

procedures that integrate data from various sources to guide the

docking algorithms have also been popular.11 These developments

have been greatly facilitated by the continued success of structural

biology in enriching the structural repertoire of individual proteins—

the building blocks of larger assemblies—and the explosion of the

number of available protein sequences.

Further enrichment of this repertoire was enabled by increasingly

powerful methods for predicting the 3D structure of single protein

chains from sequence information alone, commonly referred to as ab-

initio modeling, which exploit multiple sequence alignments of related

proteins to predict residue-residues contacts crucial to defining the

protein fold.12–14 More recently these methods have greatly benefit-

ted from the incorporation of Artificial Intelligence (AI) Deep Learning

(DL) techniques,15,16 culminating in the phenomenal success of Alpha-

Fold2 (AF2), the DL algorithm developed by Google DeepMind,17 in

predicting the atomic structure of single protein chains in the CASP14

blind prediction challenge,18 the 14th prediction season of CASP

(Critical Assessment of Structure Prediction)19; and this to an accuracy

comparable with experimental methods. This achievement has been a

game changer with immense repercussions across the fields of com-

putational and experimental structural biology.20,21 The software of

these algorithms was made freely available to the public22 (https://

github.com/deepmind/alphafold) setting the stage for rapid further

developments.23 Additionally, DeepMind has partnered with the

European Bioinformatics Institute (EBI) to create AlphaFold-DB,24

offering open access to over 200 million protein structures predicted

by AlphaFold, providing broad coverage of UniProt.25

The vast increase in high accuracy coverage of protein 3D struc-

ture space is already having a major impact in many areas of scientific

research, including elucidating aspects of evolutionary relationships

and protein function,26 identifying of potential drug targets27 and

greatly aiding experimental structure determination.28 However, AF2

as designed, and hence also AlphaFold-DB, provide no information on

the dynamic properties of proteins nor on the alternative conforma-

tions that proteins sample to carry out their function.29 Information is

also lacking on functionally important bound small molecule ligands,

and of special relevance here, no information is provided on the oligo-

meric structure of proteins, where two or more proteins form com-

plexes, often including other macromolecular components such as

RNA and DNA.

An obvious next frontier for DL-based protein structure predic-

tion methods is the accurate prediction of complexes and larger pro-

tein assemblies.30,31 Indeed, during the 18 months period following

CASP14, a wave of benchmarking studies suggested that extensions

of DL-based methods to the prediction of protein complexes will pro-

vide a major advance over traditional docking methods. For example,

AF2 was reported to successfully model the structure of a set of pro-

tein complexes of known stoichiometry, albeit not consistently to high

accuracy, by feeding it the concatenated sequences of the interacting

component proteins.32 Better performance, albeit still not reaching

the high model accuracy obtained for single chain proteins, was

achieved for AlphaFold2-Multimer (AF2-M), the more recent infer-

ence engine of AlphaFold, directly trained on protein complexes from

the PDB.33 Approaches have also been proposed to integrate AF2

predictions of complexes with classical docking calculations and using

the predicted complexes as templates for AF2 to significantly improve

the performance of either method used independently.34 Building

toward the CASP15 conference held beginning of December of 2022,

the key question has been how these game changing developments

will impact the modeling of protein complexes. More specifically, the

extent to which the power of AlphaFold and other DL-based predic-

tion methods, such as RoseTTAFold,35 will be harnessed by the com-

munity to produce a major leap in performance over more classical

modeling approaches in the context of blind predictions.

Here we present the evaluation of the results obtained in the

CASP15-CAPRI prediction season, the 5th joint assembly prediction

experiment of CASP and CAPRI held in the summer of 2022, repre-

senting Round 54 of CAPRI. CAPRI (Critical Assessment of PRedicted

Interactions) (https://www.ebi.ac.uk/pdbe/complex-pred/capri/;

http://www.capri-docking.org/) is a community-wide initiative

inspired by CASP. Established in 2001, CAPRI has offered computa-

tional biologists the opportunity to test their algorithms in blind pre-

dictions of unpublished experimentally determined 3D structures of

protein complexes, the “targets,” on a rolling basis several times a

year. Whereas CASP has been very instrumental in stimulating the

field of protein structure prediction, CAPRI has contributed to
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advancing the field of modeling protein assemblies. Initially focusing

on testing procedures for predicting protein–protein complexes,

CAPRI is currently also dealing with protein-peptide, protein-nucleic

acids, and protein-oligosaccharide complexes. In addition, CAPRI has

organized challenges to evaluate computational methods for estimat-

ing binding affinity of protein–protein complexes36,37 and predicting

the positions of water molecules at the interfaces of protein

complexes.38

Motivated by the growing need of better integration of methods

for the prediction of protein 3D structures with those of modeling

protein assemblies, closer ties have been established between the

CASP and CAPRI communities by running joint CASP-CAPRI assembly

prediction experiments. Four such experiments were conducted in the

summers of 2014, 2016, 2018, and 2020, respectively, with results

presented at the CASP11, CASP12, CASP13, CASP14 meetings and

published in 4 special issues of Proteins.30,39–42

CAPRI Round 54 included the prediction experiments run jointly

with CASP as well as scoring experiments, uniquely offered by CAPRI,

where participants are invited to identify the correct association

modes from an ensemble of anonymized predicted complexes gener-

ated during the assembly prediction experiment.43,44 This Round

offered 37 targets, totaling 38 assessment units (AUs; an assessment

unit is the portion of a more complex target for which models were

evaluated independently). This is nearly twice the number of targets

than in the CASP14-CAPRI challenge. The 37 targets included

14 homodimers, 3 homo trimers, 13 hetero dimers including 3 anti-

body–antigen complexes, and 7 large assemblies, 2 of which were

split into 2 evaluation units each. Expecting predictors to have ready

access to the AF2, AF2-M, and AlphaFold-DB, we assumed that many

more of the targets offered by CASP would represent tractable

modeling problems that depend less on template availability. Nearly

all but four of the CASP assembly targets were therefore offered in

this Round. The four refused targets were low resolution structures or

raised doubts as to their reported stoichiometry.

All submitted models were evaluated using quality measures

agreed upon by the CAPRI community.42–44 A separate evaluation of

the CASP15 assembly prediction performance, reported at the CASP15

meeting and in this Special Issue [paper by Özden & Karaca, this issue],

was performed by the CASP assembly assessment team in collabora-

tion with the CASP prediction center. As in previous joint prediction

experiments, the CASP and CAPRI assessment teams closely collabo-

rated in defining the prediction problem for complex targets, discussing

evaluation strategies, and comparing assessment results.

A significantly larger number of CASP groups participated in the

CASP15 assembly prediction challenge—between 40 and 58 groups,

depending on the target—than in previous challenges, reflecting the

keen interest of the community in the prediction of protein com-

plexes. Therefore, to obtain a more complete picture of the impact of

deep learning methods on the predictions results across the commu-

nity, the CAPRI model quality measures were used to evaluate the

models submitted by both CASP and CAPRI participants for

the Round 54 targets and to rank the prediction performance. This

consolidated assessment is presented and discussed.

2 | THE TARGETS

The 37 targets of Round 54 were grouped into five categories (I-V)

based on the type of their interfaces and association mode (Figure 1).

These targets included proteins from bacteria (�34%), Eukaryotes

(human, mouse) (�30%), viruses (26%) and plant or fungi (9%). Essen-

tial details about the 37 targets, including kingdom, UniProt ID, pro-

tein size, interface area, and protein name(s) are listed in Table 1.

Further details about the targets can be found in the Table S5.

In past Rounds (including CASP-CAPRI challenges) the target dif-

ficulty level could be assessed quite reliably based on the availability

and quality of templates. Often, specific properties of the target struc-

ture, such as interface size or extent of protein flexibility also provided

useful tips. In this Round, ready access by the community to the

AlphaFold software and AlphaFold-DB had a significantly impact on

the prediction performance as will be shown in the present

evaluation.

In the following, we present the characteristics of the 37 target

structures. We describe the considerations that helped assess their

difficulty level and mention examples where the wide use of the AF2

tools appeared to impact this assessment.

2.1 | Category I: Homomeric targets with one
interface (A2) and no intertwining: T198, T201, T211,
T225, T226, T229

The 6 targets in this category represent symmetric homodimers form-

ing one binding interface each.

As seen from Table 1, the size of the proteins in these targets

ranges from 102 (T201/T1132) to 306 (T225/T1178) residues, and

the area buried in the interface (BSA, for Buried Surface Area) ranges

from 550 Å2 (T211/T1153) to 3715 Å2 (T225/T1178). These targets

comprised 3 viral proteins (T198/T1123, T225/T1178, T226/T1179),

a protein from bacteria (T201/T1132), a human protein (T211/

T1153), and one plant protein (T229/T1187). Two of the viral pro-

teins, (T225/T1178, T226/T1179) were unannotated.

Based on template availability alone, T198/T1123, T201/T1132,

and T229/T1187 were expected to be easy prediction problems,

whereas T211/T1153, T225/T1178, and T226/T1179 were predicted

to be difficult targets. For example, only a distantly related template

(seq-id 15% of the structured portion; rmsd 3.85 Å) was available for

T211/T1153, the Endonuclease/exonuclease/phosphatase family

domain-containing protein1 dimer. Furthermore, its interface involves

two loops forming a small interface (BSA 550 Å2) mediating interactions

through the association of 2 tryptophane residues (see Figure 2A). Yet

this homodimer was rather well predicted (see Section 5), owing mainly

to the widespread use of the new DL-based prediction methods. On

the other hand, T198/T1123, the viral capsid polyprotein VP90, fea-

tures a sizable interface (BSA 1570 Å2). It had a template available for

the full homodimer (albeit differing from the target dimer by 7.9 Å

rmsd). In addition, a good quality model was predicted for the monomer

by AF2 (standard version run by the assessment team), equivalent to

LENSINK ET AL. 1661
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F IGURE 1 Legend on next page.
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having an excellent monomeric template (Figure 2B). Nonetheless, the

prediction performance for this homodimer was poor.

2.2 | Category II: Homomeric targets with one
interface (A2/A3) and intertwining: T192-T194, T197,
T199, T213, T214, T222-T224, T227

The 11 targets in this category comprise eight symmetric homodimers

and three homotrimers, all featuring one unique interface displaying some

degree of intertwining (residues from one subunit reaching out to interact

with the neighboring subunit45). Proteins in these homodimers range in

size from 48 residues (T213/T1160, T214/T1161, two designed proteins)

to 381 residues (T197/T1121), and the areas buried in their interfaces

range from 1080 Å2 (T213/T1160, one of the designed proteins) to

5700 Å2 (T224/T1176). Due to various degrees of intertwining a total of

five of the homodimers bury an area of more than 2000 Å2 each.

The homodimers comprise 4 bacterial proteins (T192/T1109,

T193/T1110, T197/T1121, T224/T1176), one viral protein (T194/

T1113), one plant protein, and the two designed proteins mentioned

above. The three homotrimers comprise two bacterial proteins (T222/

T1173, T223/T1174) and one viral protein (T227/T1181). These pro-

teins range in size from 204 residues (T222/T1173) to 688 residues

(T227/T1181) and feature interfaces areas ranging from 2015 Å2

(T222/T1173) to 5715 Å2 (T223/T1174).

Based on template availability and on the quality of models pre-

dicted by AF2 and AF2-M (standard versions run by the assessment

team), four of the homodimer targets (T192/T1109, T193/T1110,

T194/T1113, T199/T1127) were expected to be easy targets. This

expectation was supported by a good prediction performance across

groups (see Section 5).

The other seven targets of this category (T197/T1121, T213/

T1160, T214/T1161, T222/T1173, T223/T1174, T224/T1176,

T227/T1181) were expected to be difficult targets based mainly on

the specific properties of the corresponding structures. The difficulty

of T197/T1121, T222/T1173, T223/T1174, and T227/T1181 was

inferred from the presence in the proteins of two or more structural

domains connected by flexible linkers (see example in Figure 2C). For

T224/T1176, the difficulty appeared to reside in the significant inter-

twining in this complex. Yet, T222/T1173, the bacterial cell wall

anchor family protein, and T227/T1181, the tail fiber viral protein,

were rather well predicted (see Section 5) and may therefore be clas-

sified as easy targets. On the other hand, only incorrect models were

produced for the intertwined complex of T224/T1176.

For the two small, designed proteins produced by ancestral

reconstruction (T213/T1160, T214/T1161) (Figure 2D), the predic-

tion difficulty was suggested by the presence of an unstructured

C-terminal segment and a small interface, more prominent in T213/

T1160 than T214/T1161, in agreement with the overall poor trends

in the prediction performance.

2.3 | Category III: Heteromeric targets with one
interface (A1/B1): T191, T200, T202, T210, T212

The 5 targets in this category are heterodimers involving the interac-

tion of proteins whose size ranges from 112 to 1029 residues. The

three dimers (T200/H1129, T202/H1134, T212/H1157) of the larger

proteins also form sizable interfaces (�2000 Å2), whereas the two

dimers of the smaller proteins (T191/H1106, T210/H1151) display

smaller interfaces (respectively 1440 and 740 Å2).

For T200/H1129 and T210/H1151, respectively composed of

proteins from bacteria and a bacterial virus, the availability of excel-

lent quality models for the independent subunits (templates and an

AF2 predicted structure) defined these complexes as easy targets, a

definition upheld by the good prediction performance (see Section 5).

The other two complexes from bacteria (T191/H1106 and T202/

H1134), and T212/H1157, the complex from T. thermophila, were

expected to be difficult targets. T191/H1106, the YscX/YscY complex

(of the Yop proteins translocation protein and Chaperone protein),

appeared to be difficult because the YscX component was not well

structured (Figure 3A). T202/H1134, a complex between an ankyrin

repeat domain-containing protein and phospholipase, had only poor

templates available for the component proteins. In T212/H1157, the

complex of alpha-1,2-mannosidase with the protein disulphide-

isomerase, the prediction problem appeared to be difficult due to the

presence of four domains in the larger alpha-1,2-mannosidase, with

only three of the domains contributing to the binding interface

(Figure 3B). Of these three targets, T191/H1106 and T202/H1134

were nevertheless very well predicted by many groups (see Section 5),

whereas the prediction results were poorer for T212/H1157.

Thus, examples of targets in categories I-III suggest that with the

wide use of AF2 tools, the lack of adequate templates may no longer

be a reliable criterion for evaluating target difficulty, whereas certain

specific properties of the target structure, such as the presence of mul-

tiple domains separated by flexible linkers, may be an effective signal.

2.4 | Category IV: Heteromeric Ab and Nb
complexes with one interfaces (A1/B1 or A/HL):
T205-T209, T216-T218

These eight heterodimer targets were grouped in a category of their

own because they involve the interactions of a protein epitope

F IGURE 1 Pictorial representation of the targets of Round 54. The 37 targets of this prediction Round are grouped into five categories:
(A) Homodimers without intertwining, (B) homodimers and homotrimers with intertwining, (C) heterodimers of which a special category are
complexes with nanobodies (Nb) and antibodies (Ab, consisting of a heavy (H) and light (L) chain) (D), and (E) large homomeric and heteromeric
assemblies. The targets are annotated with their CAPRI and CASP ID's. Note that T192/T1109 strictly speaking belongs to group (A), but it is only
a point mutation away from T193/T1110, which shows intertwining, and was therefore assigned to group (B).
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TABLE 1 Target details.

Targets with one interface (A2) and no intertwining

CAPRI / CASP ID Kingdom(a): UniProt Size BSA(b) Name

T198 / T1123 V: B6UYJ1 266 1570 Capsid polyprotein VP90

T201 / T1132 B: A0A072ZNL3 102 1125 Antibiotic biosynthesis monooxygenase

T211 / T1153 E: Q7L9B9 299 550 Endonuclease/exonuclease/phosphatase family domain-

containing protein 1

T225 / T1178 V: Unannotated 306 3715

T226 / T1179 V: Unannotated 261 1830

T229 / T1187 E: Q94EW1 166 935 Nictaba

Targets with one interface (A2/A3) and intertwining

T192 / T1109 B: Q8XYF6(D180A) 227 2100 Putative transcription regulator protein

T193 / T1110 B: Q8XYF6 227 2265 Putative transcription regulator protein

T194 / T1113 V: A0A4D6BFJ2 193 2750 Uncharacterized protein

T197 / T1121 B: A0A0H2ZM47 381 1420 DUF3322 and DUF2220 domain-containing protein

T199 / T1127 E: Q9ZV05 211 3355 L-ornithine N5-acetyltransferase NATA1

T213 / T1160 Designed 48 1080

T214 / T1161 Designed 48 1845

T222 / T1173 B: Q6MNC5 204 2015 Cell wall surface anchor family protein

T223 / T1174 B: Q6ML84 338 5715 Uncharacterized protein

T224 / T1176 B: Unannotated 170 5700 Hypothetical protein

T227 / T1181 V: G0XNW6 688 4940 Tail fiber protein

Hetero-targets with one interface (A1B1)

T191 / H1106 B: P0C2N4,P61417 122 114 1440 Yop proteins translocation protein; Chaperone protein

T200 / H1129 V: P06971 747 2040 Ferrichrome outer membrane transporter/phage receptor

P23207 640 Receptor-binding protein pb5

T202 / H1134 B: A0A0H3CKN4 230 2000 Ankyrin repeat domain-containing protein

A0A0M7ENE2 313 Phospholipase

T210 / H1151 B: P9WGI1 112 740 RNA polymerase sigma factor SigA

P9WF37 116 Probably transcriptional regulator WhiB6

T212 / H1157 E: G0SCX7,G0SGS2 1029,495 2250 Alpha-1,2-mannosidase; Protein disulphide-isomerase

Targets with one interface (A1B1 or A:HL): nanobodies and antibodies

E: P16330 219 20 ,30-cyclic-nucleotide 30-phosphodiesterase

T205 / H1140 E: Nanobody 132 775 Nb

T206 / H1141 E: Nanobody 217 925 Nb7e

T207 / H1142 E: Nanobody 128 585 Nb8c

T208 / H1143 E: Nanobody 131 770 Nb10e

T209 / H1144 E: Nanobody 122 895 Nb8d

V: P0DTC9 130 Coronavirus nucleocapsid

T216 / H1166 E: Human Antibody 216 231 1690 S24-188 Fab

T217 / H1167 E: Human Antibody 212 218 1600 S24-188 Fab

T218 / H1168 E: Human Antibody 215 222 1820 S24-188 Fab

Large assemblies

T195 / T1115 E: P27105 288 3350 Stomatin

T203 / H1135 E: O94901 195 550–1100 SUN domain-containing protein 1

Q12912 25 Inositol 1,4,5-triphosphate receptor associated 2

T204 / H1137 Unannotated 266–653 750–6500

T219 / T1170 B: Q5M2B1 318 1900 RuvB
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TABLE 1 (Continued)

Targets with one interface (A2) and no intertwining

CAPRI / CASP ID Kingdom(a): UniProt Size BSA(b) Name

T220 / T1171 B: Q5M2B1,P66746 318,48 1900,680 RuvB; RuvA

T221 / T1172 B: Q5M2B1,P66746 318,48 1900,640 RuvB; RuvA

T230 / T1192 E: P43351 418 2225 DNA repair protein RAD52 homolog

Note: The Table shows the 37 targets of Round 54 grouped by target category. Listed are target ID's (CASP and CAPRI), the kingdom of the organism and

UniProt ID if available, the size of the target in terms of sequence length (Size) and buried surface area (BSA/Å2), and the name of the protein(s). For

further details about the targets see Table S5.
aBacteria, eukaryotes, viruses.
bBuried surface area.

F IGURE 2 Examples of challenging homomeric targets with and without intertwining. (A) Association mode of T211/T1153, afforded by the
Trp (orange)-rich loops (red). (B) T197/T1121 monomer (cyan) and AF2 model (salmon), illustrating how the flexibility of the loop connecting the
two domains affected the AF2-M prediction results. (C) The T198/T1123 monomer (cyan) and AF2 model (salmon), illustrating how the flexibility
of several loops affects the prediction results, here AF2. (D) Dimeric structures of the ancient protein reconstructions of T213/T1160 (left,
yellow) and T214/T1161 (right, salmon), illustrating the changes in the interface between the subunits.

F IGURE 3 Examples of challenging heteromeric targets. (A) AF2 model of the less well-structured YscX component of T191/H1106. (B) AF2
model of the PDI1P component of T212/H1157. Color coding of A and B identical to the one used by AlphaFold_DB. (C) The nanobody
(Nb) binding modes to the CNPase (red) in targets T205/H1140 (green), T206/H1141 (cyan), T207/H1142 (magenta), T208/H1143 (yellow), and
T209/H1144 (salmon). (D) The antibody (Ab, red and orange) binding modes to the SARS-CoV-2 nuclear capsid protein of targets T216/H1166
(green), T217/H1167 (cyan), T218/H1168 (magenta).
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(Ag) with an antibody, or with a nanobody (Nb). Nbs are the recombi-

nant variable domains of heavy-chain-only antibodies, with many

unique properties, that have become an important tool in structural

biology as well for the diagnosis and therapy of diseases.46 Deep

learning methods such as AF2 confer limited advantage for the predic-

tion of these complexes because evolutionary relationships are not

expected to prevail between the binding partners, hence limiting the

choices to more classical ab-initio docking methods or template-based

modeling. This was borne out by the prediction results for these tar-

gets (see Section 5).

T205-T209 represent the complexes of 20 ,30-cyclic-nucleotide 30-

phosphodiesterase protein with 5 different Nbs, binding to different

regions of the protein (Figure 3C). The protein is of medium size

(129 residues) and the bound Nbs are smaller (122-132 residues). The

interaction interfaces formed in the five complexes are rather limited

(�600–900 Å2). Of these five targets only T208/H1143 was well pre-

dicted because a template with the correct binding mode was avail-

able (see Section 5).

The prediction results were significantly poorer for T216-T218,

the complexes of the S24-188 Fab antibodies (�450 residues in the

heavy and light chain) bound to somewhat different regions of

the SARS-COV-2 nucleoprotein (130 residues), although these com-

plexes form respectable size interfaces (�1600–1800 Å2; Figure 3D).

Mostly acceptable and medium-quality models were predicted only

for T218/H1168, for which a template featuring the correct binding

mode was available, whereas only incorrect models were obtained for

T216/H1166 and T217/H1167.

2.5 | Category V: Large assemblies: T195, T203,
T204, T219-T221, T230

These seven targets represented large multi-subunit homomeric and

heteromeric assemblies, often forming multiple interfaces and display-

ing higher-order symmetry. Solved by cryo-EM to high resolution,

these large complexes represent challenging prediction problems,

even with the help of AF2.

T195/T1115 is a 16-mer complex of stomatin (248 residues), fea-

turing a large primary interface (3350 Å2), and a secondary minor

interface (250 Å2) which was not evaluated. This target was expected

to be of medium difficulty because a reasonable quality template

(2.4 Å rmsd) was available for the individual subunit, forming however

a larger assembly (24-mer).

T203/H1135: This assembly is composed of a trimer of the

human SUN1 protein that binds a small peptide (IRAG2) forming an

A3B1 complex. This complex forms a larger trimer with stoichiometry

(A3B1)3 (Figure 4). A reasonable quality template (3.93 Å rmsd) was

available for the A3B1 timer, including the bound peptide (interfaces

1-3). The corresponding interfaces were therefore expected to repre-

sent an easy prediction problem and grouped into one assessment

unit (AU) (sub-complex) (AU203.1). However, prediction performance

showed that the A3B1 trimers were difficult to model accurately. To

accommodate the interactions with the other copies of the trimer the

individual SUN1 subunits adopted three somewhat different confor-

mations, two of which differed from the conformation in the single tri-

mer of the template. Some of these conformational changes were also

necessary to accommodate the bound peptide that is somewhat lon-

ger than in template. No templates were available for the inter-trimer

weaker unique binding mode (500 Å2). The corresponding interface

(interface 4) was therefore expected to be difficult to predict and

formed the second assessment unit for this target (see Figure 4 for

details).

T204/H1137: This target is a large multi-component system com-

prising an ABC transporter and a MlaD hexamer extending into 6 long

alpha helices that form a flexible tube-like structure (see Figure 5).

Considering the tube formation and TM domain assembly (ABC trans-

porter and MlaD hexamer) as two distinct modeling problems, this

complex was subdivided into two assessment units (AU) for which

models were evaluated independently. The first AU (AU204.1)

included the interfaces formed by neighboring chains in the tube-like

structure (together taken as interface 1, each burying �6000 A2 sur-

face area), as well as the C-terminal domain composed of non-

neighboring tube chains (interface 2; 2750 A2). Both were expected

to be difficult modeling problems due to poor template availability

and the flexible nature of the structure. The second AU (AU 204.2) on

the other hand, comprising the transmembrane domain formed by an

ABC transporter and MlaD hexamer, represented the easier modeling

problem, as their internal organization is well known. AU204.2

included the TM heterodimer (interface 3; 2250 A2), the ABC homodi-

mer (interface 6; 1500 A2), the MlaD hexamer interface (interface 8;

1000 A2), and the inter-domain interfaces between TM/MlaD (inter-

face 4 and 5; 1500 and 750 A2) and TM/ABC (interface 7; 750 A2).

T219/T1170, T220/H1171, and T221/H1172: These targets are

3 different solved structures of a similar modeling problem. At the

basis lies the assembly of 6 RuvB molecules (318 residues) into a hex-

amer. The hexamer is organized around a 15 bp dsDNA fragment,

which was not included in the modeling problem. The RuvB hexamer

can accommodate zero (T219/T1170), one (T220/H1171), or two

(T221/H1172) RuvA molecules (49 residues) (Figure 6). The hexamer

forms a pore loosely accommodating the dsDNA fragment. Neighbor-

ing subunits closer to the dsDNA (A, B, C) make tighter contacts,

whereas subunits further away from the dsDNA (D, E, F) engage in

looser contacts and display higher flexibility. These more distant sub-

units bind one or two RuvA molecules, thereby losing flexibility at

their binding site. These three complexes taken together are subdi-

vided into two distinct AUs: AU219 and AU220. AU219 represents

the apo-hexamer and comprises three unique interfaces, each display-

ing very similar characteristics in terms of residue-residue contacts

across all three structures. Interface 1 comprises the similar interfaces

between subunits AB and BC, interface 2 comprises the interfaces AF

and CD, whereas interface 3, comprises interfaces DE and EF (see

Figure 6). AU220 represents the RuvB:RuvA complex, and comprises

interface 4, which groups the similar RuvB/RuvA interfaces in T220

and T221.

T230/T1192 is a decamer of the human DNA repair protein

RAD52 homolog (418 residues) solved by cryo-EM to high resolution,
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with only 177 residues resolved in the best monomer unit, and

177/171 residues for the best pair. It featured a unique extensive

interface (2225 Å2) and had several excellent templates available

(rmsd <1 Å, and seq-id �44%) and was therefore expected to be an

easy target, as also supported by the prediction performance.

Thus, the difficulty level of these large assembly targets was

mostly determined by the availability and quality of templates, with

good quality templates (for the independent subunits, or even better,

for the full complex) making for easier prediction problems. Excep-

tions occurred for several of the targets displaying higher flexibility of

the protein chains, which also led to looser packing of some of the

binding interface, or by the requirement to model conformational

changes, all of which contributed to a reduced prediction performance

and increased target difficulty.

3 | OVERVIEW OF THE PREDICTION
EXPERIMENT

As in previous CASP-CAPRI challenges and in standard CAPRI

Rounds, predictor groups were provided with the amino-acid

sequence or sequences of the target proteins, usually those of the

constructs used to determine the structures. For most targets, predic-

tors were also given information (provided by the authors) about the

biologically relevant oligomeric state of the protein, the stoichiometry

of the complex, and occasionally some additional relevant details

about the proteins.

Following the common practice in CAPRI, predictors were invited

to submit 100 models for each target, to be used for the scoring chal-

lenge (see below). It was stipulated however, that only the 5 top-

ranking models will be evaluated. To continue monitoring the ability

of predictors to reliably rank their models, we also report the perfor-

mance of groups based on their single top-ranking (top-1) models.

Scoring experiments were run for all 37 targets (38 AUs) except

for the hetero-complex T191/H1106, for which the time window for

prediction was too short. After the predictor submission deadline, all

the submitted models (up to 100 per participating group) were shuf-

fled and made available to all the groups participating in the scoring

experiment. The “scorer” groups were in turn invited to evaluate the

ensemble of uploaded models using the scoring function of their

choice and to submit their own 5 top-ranking ones. Scorer results

based on their top-1 ranking models are also reported. Typical time-

lines for the prediction and scoring experiments were 3 weeks and

5 days, respectively.

Round 54 participants were invited to submit their models to the

CAPRI-EBI management system. This system generated CASP compli-

ant versions of the 5 top ranking models submitted to CAPRI by pre-

dictor and scorer groups. These compliant versions were

automatically forwarded to CASP. This procedure afforded a seamless

communication between the CASP and CAPRI management systems.

F IGURE 4 Details of the association mode and assessment units in T203/H1135 large assembly. (A) Shows the association mode of T203/
H1135, which assembles into a trimer of trimers. This target was subdivided into 2 assessment units (AUs). AU203.1 is comprised of the minor or
inner trimer featuring three interfaces, while AU203.2 represents the major or outer trimer, which consists of a single unique interface. Each
minor trimer is formed by three SUN1 monomers that adopt three different conformations, shown in (B), while conserving their internal interface
(interface T203.1). In addition, a protein fragment of IRAG2 (red) binds one of the SUN1 monomers (light blue; T203.2; 850 Å2), forming a
secondary interface (T203.3; 750 Å2) to another monomer. The two (green) monomers of the minor trimer form the interface to a neighboring
trimer, constituting the interface of AU203.2 (T203.4; 500 Å2), indicated by the dashed lines. (B) Shows the three conformations of the subunits
of the minor trimer (dark green, light green, and light blue), plus the conformation found in the template trimer (blue; PDB 6R2I), which was found
to overlap with the conformation binding the peptide. However, the alpha-helical fragment of the peptide was not found in the template and
without adopting the other two conformations of SUN1 it could not be accommodated into the minor trimer without clashes.
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The number of CAPRI and CASP groups (predictors and servers),

and CAPRI scorer groups submitting models, and the corresponding

number of models for each target assessed here, are listed in the

Table S1. A total of �60–80 predictor and servers groups submitted

models for each target. This is nearly twice the number of groups sub-

mitting models in previous CASP-CAPRI challenges. These groups

submitted a total of �170–260 model (CASP) and �160–1380

models (CAPRI) per target. In general, 15 CAPRI scorer groups submit-

ted a total of 75 models per target.

Altogether, 67 851 models were assessed, of which 21 941 top

5 models were used to evaluate the prediction performance of indi-

vidual groups.

As already noted, the prediction task was greatly facilitated by the

ready access by most participants to the AF2 and AF2-M software pack-

ages, which they used to predict the structure of individual subunits of a

complex, or the full complex. As in previous challenges human predictor

groups had access to models predicted by participating servers, released

by the CASP website after the server submission deadline, although

fewer predictor groups appear to have used these models than in previ-

ous years (see Supplementary Material; Individual Group Summaries).

4 | ASSESSMENT METRICS AND
PROCEDURES

For ready comparison with the results obtained in previous CAPRI

Rounds and previous CASP-CAPRI experiments,39,40 models were

F IGURE 5 Details of the association mode and assessment units

in T204/H1137 large assembly. (A) The assembly of T204/H1137, as
resolved by cryo-EM at 3.10 Å resolution. The bulk of the assembly is
made up of six protein chains of different sequences, four of them
(white, green, cyan, magenta) starting in the TM domain, all of them
containing an MlaD domain and participating in the alpha-helical tube,
and two of them (yellow and salmon; those not in the TM domain)
forming a C-terminal domain annotated here as the tube foot.
Whereas all interfaces were assessed, due to their structural similarity
many of these interfaces have been grouped together, defining
interfaces 1–8 as listed in (B), with the best result for any of the
participating interfaces taken as the assessment result for that
interface; the original number of interfaces is listed in parentheses.
The interfaces are subsequently grouped into two assessment units
AU204.1 and AU204.2 (see text for detail).

F IGURE 6 Details of the association mode and assessment units
of the large assemblies in T219/T1170, T220/H1171, and T221/
H1172. These targets are three different solved structures of the
same complex: the RuvB hexamer, bound to a 15 bp dsDNA
fragment, which was not included in the modeling problem. The RuvB
hexamer accommodates zero (T219/T1170), one (T220/H1171), or
two (T221/H1172) RuvA molecules. Shown are all the resolved
structures (one for T219/T1170, two for T220/H1171, and four for
T221/H1172) superimposed onto the dsDNA segment. Chains A–F of
the RuvB hexamer exhibit a tight, rigid interface near the dsDNA and
a looser, flexible interface away from it. These interfaces are grouped
to a tight “super” interface T219.1 (A:B and B:C), an intermediate
“super” interface T219.2 (C:D and A:F) and a loose “super” interface
T219.3 (D:E and E:F) (see text). The interface definitions are the same
for T220 and T221. These nine interfaces are grouped together in
AU219. The binding of a RuvA molecule (chains G and H) to a RuvB
monomer form interfaces T220.4 (and T221.4) grouped into AU220.
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evaluated using the standard CAPRI assessment protocol. This proto-

col was complemented with the DockQ score,47,48 a continuous qual-

ity metric that integrates the main quality measures of the standard

CAPRI protocol (see details below).

The ranking of predictor performance was based on the CAPRI

score derived from the parameters evaluated by the standard

CAPRI protocol. Alternative ranking based on the DockQ score and

on the DockQ Z-score are also presented and discussed.

4.1 | The CAPRI assessment and ranking protocols

The standard CAPRI assessment protocol43,44 was used to evaluate

the quality of the predicted homo- and hetero-complexes. This proto-

col uses three main parameters, f(nat), L_rms, and i_rms, to measure

the quality of a predicted model. f(nat) is the fraction of native con-

tacts in the target that is recalled in the model. Atomic contacts below

3 Å are considered clashes and predictions with too many clashes are

disqualified (for the definition of native contacts, and the threshold

for clashes see reference43). L_rms is the backbone rmsd (root mean

square deviation) over the common set of residues (across all submit-

ted models) of the ligand-protein after the receptor protein has been

superimposed. i_rms represents the backbone rmsd calculated over

the common set of interface residues after these residues have been

structurally superimposed. An interface residue is defined as such

when any of its atoms (hydrogen atoms excluded) are located within

10 Å of any of the atoms of the binding partner. Based on the values

of these three parameters, models are ranked into four categories:

high quality, medium quality, acceptable quality, and incorrect, as pre-

viously described.39

For targets representing higher-order oligomers featuring multiple

distinct interfaces, submitted models were evaluated by comparing

each pair of interacting subunits in the model to each of the relevant

pairs of interacting subunits in the target.39 When such oligomers rep-

resent complex arrangements, the target is subdivided into two or

more assessment units (AU), with each AU including a subset of the

oligomer distinct interfaces. The quality score for each AUs, ScoreAU is

computed as a weighted average as follows:

ScoreAU ¼ ω1nACCþω2nMEDþω3nHIGHð Þ ð1Þ

where nACC, nMED, and nHIGH are the number of distinct interfaces of

the AU for which at least 1 acceptable-, medium-, and high- quality

model respectively, was submitted among the top 5 ranking models.

The values of the weights “ω” were taken as ω1 = 1, ω2 = 2, and

ω3 = 3. For ranking the performance of individual groups across all

targets we used the normalized version of Equation (1):

< ScoreAU > ¼ 1
K ScoreAUð Þ, where K is the number of evaluated inter-

faces. However, in cases of higher-order symmetric oligomers display-

ing identical or closely similar interfaces, the quality of the best model

was taken to represent the model quality of the corresponding

AU. These strategies were implemented to avoid large assemblies

with multiple interfaces weighing too heavily on the global score of

individual groups (ScoreG of Equation (4) below).

In addition, interfaces were evaluated using the DockQ score as

follows47:

DockQ¼ f natð Þþ rmsscaled Lrms,d1ð Þþ rmsscaled irms,d2ð Þ½ �=3 ð2Þ

With

rmsscaled ¼1= 1þ rms
di

� �2
" #

ð3Þ

where f(nat), i_rms, and L_rms are as defined above. The rmsscaled rep-

resents the scaled rms deviations corresponding to either L_rms or

i_rms and di is a scaling factor, d1 for L_rms and d2 for i_rms, which

was optimized to fit the CAPRI model quality criteria, yielding

d1 = 8.5 Å and d2 = 1.5 Å (see reference47).

For targets representing higher order oligomers featuring multiple

distinct interfaces the quality score for each AU was computed as the

average of the DockQ scores of the distinct interfaces that are part of

the AU. For higher-order oligomers, displaying identical or closely sim-

ilar interfaces, the best DockQ score was taken to represent the

model quality of the corresponding AU.

There is no strict correspondence between the DockQ values of

predicted interfaces and the four CAPRI model quality categories,

because the DockQ score employs a somewhat different algorithm to

combine the three quality-metrics (f(nat), L_rms, and i_rms) into a sin-

gle continuous score than CAPRI uses to define its discrete model

quality categories.

To further evaluate the accuracy of the modeled protein–protein

interface we also computed the root mean square deviation of side-

chain atoms (S-rms) of residues at the binding interface, which was

however not used to rank performance. This measure uses the back-

bone rms fit of the i_rms calculation, to compute rms values over side-

chain atoms only. It is not used in the classification of models.

The performance of predictor and scorer groups and servers was

ranked based on their best-quality model in the 5-model submission

for each target. The final score assigned to a group or a server was

expressed as a weighted sum, analogous to that of Equation (1), but

considering the performance for individual targets, expressed in each

of the three categories (acceptable, medium, and high), achieved by

that group or server over all targets:

ScoreG ¼ω1NACCþω2NMEDþω3NHIGH ð4Þ

where NACC, NMED, and NHIGH are the number of targets/AUs of

acceptable-, medium-, and high- quality, respectively, and the values

of weights “ω” were taken as ω1 = 1, ω2 = 2, and ω3 = 3.

This ranking method was already used in the two previous CASP-

CAPRI challenge30,42 and previous CAPRI assessments.49 It considers

all models of acceptable quality or higher submitted by a given group.

For larger assemblies with more than 1 AU, it considers the model
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quality as defined by the value of <ScoreAU > for the different AUs

defined above.

Groups were also ranked using the sum of the DockQ values

computed for all their best-ranking models for each target or

AU. Furthermore, rankings based on the Z-score values across predic-

tor groups of the CAPRI-scores, and DockQ-based scores were com-

puted, and the different scoring schemes were compared to evaluate

the robustness of the ranking procedure.

The CAPRI ranking methods, whether based on the CAPRI score

or on DockQ, rank group performance by the overall quality of the

modeled interfaces that each predictor group produces for each tar-

get/AU. This quality is evaluated by measuring the extent to which

individual models submitted by each predictor group reproduce the

target binding mode, based on a combination of three key quality

metrics (f(nat), i-rms, L-rms) taken together. This approach differs from

the CASP raking method. The latter is based on evaluating four quality

scores for each model (Interface Contact Score (ICS), Interface Patch

Score (IPC), TM score, oligomeric IDDT) [Ozden & Karaca, this issue].

These scores are not used to define the overall quality of each submit-

ted model and rank groups according to this quality. Instead a Z-score

is computed independently for each of the four quality scores across

all groups submitting models for a given target. These Z-scores (lim-

ited to positive values) are summed across targets for each predictor

group, and a weighted average of this sum is used to produce the final

rank. This ranking method has been shown to produce only minor dif-

ferences relative to the CAPRI ranking, especially for top performers,

as also confirmed in the present challenge [Özden & Karaca, this

issue] and is therefore a valid alternative. However, one consequential

difference is that the performance of a given group does not neces-

sarily reflect the overall quality of the models it produces. Accordingly,

there currently is no overall CASP quality-score for a predicted assem-

bly that can be used to benchmark prediction methods.

5 | RESULTS AND DISCUSSION

This section is divided into four main parts. The first part presents the

results of human predictors, prediction servers, and CAPRI scorer

groups (human and servers) for the individual 37 targets (38 AUs) of

the 5 target categories of CAPRI Round 54, for which the prediction

and scoring experiments were conducted. In the second part we pre-

sent the rankings of the same groups established based on their per-

formance across all targets. The third part analyses the prediction

results across all the targets (AUs) of this Round, and the fourth part

evaluates and discusses the progress that has been achieved.

5.1 | Predictor server and scorer results for
individual targets

The detailed prediction results per target obtained by CASP and

CAPRI groups (predictors and servers) and CAPRI scorer groups can

be found in Tables S2 and S3 of the Supplementary Material. An

independent evaluation of the performance of predictor and server

groups that submitted models only to CASP is presented in a separate

publication [Ozden & Karaca, this issue]. Values of all the CAPRI qual-

ity assessment measures for individual models submitted by CAPRI

participants for the 37 targets (38 AUs) of CAPRI Round 54 have been

communicated to the participants and posted on the CAPRI website

(URL: capri-docking.org). Additional information on the performance

of individual CAPRI groups can be found in the

Supplementary Material (Individual Group Summaries).

Given the large number of targets as well as the higher overall

prediction performance in this prediction Round compared to previ-

ous Rounds, we present a brief account of the prediction results for

the targets that were in general well predicted and discuss in further

detail the performance of groups for the less well-predicted com-

plexes. This approach is applied to targets in the five target categories

presented in the Targets section. To enable comparison with the

models predicted by AF2 we also evaluated the quality of the best

model predicted for each target by the AF2-M software (run using

standard parameters) and generously offered to this challenge by the

group of Elofsson.

5.2 | Category I: Homomeric targets with one
interface (A2) and no intertwining: T198, T201, T211,
T225, T226, T229

Of the 6 targets in this category, the best prediction performance

across groups was obtained for T201/T1132, the bacterial antibiotic

biosynthesis monooxygenase for which an excellent template was

available. For this target, 54 groups (predictors and servers) produced

acceptable models or better, with 52 of these groups submitting high

quality models. Next in line is T211/H1153. For this target, assumed

to be difficult because of its loopy interface and the availability of only

a distant template, 48 groups submitted acceptable models or better,

with 25 of these groups submitting high quality models and 21 groups

submitting medium quality ones.

For T225/T1178 and T226/T1179, two related complexes dis-

playing different binding modes, better performance was obtained for

T225/T1178, with 57 groups producing models of acceptable quality

or better. Of these, medium quality models were produced by

45 groups and high-quality ones by only 9 groups. For T226/T1179

on the other hand, 48 groups produced acceptable models or better;

of these only 6 and 2 groups produced medium and high-quality

models, respectively. The two best-performing predictor groups for

T226/T1179 were Wei Zheng and Toshiyuki Oda-PEZYFoldings.

Servers produced lower quality models for this target, with only

2 servers (DFOLDING-SERVER, DEFOLDING-REFINE) submitting

medium quality models and 16 servers submitting acceptable models.

CAPRI scorers (11 groups out of the total of 15) produced only

acceptable models for this target.

The two most poorly predicted targets of this category were

T198/T1123, the viral Capsid polyprotein VP90, and T229/T1187,

the nictaba plant protein. The worst prediction results were obtained
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for T229/T1187. Only 16 groups and servers produced acceptable

quality models or better. Fourteen of these groups produced high-

quality models, whereas only one group submitted a medium-quality

model. The best performing group for this target were Xinqi

Gong-BeijingAIProtein and Qiwei Ye-UltraFold, with an additional

7 predictor groups producing high quality models, whereas only

4 servers performed on par with these groups (Table S2). For T198/

T1123, despite the good model predicted by AF2 and a distant tem-

plate for the full complex, only 30 groups produced acceptable quality

models or better; of these, 19 groups submitted medium quality

models, and none of the groups produced high-quality models. The

4 best performing groups for this target were J Cheng, Wei Zheng,

Jianyi Yang, and Baker. Five servers, including three versions of the

MULTICOM server, and two of the DFOLDING server, respectively

by the groups of J Cheng and Paek, performed on par with the best

predictor groups. This was also the case for the CAPRI scoring server

LZERD (Kihara group).

5.3 | Category II: Homomeric targets with one
interface (A2/A3) and intertwining: T194, T197, T199,
T213, T214, T222-T224, T227, T192, T193

For the 11 targets of this category, the best prediction performance

was obtained for the dimers T192/T1109 and T193/T1110, the

mutant and wt forms of the bacterial putative transcription regulator

protein, and for the T199/T1127 dimer of the plant acetyltransferase

for which multiple dimeric templates were available. For T192/T1109

and T193/T1110, respectively 54 and 56 groups (including predictors

and prediction servers) produced models of acceptable quality or bet-

ter, including respectively, 45 and 53 groups that produced high qual-

ity models. Even better performance was observed for T199/T1127,

with 57 groups out of 65 submitting high quality models for this tar-

get. For all three targets, predictor and prediction server groups per-

formed on par with AF2-M (Table S2). The performance of scorers

and scoring servers was excellent too but trailing behind that of the

predictor and server groups for these three targets.

For the T194/T1113 dimer, only medium quality models were

produced by 54 out of the 57 predictor/server groups that submitted

correct models for this target, and by AF2-M, whereas one predictor

group (Jianyi Yang) produced a high-quality model (i-rms <1.0 Å). As

expected, only medium quality models were submitted by the

12 scorers and scoring servers that submitted correct models for this

target. Significantly lower quality models were produced by predictors

and CAPRI scorers for the remaining four dimers: T197/T1121, T213/

T1160, T214/T1161, and T224/T1176. Only incorrect models were

submitted for T224/T1176, the domain-swapped dimer from Clostri-

dioides difficile. For T197/T1121, the cryo-EM structure of the pro-

tein from pseudomonas containing DUF3322 and DUF2220

connected by a flexible linker, five predictor groups, two prediction

servers, and one scorer group managed to produce acceptable models,

whereas the model produced by AF2-M was incorrect. Of the two

small proteins T213/T1160 and T214/T1161, designed using ancient

protein reconstruction, only two predictors (S_Huang, and Toshiyuki

Oda-PEZYFoldings and one server (HDOCK) produced one medium-

quality structure for T213/T1160, the version with the very small

interface, whereas scorers produced only incorrect models. The

T214/T1161, the variant containing mutations that increased the size

of the subunit interface, seven predictor groups and three prediction

servers produced acceptable models, with three of the predictor

groups (Kozakov, Kozakov-Vajda, Wallner), one server (CLUSPRO),

and one scorer group (Venclovas) producing a high-quality model. The

model produced by AF2-M was incorrect (not included in Table S2 for

this target).

Of the 3 trimers (T222/T1173, T223/T1174, T227/T1181), the

lowest quality models were submitted for T223/T1174, the inter-

twined bacterial trimer, another example of a protein containing sev-

eral domains (here, 3 or 4) linked by flexible chain segments. For this

target, 48 predictor groups (including servers) produced acceptable

models. Of these, only one predictor (Kihara) and one server

(DFOLDING-SERVER), produced a medium-quality model, which none

of the scorer groups, including Kihara, were able to identify. Much

better results were obtained for T222/T1173, and T227/T1181. As

many as 56 groups submitted acceptable models for T222/T1173, the

cell wall surface anchor family protein featuring 2 domains, with

21 and 25 of these groups submitting high- and medium-quality

models, respectively, and 12 scorer groups also submitting such

models. Predictors groups likewise performed adequately for T227/

T1181, the multi-domain tail fiber protein viral protein. Of the 53 pre-

dictor and server groups submitting acceptable models or better,

31 submitted medium-quality models and only three groups

(Wei_Zheng, Kihara, Toshiyuki Oda-PEZYFoldings) managed to pro-

duce a high-quality model. Not too surprisingly, only medium quality

models were produced by 10 out of the 13 CAPRI scorer groups who

produced correct models.

Thus, the main difficulty in this target category arose in cases

were the complexes displayed a significant degree of intertwining,

sometimes compounded by the presence of multiple structural

domains linked by flexible fragments. The presence of several disor-

dered highly flexible regions, or small binding interface were likewise

adversely affecting prediction results.

5.4 | Category III: Heteromeric targets with one
interface (A1/B1): T191, T200, T202, T210, T212

The best prediction results for the 5 heterodimers in this category

were obtained for T191/H1106, T202/H1134, and T210/H1151. For

T191/H1106, the YscX and YscY proteins of the Yop protein translo-

cation/chaperone protein complex, 70 predictor and server groups

submitted acceptable models or better, with 48 and 21 of these pro-

ducing high- and medium-quality models, respectively. Considering

the significantly disordered character of the YscX component

(Figure 3A), these were unexpectedly good prediction results, likely

due to the wide use of AF2-M, which also produced a high-quality

model for this target (Table S2). Excellent performance was also
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achieved for T210/H1151, the bacterial SigA/WhiB6 complex, for

which an excellent quality template for the full complex was available,

enabling a record number of predictors and servers (63), and 8 scorer

groups, to submit high-quality models. Adequate prediction results

were also obtained for T202/H1134, the Ankyrin repeat protein/

phospholipase complex, with only 22 predictor and servers submitting

high quality models, but 38 additional groups including AF2-M pro-

ducing medium-quality ones. Of the 13 scorer groups submitting cor-

rect models for T202/H1134, 9 and 4 scorer groups submitted

medium- and high-quality models respectively.

Prediction results were relatively poorer for T212/H1157, and

very poor for T200/H1129. For T212/H1157, the Alpha-1,-

2-mannosidase/protein disulphide-isomerase complex, 63 predictors

and servers produced correct models, of which 61 produced medium-

quality models. Such models were also produced by the 14 scorer

groups producing correct models for this target. For T200/H1129, the

FhuA/pb5 phage host complex, only 20 predictor and server groups

managed to produce correct models, with only five of these, three

predictor groups and two prediction servers, producing high-quality

models. The three best performing predictors were Jainyi_Yang, Ven-

clovas and Wallner, and the two servers were YANG_MULTIMER,

and TS317. Surprisingly, 12 CAPRI scorers and scoring servers pro-

duced models of acceptable quality or better. As many as seven of

these groups (five human scorers Kihara, Venclovas, Zou, S_Huang,

and Bonvin), and two servers (MDOCKPP, HDOCK) submitting high

quality models.

5.5 | Category IV: Heteromeric Ab and Nb
complexes with one interface (A1/B1 or A/HL):
T205-T209, T216-T218

The eight targets in this category include five complexes of the mouse

20,30-cyclic-nucleotide 30-phosphodiesterase bound respectively to

five different Nb (T205-T209/H1140-H1144) (Figure 3C), and three

complexes of the S24-188 Fab antibodies binding to somewhat dis-

tinct epitopes of the SARS-COV-2 nucleoprotein (T216-T218/

H1166-H1168) (Figure 3D). With few exceptions, prediction results

were rather poor for all 8 targets.

For the Nb complexes good results were achieved for T208/

H1143, with 57 predictor groups producing models of acceptable

quality or better, and 47 of these including servers submitting high-

quality models. Significantly poorer results were obtained for T206/

H1141 and T209/H1144, for which respectively only 12 and

14 groups produced acceptable models or better. Of these, only four

human predictors produced high-quality models for T206/H1141. For

T209/H1144, high quality models were produced by five human pre-

dictors and two prediction servers, outperforming most of their peers,

as well as AF2-M. The best performing groups for T206/H1141 were

Venclovas, Wallner, Toshiyuki Oda-PEZYFoldings and David_Jones-

DM. Venclovas was the only scorer group producing a correct model

(of high quality) for this target. For T209/H1144, the best performers

were Wei Zheng, Toshiyuki Oda-PEZYFoldings, Suwen Zhao, Wallner,

Jianyi Yang, and the YANG-MULTIMER server, while AF2-M pro-

duced an incorrect model. The worst results were obtained for the Nb

complexes in T205/H1140 and T207/H1142. For T205/H1140, only

seven predictor groups produced models of acceptable quality with

two of these groups (Wei_Zheng and Wallner) submitting medium-

quality models. Of the scorer groups, only the group of Oliva managed

to submit one medium-quality model. This is interesting, because only

CAPRI groups contributed models to the uploaded set from which

scorers single out the best models. But none of the CAPRI predictor

groups submitted models of acceptable quality or better among their

five top-ranking solutions for this target. Hence Oliva managed to sin-

gle out a lower ranking medium-quality model in the uploaded set that

none of the CAPRI predictors identified. For T207/H1142, no correct

models were submitted.

Of the 3 Ab complexes, adequate prediction results were

obtained only for T218/H1168, the only complex for which a tem-

plate with the correct binding mode was available. Sixty-three predic-

tor groups produced models of acceptable quality or better for this

target, of which 53 groups and AF2-M, submitted medium quality

models, and only two groups, one human predictor (Junlin Wang-

MUFold_H) and the DFOLDING-SERVER produced high-quality

models. In total 11 CAPRI scorer groups produced medium quality

models. No correct models were submitted for T216/H1166 and

T217/H1167.

Overall, we see that for this type of complexes, where one of the

components is a Nb or an Ab, prediction results tend to be rather poor

except for cases where template(s) with the same of similar binding

models are available. As already noted previously,34 AF2-M preforms

particularly poorly with these complexes as well, unless help from

templates is available. From the results obtained here, complexes with

Nbs seem to be easier to predict than those with Abs, but this needs

to be further confirmed on a larger number of complexes of both

types.

5.6 | Category V: Large assemblies: T195, T203,
T204, T119, T220, T221, T230

Targets in this category comprised multi-subunit homo and hetero

higher-order oligomers.

For these targets the prediction quality of all distinct interfaces

was evaluated. In complexes featuring multiple distinct interfaces, the

full complex was subdivided into two or more assessment units (AUs),

with each AU containing one or more distinct interfaces. The CAPRI

score for each AU was computed using the ScoreAU expression of

Equation (1). The results of predictor server and scorer groups for

individual interfaces of each assembly target can be found in Table S2

of the supplementary material. The performance of these groups for

individual AUs of each of target is provided in Table S3. For the

assemblies featuring multiple distinct interfaces we will discuss

the prediction results only for individual AUs.

Very different results were obtained for the two higher order

homo-oligomer targets T195/T1115 and T230/T1192 featuring a
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single unique interface. For T195/T1115, the 16-mer stomatin com-

plex, featuring a large distinct primary interface, and for which a good-

quality template was available for the individual subunits (2.4 Å rmsd),

prediction results were disappointing. Only 24 predictor and server

groups managed to produce a model of acceptable quality or better

and of these, 11 groups (including AF2-M) submitted a medium-

quality model. In comparison, the performance of scorer groups was

better, with a 13 CAPRI scorers (virtually everybody) submitting

acceptable models and five of these groups producing medium-quality

ones. The problem with this target was likely due to the available tem-

plate for the stomatin subunit being part of a 24-mer assembly and

predictors failing to model the conformational adjustments that were

required to fit the subunit into a smaller oligomer. On the other hand,

rather good results were obtained for T230/T1192, the decamer fea-

turing the human RAD52 homolog solved by cryo-EM, for which an

excellent template was available. For this target, 45 groups produced

at least acceptable models, with 40 of these submitting high-quality

models. CAPRI scorers likewise performed well on this target.

Target T203/H1135, the trimer of trimers of the human SUN1 pro-

tein that binds a small peptide, was subdivided into 2 AUs, AU203.1 and

AU203.2 (Figure 4): AU203.1 groups the three distinct interfaces (1–3)

of the peptide-bound trimer. AU203.2 includes the weaker distinct

inter-trimer interface (interface T203.4). For AU203.1 excellent predic-

tion results were obtained for the major interface (interface 1), whereas

poorer quality models were submitted for interfaces 2 and 3 (Table S2),

resulting in most predictor groups submitting acceptable models for

AU203.1 and only one group (Fang_Bai) submitting a medium-quality

model for this assessment unit (Table S3). Prediction servers and CAPRI

scoring groups likewise managed to produce only acceptable models for

AU203.1. Somewhat better results were obtained for AU203.2 (the

smaller inter-trimer interface 4). Of the 16 predictor groups (including

AF2-M) submitting at least acceptable models for this AU, four groups

(S_Chang, Shan Chang-CoDock, Venclovas, Kazuki Yamamoto-ddquest)

produced medium-quality models. Of the eight CAPRI scorer groups

producing at least acceptable models, only S_Chang produced a

medium-quality one. Thus, as for the T195/T1115 assembly, prediction

methods including AF2-M failed to adequately tackle the conforma-

tional adjustments in AU203.1, also affecting their ability to correctly

model the inter-trimer interface of AU203.2.

Target T204/H1137, the large multi-component assembly composed

of an ABC transporter and a MlaD hexamer that extends into 6 long heli-

ces forming a flexible tube-like structure, was divided into two assess-

ment units, AU204.1 and AU204.2, representing two distinct modeling

problems (see Figure 5). AU204.1, which includes the interfaces between

neighboring chains in the tube-like structure (together taken as interface

T204.1) and the C-terminal domain, represents the more difficult model-

ing problem due to the flexible nature of the protein chains and the avail-

ability of only poor templates. For this AU, prediction performance was

evaluated by the best predicted interface among the interfaces of the

helical tube, and the interface of the C-terminal domain. Only 22 predictor

and server groups submitted models of acceptable quality or better for

AU204.1, with only three predictors (Wei_Zheng, Xuyang Liu-Manifold,

and Kozakov) and two servers (CLUSPRO, MANIFOLD-E) producing

medium-quality models. Only two CAPRI scorer groups (S_Chang and

J_Cheng) submitted medium-quality models out of the 14 CAPRI scorer

groups producing acceptable models or better.

Better results were obtained for AU204.2, which included the

transmembrane domain formed by an ABC transporter and the MlaD

hexamer for which the organization was well known. This AU included

the remaining six interfaces of the assembly, which were grouped into

a total of eight ‘super’ interfaces (Figure 5). A total of 38 predictor

and server groups produced at least acceptable models, including

14 groups submitting medium quality models for this AU (Table S3).

Most of the 15 CAPRI scorer groups identified one of the medium

quality models in the set uploaded by CAPRI predictors.

The remaining three large assembly targets, T219/T1170, T220/

H1171, and T221/H1172, representing 3 closely related complexes,

were evaluated together, and grouped into 2 distinct AUs: AU219,

and AU220 (see Targets Section and Figure 6). AU219 groups the

RuvB apo-hexamer from all three complexes and comprises three

unique “super” interfaces (interfaces 1-3) featuring tighter to looser

packing. These three “super” interfaces were evaluated separately,

and the best model of all three submitted by each group was taken to

represent the prediction result for this AU. AU220 represents the

RuvB:RuvA complex and comprises interface 4, which groups

the closely similar interfaces in T220/H1171 and T221/H1172 of the

more loosely packed RuvB subunits with RuvA. Here too, the best

models for this interface in the two complexes (T220/H1171 with

one bound RuvA molecule and T221/H1172 with two bound RuvA

molecules) were taken to represent the prediction results for AU220.

Despite the availability of good templates for the RuvB hexamer, only

medium quality models were produced by all groups for the super inter-

faces 1-2): 67 predictors, servers, and 14 CAPRI scorer and scoring servers

(Table S3). Poorer prediction results were obtained by most groups for the

super interface 3, the interface between the more loosely packed RuvB

subunits (Table S3). Better prediction results were achieved for AU220.

Fifty-four predictor and server groups produced models of acceptable

quality or better for this AU, with 24 of these groups producing medium-

quality models and 18 groups submitting high-quality models.

Interestingly, higher quality models were submitted for the RuvB/

RuvA interfaces in T221/H1172, which binds two RuvA molecules,

than in T220/H1171, which binds only one (Table S3). This was like-

wise the case for the CAPRI scorer groups.

5.7 | Performance of predictors, servers, and
scorers across targets

Groups (predictors, servers, and scorers) were ranked according to

their prediction performance for the 37 targets (38 AUs) of Round

54, using both the CAPRI score and the DockQ score. All the rankings

presented here consider, as usual, the best model submitted by each

group among the 5 top ranking models for each evaluated target or

AU. The groups CAPRI-score was computed using Equation (4) (see

Assessment Metrics and Procedures). For the group DockQ-based

score, the DockQ scores of individual targets or AUs was summed.
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The ranking based on the CAPRI score of CASP and CAPRI (pre-

dictors and server) groups is shown in Figure 7, and the corresponding

ranking of CAPRI scorers and scoring servers is displayed in Figure 8.

The full ranked list of the different categories of participants, together

with the corresponding CAPRI scores and DockQ scores is provided

in the Table S4.

5.7.1 | Predictor and server performance

The ranking of the 96 participants of CASP15-CAPRI shows several

interesting trends (Figure 7). We see that the CAPRI scores of individ-

ual groups decrease rather monotonically as one moves down the

rank, with only a small gap separating the slightly higher scores of

the 4 best performers: Venclovas, Wallner, Wei Zheng, and PEZY-

Foldings. This is in stark contrast with the situation in CASP14, where

one participant (AF2) clearly outperformed its peers in the 3D struc-

ture prediction of single-chain proteins and indicates that an analo-

gous game-changing performance has not been achieved in CASP15

for the assembly prediction problem.

This notwithstanding, the ranking plot clearly indicates that an

incremental, yet notable progress has been achieved over the stan-

dard performance of AF2-M, which appears in the 15th position of

the ranked list of Figure 7. As many as 14 groups of predictors and

servers submitted higher or similar quality models than those pro-

duced by AF2-M, as already noted in the section of the Results for

Individual Targets. These groups include 6 CASP groups, including top-

performers Wei_Zheng, PEZYFoldings and Yang, and several veteran

F IGURE 7 Performance of CASP and CAPRI predictor groups and prediction servers. The main graph shows the CAPRI performance scores
of the top-ranking CASP and CAPRI predictor and server groups in the CASP15-CAPRI challenge evaluated here, broken off at the 70th group in
the rank; server groups are listed in capital letters. The smaller graph shows the same plot for CASP and CAPRI predictor and server group 2 years
earlier in the CASP14-CAPRI assembly prediction challenge, broken off at the 23rd group. For both graphs, the height of each colored bar
corresponds to the CAPRI score contributions of high, medium, or acceptable-quality models. The total number of assessment units (AUs) for
which at least an acceptable quality model was produced is indicated in the graph by a black triangle. CASP15-CAPRI counted 38 AUs for
37 targets, CASP14-CAPRI counted 16 AUs for 12 targets.
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CAPRI groups (Venclovas, Chang, Kihara, Cheng, Pierce). It is further-

more noteworthy that 4 prediction servers from two groups (Jianyi

Yang: YANG-MULTIMER, J_Cheng: MULTICOM, MULTICOM_QA,

and MULTICOM_DEEP) are among the servers outperforming AF2-M

(see also Table S4).

Another striking observation is the large fraction of respectively

high- and medium- quality models contributing to the computed

scores of most participants, with models of acceptable quality

contributing only marginally. This trend confirms that the quality of

the structures predicted in the present challenge is in general quite

high, and clearly much higher than the models submitted only—

2 years earlier in the CASP14-CAPRI challenge (inset, top of Figure 7),

where high-quality models were submitted by 4 out of the total of

23 predictor and server groups, and even for these group such models

were submitted for only a small fraction of the targets.

Any given ranking method inevitably suffers from inherent biases.

To evaluate the extent to which such biases may affect the global

ranking presented here we examine 2 alternative ranking methods

based on the DockQ scores. One ranks groups using the sum of the

DockQ scores (
P

DockQ), computed over the best models submitted

for the 38 AUs by predictors and servers (Figure S1). The second

ranks groups using the
P

DockQ Z-score computed across group,

considering only positive Z-scores (Figure S1).

The
P

DockQ scores of Figure S1 display analogous trends to

those of the CAPRI ranking. The values decrease smoothly as one

moves down the rank, with a small gap separating the slightly higher

scores of the 4 best performers from those of their peers. These 4 top

groups are the same as those of the CAPRI ranking, albeit in a slightly

different order, whereas the order of groups further down the rank

changes more significantly but is of minor importance given the very

smooth decrease in the score values. The most salient difference with

the CAPRI ranking is the rank of AF2-M. The latter moves further

down the rank to position 24 (instead of position 15 in the CAPRI

rank), and hence a larger number of groups appear to outperform

it. This is due to the fact the group score also includes contributions

from incorrect models (roughly corresponding to DockQ values below

0.23), which the CAPRI score ignores, thereby boosting the perfor-

mance or groups submitting incorrect models. Indeed, the ranking plot

of Figure 7 also displays the number of AUs for which a given group

submitted correct models (acceptable quality or better), showing that

the number of correctly predicted targets decreases significantly from

30 to about 10 along the ranked list, corresponding to an increase in

incorrect models from 8 to �28. A similar behavior is displayed by theP
DockQ Z-score plot (Figure S1), which ranks a group relative to its

peers. Again, the same 4 groups rank on top, with more significant

changes further down the rank relative to both the CAPRI andP
DockQ rankings, and the position of the AF2-M performance mov-

ing much further down the rank to position 44. Hence, including a

non-zero contribution from incorrect models in the DockQ-based

evaluation introduces a misleading bias and should be avoided.

5.7.2 | Scorer performance

The ranking of the CAPRI scorer and server groups (15 in total) based

on the CAPRI score (Figure 8), shows similar trends to those of the

predictor performance, with a clear gap separating the score of

the best performers (here the group of Venclovas) from those of other

groups/servers. Scores of the following nine groups decrease very

gradually thereafter but drop more swiftly for the five remaining

scorer groups. Here too, high- and medium-quality models make a

major contribution to the computed scores of most participants, a

clear consequence of the larger fraction of such models in the set of

models uploaded by CAPRI predictor groups. Of the 4 participating

scoring servers HDOCK performed best, followed by MDOCKPP,

whereas LZERD and MULTICOM ranked last.

Lastly, it is noteworthy, that the data on the global group ranking

(Tables S4) indicate that most predictor groups have improved their

ability to rank models. The number of targets for which these groups

have a model of acceptable quality or higher ranked on top (top-1) is

often only slightly lower than when their top-5 ranking models are

considered. It is noteworthy that this is also the case here for predic-

tion servers, whereas scorers and scoring servers are less consistently

successful in having their best quality models ranked on top.

5.8 | Global overview of the quality of predicted
models

A global overview of the quality of models submitted (the best model

of the five submitted models by each group) for the targets in the five

categories is presented in Figure 9. This Figure shows box plots of the

F IGURE 8 Performance of CAPRI scorer groups and scoring
servers. CAPRI performance scores for all scorer groups, with scoring
servers listed in capital letters. Legend as in Figure 7.
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DockQ value distributions of models submitted by CASP and CAPRI

human predictor and prediction servers, those submitted and

CAPRI scorer groups (including servers), as well as model uploaded by

CAPRI predictors (100 models per target). To enable comparison with

the models predicted by AlphaFold we also plot for each target

the DockQ values for the best model predicted by the AF2-M used

here as the baseline to gauge overall performance relative to this

impactful deep learning package. These data illustrate the

performance-based target difficulty levels experienced in practice.

For example, for dimers with no intertwining of Category I, the

highest quality models were produced for the easy target T201/

T1132 by CASP and CAPRI predictor groups (human and servers).

These models feature a narrow distribution around high DockQ values

(μDockQ >0.9, where μDockQ is the median of the DockQ distribu-

tion). A high-quality model was also predicted by AF2-M, whereas the

models submitted by scorers tended to be of somewhat lower quality

(a wider distribution of DockQ values around �0.83). Medium to high

quality models were obtained by predictors groups for T211/T1153

and T225/T1178, but much poorer quality models were produced by

CAPRI scorer croups for the former target due to the lower quality

models uploaded by the smaller number of CAPRI predictor groups

for that target. The poorest quality models for targets in Category I

were submitted for T229/T1187, closely followed by those of T198/

T1123 and T226/T1179. These three targets hence stand out as the

most difficult dimers of this category.

An analogous analysis can be carried out for targets in the other

categories. Category IV, grouping the 5 Caspase/Nb complexes

(T205-T209/H1140-H1144) and the three SARS-Cov2 nucleopro-

tein/Ab complexes (T216-T218/H1166-H1168) stands out by the

poor quality of the submitted models. The box plots of Figure 9 clearly

illustrate the general poor quality of the models (μDockQ �0.0) pro-

duced for the Nb complexes, except for the Nb complex of T208/

H1143 for which a template was available. Of the 3 Ab complexes,

better quality models were obtained for T218/H1168, for which also

a template was available, whereas only incorrect models (μDockQ

�0.0) were produced for T216/H1166 and T217/H1167. Taken

together these results underscore the challenge of predicting the

structure of antibody and nanobody complexes.

The quality of the models produced for targets in the four

remaining categories was more variable. For the dimers and trimers

with intertwining (category II) low quality models (μDockQ <0.3)

were in general produced by predictors and CAPRI scorers for T197/

T1121, T213/T1160, T214/T1161, T223/T1174, and T224/T1176,

with only incorrect models submitted for T224/T1176, a domain

swapped bacterial dimer. The prediction performance thus singles

out these four targets as the most difficult prediction problems in

this category, in clear contrast with the dimers of T192/T1109,

T193/T1110, and T199/T1127, for which the performance was

much better overall.

Among the hetero-dimers (category III), T200/H1129, the phage

Ferrichrome/receptor binding protein pb5 complex solved by cryo-

EM stands out as the target with the lowest quality models overall,

including the one by AF2-M, and hence the most difficult targets in

this category.

F IGURE 9 Global overview of performance for the 38 AUs (37 targets) of Round 54. Distribution of DockQ values of all the submissions of
the Predictor -human and server groups- (purple; CASP and CAPRI; 5 models max), CAPRI Uploader groups (green; 100 models max), and Scorer
groups (salmon; 10 models max). The best AF2-M submission was taken as the standard for off-the-bench tools and is indicated by a red triangle.
The box plots follow the matplotlib 3.1.2 defaults, with boxes from the first to the third quartile and a line at the median; whiskers are located at
the upper resp. lower quartile plus or minus 1.5 the interquartile range and flier points are those outside the whiskers. The lower horizontal axis
indicates the CAPRI ID and the upper horizontal axis the target CASP ID.
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Lastly, for the 8 AUs making up the large assemblies solved by

cryo-EM of category V, the highest quality models obtained by all

groups were for T230/T1192, the DNA repair protein RAD52 homo-

log decamer. Whereas the quality of models submitted for the remain-

ing AUs spanned a wider range, mostly without reaching high quality

for none of the AUs, except for AU220 that combines the RuvB/RuvA

binding interfaces of targets T220/H1172 and T221/H1172. Thus,

large multi component assemblies represent difficult targets for a vari-

ety of reasons (see Section 1, Category V).

An important measure of the quality of the predicted structure

of a binding interface, which determines the type of downstream

studies and applications that it enables, is the accuracy with which

the conformations of interface sidechains are modeled. Since many

more binding interfaces were predicted to high accuracy in this

Round than in previous years it was reasonable to expect that the

sidechain conformation in many of these interfaces would also be

predicted more accurately. This is borne out by the scatter plot of f

(nat), the residue-residue contacts of the targets recalled in the

structure of medium and high-quality models of this prediction

Round, versus S-rms, the root mean square deviation of interface

sidechain atoms (Figure 10). These plots show that most of the high-

quality models and a small fraction of medium-quality models feature

low S-rms values between 1 and 2 Å, and that 6 models have S-rms

values lower than 1 Å, of which two models submitted for interface

T203.1 by Xianming_Pan and GuijunLab display S-rms values as low

as �0.65. The interface of the better of both models is illustrated in

the inset of Figure 10.

5.9 | The impact of AlphaFold: progress and
remaining challenges

This assessment shows that significant progress has been achieved in

the prediction of protein complexes and assemblies. This progress is

not due to the substantially better performance of one group relative

to other participants, as by AF2 for the prediction of single protein

chains in CASP14 2 years earlier. This time it was achieved by a signif-

icant fraction of methods developers (>60), including groups that have

never previously participated in any assembly prediction challenges.

These groups produced high-quality models for about 40% of the tar-

gets with which they were challenged, many more than in previous

years (Figures 7 and 9). Furthermore, this performance appears to be

robust enough since it was achieved on nearly 40 distinct modeling

problems (38 AUs), a much larger number of complexes than offered

as targets in previous years.

As reported at the CASP15 conference in December 2022, as

well as in the extended Abstracts of individual groups co-authors of

this report (see Supplementary Material), this sizable improvement in

F IGURE 10 fnat (interface recall) as a function of S-rms (side-chain rms). Each point in the Figure represents the best model of a predictor
group for an individual interface of a specific target, color-coded according to model quality; incorrect and acceptable models are excluded. The
top panel shows the data for targets of CASP14/CAPRI Round 50, the bottom panel for CASP15/CAPRI Round 54. The regions outlined by the
short-dashed and long-dashed lines feature the best models, with medium-quality models showing an S-rms below 3.5 Å and fnat above 30%, and
high-quality models showing an S-rms below 2.0 Å and an fnat above 60%. Some interfaces feature S-rms values below 1.0 Å; those all belong to
T203.1 (interface 1 of targets T203). The inset shows the interface of the model with the lowest S-rms, produced by GuijunLab (target chains in
red and orange, prediction chains in teal blue and marine blue; non-interface residues in dark gray and light gray for target and prediction,
respectively); interface residues—those that have any atom within 5 Å of the other chain—are shown in wireframe.
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performance across the community is undeniably due to the wide use

of the AF2 and AF2-M software and similar DL-based methods. These

methods were widely used to predict the 3D structure of individual

components of the complex, and whenever possible, the structure of

the full complex.

An important driver of this improvement has been the creative

employment of these deep learning-based inference engines, modify-

ing them to sample a much larger number of models and/or using as

input multiple sequence alignments augmented with sequences from

various sources. Such strategies were most successfully implemented

by several of the top performing groups that outperformed off-

the-shelf versions of AF2-M, used as a yardstick with which the per-

formance of predictor groups was compared (Figures 7 and S1 and

S2). For example, Wallner—one of the three top

performers – stochastically perturbed the neural network of AF2-M

by enabling dropouts at the inference stage combined with massive

sampling, generating up to 6000 models per target compared to the

25 models AF2-M generates by default. This was done using different

versions of the network models, with and without templates, and

increasing the number of recycles within the network. The group of

Wei_Zheng, another of the three top performers, used a set of proce-

dures to generate MSAs for each component of a complex, and fur-

ther augmented them with a vast number of sequences from various

metagenome sequence databases. A subset of these MSAs was then

used to build the paired alignments fed into AF2-M. For hetero-

complexes the paired MSA were built by combinatorically combining

the MSAs of individual components and using AF2-M to sample a cor-

responding large number of models from which the top five models

for each complex were selected. The performance of both approaches

heavily relied on the AF2/AF2-M confidence metrics (pLDDT, iPTM,

pTM)17,33 to prioritize and rank models, a practice backed by recent

findings that these metrics closely estimate the true quality of the

candidate structures, outperforming other state-of-the-art model

accuracy estimates.50 The group of Venclovas—another top

performer—used both the AF2 pipeline and ColabFold,23 tweaking a

variety of parameters and settings to achieve more extensive sampling

of models for each target. While AF2 confidence metrics were also

employed to evaluate models, the final model ranking and selection

was performed using their powerful Voronoi tessellation-based scor-

ing procedures, shown to perform extremely well in singling out physi-

ological dimers from the non-physiological well in a recent

community-wide benchmark study.51 Interestingly, Wallner produced

more high-quality models than Wei_Zheng and Venclovas, but Ven-

clovas submitted models for three more targets than Wallner, of

which two were high-quality and one medium-quality (See Figure S2).

Interestingly, while wide use was made of AF2 and AF2-M and

their confidence metrics, state of the art docking algorithms

and objective methods for scoring and ranking predicted interfaces,

developed notably by members of the CAPRI community, also con-

ferred an advantage. Docking was particularly helpful for modeling

complexes with nanobodies and antibodies, compensating for the

poor performance of AF2-M for such complexes. For example, it

helped the group of Pierce produce acceptable models for the Nb

complexes of T205/H1140 and T206/H1141, for which AF2-M

totally failed. Docking also helped the Venclovas group build fairly

accurate full models of some of the large assemblies of T195/T1115

and T203/H1135 from only partial models produced by AF2-M.52 For

smaller targets, it was not uncommon to use docking calculations in

parallel to AF2-M, to evaluate consistency between the models pro-

duced by the two methods (Venclovas), and in the case of inconsistent

models to submit a mix of models produced by both approaches

(Fernandez-Recio) (see Supplementary Material; Individual Group

Summaries). Not unexpectedly, the results on individual targets and

the reports by individual groups confirm that the availability of good

quality templates played an undeniable role.

This notwithstanding, highly accurate models were produced for

only �40% of the assembly targets, indicating that the accurate pre-

diction of protein complexes and assemblies remains a challenge. A

specific category of targets that prediction methods struggled with

most were the complexes with Ab's and Nb's for which evolutionary

signals cannot be extracted from multiple sequence alignments and

classical docking algorithms also often perform sub-optimally. Improv-

ing the prediction performance for this important category of com-

plexes is a very active research area, involving the development of

new data resources on antigen–antibody interactions53 and new deep

learning methods exploiting structural and sequence data on experi-

mentally determined protein binding sites.54

A long-standing limitation of classical methods for modeling pro-

tein complexes is their inability to model the conformational flexibility

of proteins.30,55 The same problem plagues deep learning-based struc-

ture prediction methods such as AF229 and AF2-M.31 It is therefore

not surprising, that the prediction methods evaluated here in general

performed poorly when complexes contained subunits with multiple

globular domains linked by flexible segments (targets T197/T1121,

T222/T1173, T223/T1174, T227/T1181) or when the binding inter-

face included disordered segments (targets T192/T1109, T224/

T1176). Accurately modeling the conformational adjustments of indi-

vidual subunits necessary to correctly assemble higher-order homo-

or hetero-oligomers, was likewise problematic (target T203/H1135).

Recognized as a major unsolved problem, modeling protein flexibility

and more generally, sampling the different conformational states that

proteins adopt to carry out their function, is currently the focus of

intense method development efforts. These efforts involve the design

of promising novel deep learning approaches56 and methods that

combine deep learning with physics-based simulation methods.57 But

these approaches deal with single protein chains. Extending them to

consider the association process and the formation of complexes

would be a worthwhile but challenging future undertaking.

6 | CONCLUDING REMARKS

This assessment of the CASP15-CAPRI assembly prediction challenge

reports the results for 37 targets (38 AUs) spanning a range in target

types and difficulty levels. These results were produced by over

60 CASP and CAPRI predictor groups including more than
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20 automatic servers. The numbers of both assembly targets and

groups were much greater than in previous challenges allowing for a

robust evaluation of the prediction performance across the

community.

Analysis of these results revealed substantial progress achieved

across a significant fraction of the participating groups, with high-

quality models as judged by the CAPRI criteria produced for about

40% of the targets compared to 8% two years earlier. As

highlighted throughout the analysis, this jump in progress may be

attributed to the wide use of AF2 and AF2-M. These deep learning

tools were used in a variety of ways. They were used to predict the

structure of individual components of a complex (AF2), the entire

complex, or a portion thereof (AF2-M), employing off the shelf or

customized versions, with the latter often enabling much wider

sampling of candidate conformations. Integrating predictions per-

formed by AF2-M with classical docking and scoring procedures

was also not uncommon.

This wide adoption of the deep-learning tools by the community

and its very significant influence on the prediction performance had

an undeniable impact on the factors that define the target difficulty

level. While the absence of templates no longer systematically ham-

pered accurate prediction, the availability of good quality templates

still mostly facilitated prediction. As already mentioned, complexes

with antibodies and nanobodies remain an important category of tar-

gets that current prediction methods struggle with. This was also the

case of targets where structural features of the templates (subunit

contacts and/or conformation) differed from those of the target, and

where the target included proteins with flexible segments. That tar-

gets displaying a significant intertwining as in the homodimer of

T224/T1176 also turned out to be poorly predicted is somewhat sur-

prising since one would expect folding and binding to be strongly

coupled in such complexes58 and therefore be more readily well pre-

dicted by the AF2 or AF2-M, which model the conformations of both

chains simultaneously.

Thus, the accurate prediction of protein complexes remains an

important open problem, with considerable room for improvements.

To better evaluate where improvements are necessary one also needs

to objectively compare the errors in the high-quality models produced

by current methods to the uncertainties of experimentally determined

structures, a difficult task so far attempted only for AF2 predicted

structures of single protein chains.59
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