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Abstract

We continue the study initiated in Albiac and Wojtaszczyk (2006) of properties related to greedy
ases in the case when the constants involved are sharp, i.e., in the case when they are equal to 1. Our
ain goal here is to provide an example of a Banach space with a basis that satisfies Property (A) but

ails to be 1-suppression unconditional, thus settling Problem 4.4 from Albiac and Ansorena (2017). In
articular, our construction demonstrates that bases with Property (A) need not be 1-greedy even with the
dditional assumption that they are unconditional and symmetric. We also exhibit a finite-dimensional
ounterpart of this example, and show that, at least in the finite-dimensional setting, Property (A) does not
ass to the dual. As a by-product of our arguments, we prove that a symmetric basis is unconditional
f and only if it is total, thus generalizing the well-known result that symmetric Schauder bases are
nconditional.
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1. Introduction

The roots of this paper lie in the analysis of the optimality of the thresholding greedy
lgorithm relative to bases in Banach spaces. This optimality is reflected in the sharpness of the
onstants that appear in the definitions of the different types of greedy-like bases. What justifies
tudying the “isometric” case in general is the fact that various approximation algorithms
onverge trivially when some appropriate constant is 1. By contrast, when this constant is
trictly greater than 1, the problem of convergence can be very difficult to resolve. We mention
s an example the so-called X -greedy algorithm, whose convergence for the normalized Haar
asis of L p[0, 1] (whose unconditional constant is strictly greater than (1) is still an open
roblem. The reader is referred to [8,12] for details and recent developments on this matter.

For the sake of self-reference we next outline the most relevant notions; the reader is referred
o [5], Section 10 or to the recent monograph [4] for more details.

Let B = (xn)∞n=1 be a family of vectors in a Banach space X over the field F = R or C.
Suppose that

(B.1) B is fundamental, i.e., the closure of the span of B is the whole space X,
(B.2) there is a (unique) family B∗

= (x∗
n)∞n=1 in X∗ biorthogonal to B, and

B.3) supn

{
∥xn∥ ,

x∗
n

} < ∞.

Throughout this paper such a family B will be called a basis of X. Sequences B that satisfy
B.1), (B.2), and are total, i.e., the span of B∗ is weak∗-dense in X∗, are called Markushevich
ases. Schauder bases are a particular case of Markushevich bases; however we emphasize that
e do not impose a priori totality to a basis unless we say otherwise.
A greedy ordering for a vector x ∈ X with respect to a basis B is an injective map

ρ :N → N

hose image contains the support of x ,

supp(x) = {n ∈ N : x∗

n(x) ̸= 0},

nd satisfies |x∗

ρ(i)(x)| ≥ |x∗

ρ( j)(x)| if i ≤ j . If the sequence (x∗
n(x))∞n=1 contains several terms

ith the same absolute value then x has multiple greedy orderings. To obtain uniqueness
e impose on ρ the extra assumption that if i < j , then either |x∗

ρ(i)(x)| > |x∗

ρ( j)(x)| or
x∗

ρ(i)(x)| = |x∗

ρ( j)(x)| and ρ(i) < ρ( j). We will refer to this ordering as the natural greedy
rdering for x . With this convention, the mth natural greedy approximation to x is given by

Gm(x) =

m∑
j=1

x∗

ρ( j)(x)xρ( j), m ∈ N, (1.1)

here ρ is the natural greedy ordering. The thresholding greedy algorithm, or TGA for short,
s the sequence of operators (Gm)∞m=1 given by the formula in (1.1).

In order to guarantee the reconstruction of “signals” in X, and thus make the TGA a
∞
easonable method of approximation, we impose the mild requirement that (Gm(x))m=1 converge
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to x for every x ∈ X. Wojtaszczyk [13] (cf. [4, Theorem 4.1]) proved that this condition is
quivalent to the uniform boundedness of the (nonlinear and unbounded) operators Gm , i.e,

∥Gm(x)∥ ≤ C ∥x∥ , x ∈ X, m ∈ N, (1.2)

or some constant C ≥ 1. Following [10], we call such bases C-quasi-greedy.
To gauge the performance of the TGA it is convenient to compare the accuracy of the greedy

pproximation with the best possible one. Given x ∈ X and m ∈ N we consider two different
heoretical approximation errors,

σm(x) = inf

{x −

∑
n∈A

αn xn

 :αn ∈ F, |A| ≤ m

}
,

nd

σ̃m(x) = inf {∥x − SA(x)∥ : |A| ≤ m} ,

here SA(x) =
∑

n∈A x∗
n(x) xn is the natural projection onto the linear span of {xn : n ∈ A}.

Konyagin and Temlyakov [10] defined a basis to be greedy if Gm(x) is essentially the best
m-term approximation to x using basis vectors, i.e., there exists a constant C ≥ 1 such that

∥x − Gm(x)∥ ≤ Cσm(x), x ∈ X, m ∈ N. (1.3)

The smallest constant C in (1.3) is the greedy constant of the basis and will be denoted by Cg .
If Cg ≤ C , we say that B is C-greedy. Note that if Cg = 1, then ∥x − Gm(x)∥ = σm(x) for
ll x ∈ X and m ∈ N, so the greedy algorithm gives the best m-term approximation for each

x ∈ X.
Konyagin and Temlyakov [10] showed that greedy bases can be intrinsically characterized

as unconditional bases with the additional property of being democratic, i.e., there exists a
onstant ∆ ≥ 1 so that

∥1A∥ ≤ ∆ ∥1B∥ .

henever |A| = |B|. Here, as is customary, we use the notation

1A = 1A[B,X] =

∑
n∈A

xn.

ectors whose coefficients have modulus one are also relevant in greedy approximation.
Given ε = (εn)n∈A in E = {λ ∈ F : |λ| = 1}, we set

1ε,A = 1ε,A[B,X] =

∑
n∈A

εn xn.

Recall also that a basis (xn)∞n=1 is unconditional if for x ∈ X, the series
∑

∞

i=1 x∗

π (i)(x)xπ (i)

converges to x for any permutation π of N. It is well known that the property of being
unconditional is equivalent to that of being suppression unconditional, which means that there
is a constant K ≥ 1 such that

∥SA(x)∥ ≤ K ∥x∥ , A ⊂ N, |A| < ∞, x ∈ X. (1.4)

The smallest constant K in (1.4) is called the suppression unconditional constant of the
basis and is denoted by Ks . If (1.4) holds for a constant K we say that B is K -suppression

nconditional. If (x )∞ is unconditional then it is C-lattice unconditional, that is, there is a
n n=1

3
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constant C ≥ 1 so that
∞∑

n=1

bn xn

 ≤ C


∞∑

n=1

an xn

 , (an)∞n=1 ∈ c00, |bn| ≤ |an| . (1.5)

e denote by Kl the optimal constant C in (1.5).
Dilworth et al. [7] relaxed the condition defining greedy bases by comparing, for each x

and m, the error in the approximation of x by Gm(x) with the best theoretical approximation
error from projections, σ̃m(x). They defined a basis to be C-almost greedy, 1 ≤ C < ∞, if

∥x − Gm(x)∥ ≤ C σ̃m(x), x ∈ X, m ∈ N. (1.6)

Going back to the optimality issues that are our concern in this note, it is straightforward
o check that if B is an orthonormal basis of a Hilbert space then B is 1-greedy. However,
ue to computational issues, the verification of condition (1.3) can be very hard even for well-
nown bases in Banach spaces. Answering a question raised by Wojtaszczyk in [14], the authors
ound in [6] the following characterization of 1-greedy bases in the spirit of the aforementioned
haracterization of greedy bases by Konyagin and Temlyakov.

heorem 1.1 ([6, Theorem 3.4]). A basis of a Banach space X is 1-greedy if and only if it is
-suppression unconditional and satisfies Property (A).

Property (A) is a weak symmetry condition that was introduced in [6] and that was
eneralized to the concept of symmetry for largest coefficients in [2], Definition 3.1. A basis

is symmetric for largest coefficients if there is a constant C ≥ 1 such that1ε,A + f
 ≤ C

1ε,B + f
 (1.7)

or all f ∈ X with maxn
⏐⏐x∗

n( f )
⏐⏐ ≤ 1, all A, B ⊂ N with |A| ≤ |B| < ∞ and A ∩ B =

A ∩ supp( f ) = B ∩ supp( f ) = ∅, and all ε ∈ EA∪B . If we can choose C = 1 in (1.7) we say
hat B has Property (A).

The neat description of 1-greedy bases provided by Theorem 1.1 inspired further work in the
sometric theory of greedy bases which led to the following characterizations of 1-quasi-greedy
ases and 1-almost greedy bases precisely in terms of the same ingredients but in disjoint
ccurrences.

heorem 1.2 ([1, Theorem 2.1]). A basis of a Banach space is 1-quasi-greedy if and only if
t is 1-suppression unconditional.

heorem 1.3 ([2, Theorem 2.3]). A basis of a Banach space is 1-almost greedy if and only if
t satisfies Property (A).

Since almost greedy bases are in particular quasi-greedy, one could expect that when the
lmost greedy constant is sharp, the implication would still hold, i.e., that being 1-almost
reedy implies being 1-quasi-greedy. In light of Theorems 1.2 and 1.3, we arrive naturally
t the following question, which enquires about the overlapping of the two properties that
haracterize 1-greedy bases.
uestion 1.4. Does Property (A) imply unconditionality with Ks = 1 (see [2, Problem 4.4])?

4
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Theorem 1.2 is somewhat surprising since it connects nonlinear properties in approximation
heory in Banach spaces (quasi-greediness) with linear properties (such as unconditionality).
esides, it exhibits how an isometric property could lead to an improvement of the qualitative
ehaviour of a basis. It is therefore natural to ask whether this is also the case with almost
reedy bases.

uestion 1.5. Is there a conditional basis with Property (A) (see [2], Problem 4.4)?

If we restrict our attention to unconditional bases, the study of the relation between Property
A) and unconditionality reduces to the problem of determining whether Property (A) implies
ome upper bound for the unconditionality constant of the basis.

uestion 1.6. Does an unconditional basis with Property (A) always have Ks = 1?

Observe that a negative answer to either Question 1.5 or 1.6 is also a negative answer to
uestion 1.4. In this note, we answer Questions 1.4 and 1.6 negatively by renorming the space

1 so that the standard unit vector basis still satisfies Property (A) and is unconditional with
Ks > 1.

heorem 1.7 (Main Theorem). There exists a basis B equivalent to the canonical basis of
1 which satisfies Property (A) but fails to be 1-suppression unconditional. Moreover, B is
-symmetric and 1-bidemocratic.

We observe that in our context a C-symmetric basis, 1 ≤ C < ∞, means a basis (xn)∞n=1
uch that

∞∑
n=1

an xn

 ≤ C


∞∑

n=1

an xπ (n)


or any sequence of scalars (an)∞n=1 ∈ c00 and any permutation π of N. Recall that a basis is
aid to be C-bidemocratic if1ε,A[B,X]

 1δ,B[B∗,X∗]
 ≤ Cm

or all A, B ⊂ N with max{|A| , |B|} ≤ m ∈ N, all ε ∈ EA, and all δ ∈ EB . Note that
-bidemocracy does not imply Property (A). Indeed, let w = (wn)∞n=1 be the weight defined by

m
n=1wn =

√
m for all m ∈ N. Then the canonical basis of the ℓ2-direct sum of the Hilbert

pace ℓ2 and the Lorentz sequence space d1(w) (which is the space ℓ2,1 up to renorming) is
learly 1-bidemocratic but fails to have Property (A). In fact, [3, Proposition 3.17] provides
more “extreme” example, namely, a 1-bidemocratic basis which is not quasi-greedy. By [4,
orollary 5.8], this basis is symmetric with largest coefficients. By Theorem 1.3, no renorming
f X will confer Property (A) on this basis.

Combining Theorem 1.7 with Theorem 1.1 yields the following consequence.

orollary 1.8. A basis with Property (A) needs not be 1-greedy, and a 1-almost greedy basis
eeds not be 1-quasi-greedy.

The paper is structured as follows. In Section 2, given a weight w we construct a space
Dw that will play a central role in our subsequent arguments; we examine properties of these
paces and their canonical bases. In Section 3 we use the spaces Dw for appropriate w to
onstruct an example that proves Theorem 1.7. Specifically, we present a 1-symmetric distortion
5
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of the canonical ℓ1-basis which has Property (A) but is not 1-suppression unconditional (see
Proposition 3.4). We also discuss the possible values of the suppression unconditionality
constant.

This construction is “rigid” in the sense that any 1-symmetric basis which possesses
Property (A) while failing 1-suppression unconditionality must be equivalent to the ℓ1-basis
Proposition 3.7). Along the way we show that a symmetric basis is unconditional if and only
f it is total (Corollary 3.8).

Finally, in Section 4 we turn our attention to the finite-dimensional setting. Modifying our
pproach from Section 3 we construct a basis in Rd equipped with a certain norm which has
roperty (A) but fails to be 1-suppression unconditional. We also provide an example evincing

hat Property (A) does not dualize at least for bases in finite-dimensional spaces.

. Building bases with property (A)

In this section we deal with Banach spaces X for which the unit vector system E = (e j )∞j=1
f FN is a basis. This means that X ⊂ FN, c00 is a dense subspace of X, the coordinate
unctionals E∗

= (e∗

j )
∞

j=1, defined for each j ∈ N by e∗

j ( f ) = a j for all f = (a j )∞j=1 ∈ c00,
xtend to continuous functionals on X, and

sup
j

{max{
e j


X ,
e∗

j


X∗

}} < ∞.

iven such a space X and A ⊂ N finite, the coordinate projection on A with respect to E is
he extension to X of the map

SA : c00 → c00, f ↦→ f χA,

here χA is the indicator function of A. Given ε ∈ EA, we put

1ε,A = 1ε,A[E,X], 1∗

ε,A = 1ε,A[E∗,X∗.]

Given a ∈ F, its sign will be the number sign(a) = a/ |a| ∈ E, with the convention that
ign(0) = 1.

A weight will be a nonincreasing sequence w = (w j )∞j=1 of positive scalars with w1 = 1.
e do not assume that lim j w j = 0. Quite the contrary, examples with

w∞ := lim
j
w j > 0.

re essential to us. We shall use the notation

sn =

n∑
j=1

w j , n ∈ N,

or the so-called primitive weight of w. Note that

w j ≤
s j

j
, j ∈ N,

lim
n

sn

n
= w∞,

and (sn/n)∞n=1 is nonincreasing.
Given E ⊂ N with |E | = n < ∞, we denote by Π (E) the set consisting of all bijections

from the set

N := { j ∈ N : j > n}
>n

6
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onto N \ E . For f = (a j )∞j=1 ∈ c00, we will use the following notation

Φ1(E; f ) =
sn

n

∑
j∈E

⏐⏐a j
⏐⏐ ,

Φ2(E; f ) = sup
ϕ∈Π (E)

⏐⏐⏐⏐⏐⏐
∞∑

j=n+1

aϕ( j)w j

⏐⏐⏐⏐⏐⏐ ,
Φ(E; f ) = Φ1(E; f ) + Φ2(E; f ),

ith the conventions that s0 = 0, s0/0 = ∞, that any sum over an empty set is null, and that
· ∞ = 0. In particular, Φ1(∅; f ) = 0.
Now, given a weight w = (w j )∞j=1, we define

∥ f ∥D,w = sup
E⊂N

|E |<∞

Φ(E; f ).

We point out that, as far as the isomorphic theory is concerned, the way we combine Φ1 and
2 to obtain Φ does not matter. However, using the ℓ1-norm is essential from the isometric

oint of view we will develop below.
Given a permutation π ∈ Π := Π (∅) of N and f = (a j )∞j=1, we put fπ = (aπ ( j))∞j=1. If

f ∈ c0 there is a unique nonincreasing sequence g such that gπ = | f | for a suitable π ∈ Π .
e call g the nonincreasing rearrangement of f .
Let us consider the Marcinkiewicz norm associated with a weight w,

∥ f ∥m,w = sup
E⊂N

|E |<∞

Φ1(E; f ) = sup
n∈N

sn

n

n∑
j=1

b j ,

nd the Lorentz norm

∥ f ∥1,w =

∞∑
j=1

b j w j ,

here (b j )∞j=1 is the nonincreasing rearrangement of f ∈ c0. Notice that1ε,Am,w =
1ε,A1,w = sn, |A| = n < ∞, ε ∈ EA. (2.1)

The Banach space consisting of all f ∈ c0 such that ∥ f ∥1,w < ∞ will be denoted by d1(w).
We start by recording some properties of ∥·∥D,w.

Lemma 2.1. Let w be a weight.

(i) ∥ f + g∥D,w ≤ ∥ f ∥D,w + ∥g∥D,w for all f , g ∈ c00.
(ii) ∥λ f ∥D,w = |λ| ∥ f ∥D,w for all λ ∈ F and f ∈ c00.

(iii) For all f ∈ c00, all E ⊂ N finite, and all π ∈ Π ,

Φ1(E; fπ ) = Φ1(π (E); f ), Φ2(E; fπ ) = Φ2(π (E); f ).

(iv) ∥ fπ∥D,w = ∥ f ∥D,w for all f ∈ c00 and all π ∈ Π .
| | ∥ ∥ ∥ ∥
(v) If f ≤ g ∈ c00 then f D,w ≤ g D,w.

7
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(vi) If f ∈ c00 is nonnegative and |E | = n then

Φ2(E; f ) =

∞∑
k=1

bkwk+n,

where (b j )∞j=1 is the nonincreasing rearrangement of SN\E ( f ).
(vii) If the sign of the components of f = (a j )∞j=1 ∈ c00 is constant on the complement of a

set E and F ⊂ N \ E is a greedy set of SN\E ( f ) then

Φ(D; f ) ≤ Φ(E ∪ F; f )

for every set E ⊂ D ⊂ N with |D| = |E | + |F |.
viii) If the sign of the components of f = (a j )∞j=1 is constant on the complement of a greedy

set E, then

Φ(D; f ) ≤ Φ(E; f )

for every finite set D ⊇ E.
(ix) ∥ f ∥D,w = ∥ f ∥1,w for all f ∈ c00 having constant sign.
(x) ∥ f ∥m,w ≤ ∥ f ∥D,w ≤ ∥ f ∥1,w for all f ∈ c00.

(xi) ∥1εA∥D,w = sm for all A ⊂ N with m = |A| < ∞ and all ε ∈ EA.
(xii) If f ∈ c00 then⏐⏐1∗

ε,A( f )
⏐⏐ ≤ ∥ f ∥D,w m/sm

for all A ⊂ N with m = |A| < ∞ and all ε ∈ EA.
xiii)

e j


D,w = 1 for all j ∈ N.

(xiv)
⏐⏐⏐e∗

j ( f )
⏐⏐⏐ ≤ ∥ f ∥D,w for all j ∈ N and f ∈ c00.

roof. (i), (ii), (iii), (v), and the left-side of (x) are clear; (iv) is a consequence of (iii), and
vi) follows from the rearrangement inequality.

We prove (vii). Without loss of generality we assume that D ∩ F = ∅. Otherwise we would
eplace E and F with E ′

= E∪(D∩F) and F ′
= F\(D∩F). Then D∩F ′

= ∅, E∪F = E ′
∪F ′,

nd F ′ is a greedy set for SN\E ′ ( f ).
Pick a bijection σ : F → D \ E . Set n = |D|. Given ϕ ∈ Π (D), let ψ :N>n → N \ (E ∪ F)

e the map defined by ψ( j) = σ (ϕ( j)) if j ∈ G := ϕ−1(F) and ψ( j) = ϕ( j) otherwise. Then
y the constant sign of the coefficients (a j ) j /∈E , and by the greedy property of F , we have
a j − aσ ( j)| = |a j | − |aσ ( j)| whenever j ∈ F . Therefore,⏐⏐⏐⏐⏐⏐

∞∑
j=n+1

aϕ( j)w j

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
∞∑

j=n+1

aψ( j)w j +

∑
j∈G

(
aϕ( j) − aσ (ϕ( j))

)
w j

⏐⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐
∞∑

j=n+1

aψ( j)w j

⏐⏐⏐⏐⏐⏐+
∑
j∈G

⏐⏐aϕ( j) − aσ (ϕ( j))
⏐⏐w j

≤

⏐⏐⏐⏐⏐⏐
∞∑

j=n+1

aψ( j)w j

⏐⏐⏐⏐⏐⏐+ sn

n

∑
j∈G

⏐⏐aϕ( j) − aσ (ϕ( j))
⏐⏐

=

⏐⏐⏐⏐⏐⏐
∞∑

aψ( j)w j

⏐⏐⏐⏐⏐⏐+ sn

n

∑(⏐⏐a j
⏐⏐− ⏐⏐aσ ( j)

⏐⏐)

j=n+1 j∈F

8
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⏐⏐⏐⏐⏐⏐
∞∑

j=n+1

aψ( j)w j

⏐⏐⏐⏐⏐⏐+ sn

n

⎛⎝∑
j∈F

⏐⏐a j
⏐⏐− ∑

j∈D\E

⏐⏐a j
⏐⏐⎞⎠

=

⏐⏐⏐⏐⏐⏐
∞∑

j=n+1

aψ( j)w j

⏐⏐⏐⏐⏐⏐+ Φ1(E ∪ F; f ) − Φ1(D; f ).

ince ψ ∈ Π (E ∪ F),

Φ2(D; f ) ≤ Φ2(E ∪ F; f ) + Φ1(E ∪ F; f ) − Φ1(D; f ),

s desired.
Taking into consideration (vii), it suffices to prove (viii) in the case when D is a greedy set

f f . To that end, by induction it suffices to consider the case when D \ E is a singleton.
et (b j )∞j=1 be the nonincreasing rearrangement of f . If n = |E |, then (bn+ j )∞j=1 is the
onincreasing rearrangement of SN\E ( f ) and (bn+ j+1)∞j=1 is the nonincreasing rearrangement
f SN\D( f ). By (vi),

Φ(E; f ) =
sn

n

n∑
j=1

b j +

∞∑
j=n+1

b jw j ,

Φ(D; f ) =
sn+1

n + 1

⎛⎝n+1∑
j=1

b j

⎞⎠+

∞∑
j=n+2

b jw j .

ince sn+1/(n + 1) − sn/n ≤ 0 and b j ≥ bn+1 for all j = 1, . . . , n,

Φ(D; f ) − Φ(E; f ) =

(
sn+1

n + 1
−

sn

n

) n∑
j=1

b j + bn+1

(
sn+1

n + 1
− wn+1

)
≤ bn+1

(
n
(

sn+1

n + 1
−

sn

n

)
+

sn+1

n + 1
− wn+1

)
= 0.

(ix) follows from the combination of (vi) and (viii). In turn, the right-hand side inequality
n (x) is a consequence of combining (v) and (ix). In light of (2.1), (xi) is consequence of (x).
ince the mere definition of the norm gives

sm

m

⏐⏐1∗

ε,A( f )
⏐⏐ ≤ ∥ f ∥m,w , f ∈ c00, |A| = m,

(xii) also follows from (x). Finally, (xiii) is a particular case of (xi), while (xiv) is a particular
case of (xii). □

Combining Lemma 2.1(i), (ii), (xi) and (xiv) gives that (c00, ∥·∥D,w) is a normed space, and
the unit vector system is a basis of its completion.

Definition 2.2. We define Dw as the sequence space we obtain by completing (c00, ∥·∥D,w).

Given f = (a j )∞j=1 ∈ c00, put

E f = { j ∈ N :
⏐⏐a j
⏐⏐ = ∥ f ∥∞}.
9
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Lemma 2.3. Let w be a weight and f = (a j )∞j=1 ∈ c00. Then

∥ f ∥D,w = sup
E f ⊂E⊂N
|E |<∞

Φ1(E; f ) + Φ2(E; f ).

Proof. Without loss of generality we assume that ∥ f ∥∞ = 1. It suffices to prove that if E ⊂ N
atisfies n = |E | < ∞ and k ∈ E f \ E , then

Φ1(E; f ) + Φ2(E; f ) ≤ Φ1(E ∪ {k}; f ) + Φ2(E ∪ {k}; f ). (2.2)

o that end, we pick ϕ ∈ Π (E). Let p ∈ N>n be such that ϕ(p) = k. Let ψ ∈ Π (E ∪ {k}) be
he map given by

ψ( j) =

{
ϕ( j) if j ̸= p,
ϕ(n + 1) if j = p.

e have⏐⏐⏐⏐⏐⏐
∞∑

j=n+1

aϕ( j)w j −

∞∑
j=n+2

aψ( j)w j

⏐⏐⏐⏐⏐⏐ =
⏐⏐(wn+1 − wp)aϕ(n+1) + wpaϕ(p)

⏐⏐ ≤ wn+1 − wp + wp

= wn+1.

ence,

Φ2(E; f ) ≤ Φ2(E ∪ {k}; f ) + wn+1. (2.3)

n turn, since the map

u ↦→
sn+1

n + 1
(1 + u) −

sn

n
u, u ≥ 0,

is nonincreasing, and S :=
∑

j∈E

⏐⏐a j
⏐⏐ ≤ n, we have

Φ1(E ∪ {k}; f ) −Φ1(E; f ) =
sn+1

n + 1
(1 + S) −

sn

n
S ≥

sn+1

n + 1
(1 + n) −

sn

n
n = wn+1. (2.4)

ombining (2.3) and (2.4) gives us (2.2). □

roposition 2.4. Given a weight w, the unit vector system of Dw has Property (A) and is
-bidemocratic.

roof. The isometric bidemocracy follows from Lemma 2.1(xi) and (xii). To obtain Property
A), combine Lemma 2.3 with Lemma 2.1(iii). □

In order to compute the norm of specific vectors in Dw, it will be convenient to use the
ollowing improvement of Lemma 2.3.

emma 2.5. Let w be a weight and f = (a j )∞j=1 ∈ c00. Then

∥ f ∥D,w = sup
E f ⊂E⊂supp( f )

Φ1(E; f ) + Φ2(E; f ).

roof. It suffices to prove that the inequality
Φ1(E; f ) + Φ2(E; f ) ≤ Φ1(E \ {k}; f ) + Φ2(E \ {k}; f ).

10
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holds for all E ⊂ N with n := |E | < ∞ and all k ∈ E \ supp( f ). To that end, pick ϕ ∈ Π (E),
nd let ψ ∈ Π (E \ {k}) be the map given by

ψ( j) =

{
k if j = n,
ϕ( j) if j ≥ n + 1.

ince ak = 0,
∞∑

j=n+1

aϕ( j)w j =

∞∑
j=n

aψ( j)w j .

ence, Φ2(E; f ) ≤ Φ2(E \ {k}; f ). Since Φ1(E; f ) ≤ Φ1(E \ {k}; f ), we are done. □

. The suppression unconditionality constant of bases with property (A)

Given a weight w, we denote by Kw the suppression unconditionality constant of the unit
ector system of the Banach space Dw constructed in Section 2. The following lemma will
ecome instrumental in obtaining a uniform bound for Kw.

emma 3.1. Let w be a weight, f ∈ c00, and A ⊂ N. Then:

(i) w∞ ∥ f ∥1 ≤ Φ1(F; f ) for some F ⊂ N finite, and
ii) Φ2(E; SA( f )) ≤ Φ2(E; f ) + w∞ ∥SAc ( f )∥1 for every E ⊂ N finite.

roof. To prove (i) we choose F = supp( f ) and set n = |F |. Then

Φ1(F; f ) =
sn

n
∥ f ∥1 ≥ wn ∥ f ∥1 ≥ w∞ ∥ f ∥1 .

To see (ii) we pick ϕ ∈ Π (E). Let us put n = |E |,

B = ϕ−1(supp( f ) ∩ A), and D = ϕ−1(supp( f ) \ A).

f ϕ−1(supp( f )) = ∅, i.e., supp( f ) ⊂ E , then Φ2(E; SA( f )) = 0 and there is nothing to prove.
ssume that ϕ−1(supp( f )) ̸= ∅; we can then let n0 = maxϕ−1(supp( f )) and m ∈ N>n0 . Select
set D1 ⊂ N>m such that |D1| = |D| and a bijection π : N>n → N>n such that π (D) = D1,
(D1) = D, and π ( j) = j for j /∈ D ∪ D1. Consider now σ = ϕ ◦ π . Since D1 ⊂ N>m and
(D1) = supp( f ) \ A,⏐⏐⏐⏐⏐⏐

∞∑
j=n+1

aϕ( j)χA(ϕ( j))w j −

∞∑
j=n+1

aσ ( j)w j

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
∑
j∈B

aϕ( j)w j −

∑
j∈D1∪B

aσ ( j)w j

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
∑
j∈D1

aσ ( j)w j

⏐⏐⏐⏐⏐⏐
≤ wm ∥SAc ( f )∥ 1.
11
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Applying the triangle law and letting m tend to infinity we obtain⏐⏐⏐⏐⏐⏐
∞∑

j=n+1

aϕ( j)χA(ϕ( j))w j

⏐⏐⏐⏐⏐⏐ ≤ Φ2(E; f ) + w∞ ∥SAc ( f )∥1 ,

nd so (ii) holds. □

roposition 3.2. Let w be a weight. Then Kw ≤ 2. Moreover, if w∞ = 0 then Kw = 1.

roof. Pick f ∈ c00 and A ⊂ N. Let F be as in Lemma 3.1(i) relative to the vector SAc ( f ).
iven E ⊂ N finite, Lemma 3.1(ii) yields

Φ(E; SA( f )) ≤ Φ1(E; SA( f )) + Φ2(E; f ) + w∞ ∥SAc ( f )∥1

≤ Φ1(E; SA( f )) + Φ2(E; f ) + Φ1(F; SAc ( f ))
≤ Φ1(E; f ) + Φ2(E; f ) + Φ1(F; f )
≤ Φ(E; f ) + Φ(F; f ).

oreover, if w∞ = 0 the term Φ(F, f ) can be dropped. □

Before proceeding further we make a stop en route to give a nice equivalent norm on Dw.

roposition 3.3. If w is a weight then Dw = d1(w). Quantitatively,

∥ f ∥D,w ≤ ∥ f ∥1,w ≤ C ∥ f ∥D,w , f ∈ c00,

here C = 4 if F = R and C = 8 if F = C. Further, in the case when w∞ = 0, we can take
= 2 if F = R and C = 4 if F = C.

roof. Let Υ = 2 if F = R and Υ = 4 if F = C. Also, let K = 1 if w∞ = 0 and K = 2 if
∞ > 0. The left-hand side inequality follows from Lemma 2.1(x). To see the right-hand side

nequality, pick f ∈ c00. By Lemma 2.1(ix),

∥ f ∥1,w ≤
ℜ+( f )


1,w +

ℜ−( f )


1,w +
ℑ+( f )


1,w +

ℑ−( f )


1,w

=
ℜ+( f )


D,w +

ℜ−( f )


D,w +
ℑ+( f )


D,w +

ℑ−( f )


D,w

≤ KΥ ∥ f ∥D,w . □

In light of Proposition 3.2, in order to find bases that are not 1-suppression unconditional
espite having Property (A), we must focus on the case where w∞ > 0. In this situation, by
roposition 3.3, Dw = d1(w) = ℓ1 up to an equivalent norm. We could have come to this
onclusion without invoking this result. Indeed,

w∞ ∥ f ∥1 ≤ ∥ f ∥m,w ≤ ∥ f ∥D,w ≤ ∥ f ∥1,w ≤ ∥ f ∥1

or all f ∈ c00. These estimates for ∥·∥D,w yield that the unconditionality constant of the unit
ector system of Dw does not exceed 1/w∞. Hence, by Proposition 3.2,

Kw ≤ min
{

2,
1

w∞

}
.

Theorem 1.7 will follow once we show that Kw > 1 for a suitable weight w.

roposition 3.4. For each K < 3/2 there exists a weight w so that K ≥ K .
w

12
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Proof. Fix ω ∈ (0, 1) and consider the weight

w = (1, ω, ω, . . .).

e shall estimate Kw by comparing the norms of the vectors

fn,ω = e1 + ω1An , and gn,ω = e1 + ω1An − ω1Bn ,

here An = N ∩ [2, n + 1] and Bn = N ∩ [n + 2, 2n + 1]. By Lemma 2.1(ix), fn,ω


D,w = 1 + nω2.

y Lemma 2.5 to evaluate
gn,ω

 we need only consider the case {1} ⊂ E ⊂ {1} ∪ An ∪ Bn .
e have

Φ1(gn,ω; E) =
(1 + ω(2n − a − b))2

2n + 1 − a − b
, Φ2(gn,ω; E) = |a − b|ω2,

here a = |An \ E | and b = |Bn \ E |. Hence, for a + b fixed, the maximum value of
(gn,ω; E) is attained when a attains its minimum value. Therefore, combining Lemma 2.3
ith Lemma 2.1(iii) givesgn,ω


D,w = sup

0≤k≤2n
Φ(gn,ω; Ek),

here Ek = [1, k + 1] ∩ N. Moreover, if ak and bk are the integers a and b above defined
hat correspond to the set E = Ek , then ak = n − k and bk = n for all k = 0, . . . , n. By
emma 2.1(viii),gn,ω


D,w = sup

0≤k≤n
Φ(gn,ω; Ek) = sup

0≤k≤n
α(ω, k),

here

α(ω, t) =
(1 + ωt)2

t + 1
+ ω2t, 0 ≤ t ≤ n.

he expression

α(ω, t) =
(1 − ω)2

1 + t
+ 2ω2t + 2ω − ω2

shows that the function α(ω, ·) is convex hence the maximum value of α(ω, t), 0 ≤ t ≤ n, is
ttained either at the endpoint t = 0 or the endpoint t = n. Therefore,gn,ω


D,w = max

{
1,

(1 + nω)2

n + 1
+ nω2

}
.

rom here it follows that

Kw ≥ δ(n, ω) :=

 fn,w


D,wgn,w


D,w

= min {β(n, ω), γ (n, ω)} ,

where

β(n, ω) = 1 + nω2, γ (n, ω) =
1 + nω2

nω2 + (1 + nω)2/(n + 1)
.

or n fixed, the function β(n, ω), 0 ≤ ω ≤ 1, increases from 1 to 1 + n while the function
(n, ω), 0 ≤ ω ≤ 1, decreases from n + 1 to (1 + n)/(1 + 2n). Hence, δ(n, ω) attains its
aximum value at the only point ω = ωn ∈ (0, 1) that satisfies

β(n, ω) = γ (n, ω).
13
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We infer that ωn is the positive root of the second order polynomial ω ↦→ (2n +1)ω2
+2ω−1,

hat is,

ωn =
−1 +

√
2n + 2

2n + 1
=

1

1 +
√

2n + 2
.

Summing up, the weight w = (1, ωn, ωn, . . .) satisfies

Kw ≥ Kn := 1 + nω2
n = 1 + (1 − 2ωn)

n
2n + 1

.

s (ωn)∞n=1 decreases from w1 = 1/3 to zero, (Kn)∞n=1 increases from K1 = 10/9 to 3/2. □

Remark 3.5. Once we know there is a Banach space X with a basis B = (xn)∞n=1 having
Property (A) and Ks > 1, one can ask whether this inequality will be fulfilled by vectors with
small support. It is easy to check that if g ∈ X is supported on a set of cardinality at most
2, then ∥SA(g)∥ ≤ ∥g∥ for any set A. This is so because if g = a xk + b xn with k ̸= n and
a| ≤ |b|, then due to Property (A), ∥g∥ = ∥−axk + bxn∥. Hence, by the triangle law,

∥g∥ ≥ ∥b xn∥ = |b| ∥xn∥ ≥ |a| ∥xk∥ = ∥a xk∥ .

In contrast, one can witness the inequality Ks > 1 on vectors supported on three elements.
n fact, the proof of Proposition 3.4 gives g ∈ Dw and A ⊂ N with |supp(g)| = 3 and
SA(g)∥ / ∥g∥ ≥ 10/9. We do not know whether this is optimal. However, it is so if we restrict
urselves to Dw spaces, and their elements g = ga = e1 + a e2 − a e3, 0 < a < 1. Indeed,
etting fa = e1 + a e2, we can show that the maximum value of the ratio ∥ fa∥D,w / ∥ga∥D,w
hen a runs over (0, 1) and w runs over all possible weights is 10/9, and its attained when
= 1/3 and w = (1, 1/3, 1/3, 1/3, . . . ).

The example used to prove Proposition 3.4 is “tight” in the sense that 1-symmetric
arkushevich bases which are not equivalent to the standard ℓ1-basis are 1-suppression

nconditional. Proposition 3.7 substantiates this assertion. Before stating it, we alert the reader
hat in spite of the fact that symmetric Schauder bases are always unconditional (see, e.g.,
11, Section 3.a]), there exist symmetric bases that are not unconditional (see Example 3.9). A
tandard argument permits to obtain that a symmetric basis is C-symmetric for some C ≥ 1
see, e.g., [5, Proof of Lemma 9.2.2]), whence it is 1-symmetric under a suitable renorming
f the space. We also deduce that any symmetric basis is seminormalized. Since symmetry
ualizes well, any symmetric basis satisfies (B.3). Another important property of symmetric
ases that still holds in our more general framework is the boundedness of the averaging
rojections (see, e.g., [11, Proposition 3.a.4]).

emma 3.6. Suppose B = (xn)∞n=1 is a 1-symmetric basis of a Banach space X. If B is not
nconditional then for every δ > 0 there are λ ∈ E and m ∈ N such that

N (A, B, λ) :=

 1A

∥1A∥
− λ

1B

∥1B∥

 ≤ δ (3.1)

for any disjoint sets A, B ⊂ N of finite cardinality of at least m.

Proof. Fix 0 < ε < 1/2 so that 2ε/(1 − ε) ≤ δ. By the lack of unconditionality there are
finitely disjointly supported vectors f and g such that ∥ f ∥ = 1, ∥ f + g∥ ≤ ε. Let α and β
14
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be the signs of the sums of the coefficients of f and g, respectively. Pick A ⊃ A0 := supp( f )
nd B ⊃ B0 := supp(g) disjoint and set

f0 = Ave( f, A)1A, g0 = Ave(g, B)1B .

ince the averaging projections are contractive [11, Proposition 3.a.4], ∥ f + g0∥ ≤ ε and
f0 + g0∥ ≤ ε. The former inequality implies 1 − ε ≤ ∥g0∥ ≤ 1 + ε while the latter implies

hat 1 − 2ε ≤ ∥ f0∥ ≤ 1 + 2ε. The identity

α1A

∥1A∥
+
β1B

∥1B∥
=

f0

∥ f0∥
+

g0

∥g0∥
=

∥g0∥ − ∥ f0∥

∥ f0∥ ∥g0∥
f0 +

f0 + g0

∥g0∥

ields the inequalityα 1A

∥1A∥
+ β

1B

∥1B∥

 ≤
| ∥g0∥ − ∥ f0∥ |

∥ f0∥ ∥g0∥
∥ f0∥ +

∥ f0 + g0∥

∥g0∥

≤
2 ∥ f0 + g0∥

∥g0∥
≤

2ε
1 − ε

≤ δ,

o that A and B satisfy (3.1) with λ = −α−1β. Since the basis is 1-symmetric, N (A, B, λ)
nly depends on |A|, |B|, and λ provided that A and B are disjoint. Hence (3.1) still holds for

A and B disjoint subsets of N of finite cardinality of at least m := max{|A0| , |B0|}. □

Proposition 3.7. Suppose B = (xn)∞n=1 is a 1-symmetric total basis in a Banach space X
which fails to be 1-suppression unconditional. Then B is equivalent to the canonical ℓ1-basis.

Proof. Suppose B is a 1-symmetric basis which is not 1-suppression unconditional. Note
first that B cannot be weakly null. Indeed, suppose it were. As B fails to be 1-suppression
unconditional, we can find finitely disjointly supported vectors x and y such that ∥x∥ >

∥x + y∥. For each p ∈ N, let yp be the pth right-shift of y, i.e.,

yp =

∞∑
n=1

x∗

n(y)xn+p.

Since yp is weakly null, limp(x + yp) = x weakly. Therefore,

∥x∥ ≤ lim sup
p

x + yp
 .

For p large enough x and yp are disjointly supported, whence, by symmetry, ∥x + y∥ =x + yp
. Summing up, we obtain

∥x∥ ≤ ∥x + y∥ ,

a contradiction.
Thus, there exist a subsequence B0 := (xni )

∞

i=1 of B, a linear functional x∗
∈ X∗ with

∥x∗∥ = 1, and α > 0 such that

ℜ(x∗(xni )) ≥ α, i ∈ N.

Then for any sequence (ai )∞i=1 of nonnegative scalars, we have
∞∑

ai xni

 ≥ ℜ

(
x∗

(
∞∑

ai xni

))
≥ α

∞∑
ai . (3.2)
i=1 i=1 i=1

15
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By way of contradiction, assume that B is not an unconditional basis. Pick (δk)∞k=1 in (0,∞)
ith

∑
∞

k=1 δk < ∞. For each k ∈ N, let mk = m(δk) ∈ N and λk = λ(δk) ∈ E be the numbers
provided by Lemma 3.6. Set m0 = 1 and pick a sequence (Ak)∞k=1 consisting of pairwise
disjoint subsets of N with max{mk,mk−1} ≤ |Ak | < ∞. We then have 1Ak1Ak

 − λk
1Ak+11Ak+1


 ≤ δk, k ∈ N.

It follows that the sequence (hk)∞k=1 defined by

hk =

(
k−1∏
i=1

λi

)
1Ak1Ak

 , k ∈ N,

s Cauchy and does not converge to zero. Since limk x∗
n(hk) = 0 for all n ∈ N, B is not a total

asis. This contradiction shows that B is unconditional. Therefore, by (3.2), B0 is equivalent
o the canonical ℓ1-basis. Since unconditional symmetric bases are subsymmetric (see [11,
roposition 3.a.3]), B is also equivalent to the canonical ℓ1-basis. □

We rely on our analysis of symmetric bases (not necessarily Schauder) to generalize the
forementioned classical result that symmetric Schauder bases are unconditional.

orollary 3.8. Given a symmetric basis B of a Banach space X, the following are equivalent

(i) B is an unconditional basis.
(ii) B is bidemocratic.

(iii) B is super-democratic.
(iv) B is unconditional for constant coefficients.
(v) B is a Markushevich basis.

roof. Using [11, Proposition 3.a.6], (i) implies (ii). By [4, Section 5], (ii) implies (iii), and
iii) implies (iv). To establish (iv) ⇒ (i), suppose (i) fails. By renorming, we can assume that

is 1-symmetric. Given δ > 0, use Lemma 3.6 to pick λ ∈ E, and A and B disjoint subsets
f N with |A| = |B| < ∞ and N (A, B, λ) ≤ δ. Since, by 1-symmetry, ∥1A∥ = ∥1B∥,

∥1A − λ1B∥ ≤ δ ∥1A∥ .

herefore, (iv) is false as well.
Clearly, (i) implies (v). Finally, if (v) holds, by Proposition 3.7, B is either 1-suppression

nconditional or equivalent to the unit vector system of ℓ1. In both cases (i) holds. □

xample 3.9. Here we provide an example of a 1-symmetric basis which is not unconditional
hence not total, by Corollary 3.8).

Let w = (wn)∞n=1 be a weight. For f = (an)∞n=1 ∈ c00, put

∥ f ∥ = Φ2(∅; f ) = sup
ϕ∈Π

⏐⏐⏐⏐⏐⏐
∞∑
j=1

aϕ( j)w j

⏐⏐⏐⏐⏐⏐ . (3.3)

learly, ∥·∥ is a semi-norm that satisfies max{∥ℜ( f )∥ , ∥ℑ( f )∥} ≤ ∥ f ∥ for all f ∈ c00.
oreover, if f = (a j )∞j=1 is real-valued,

∥ f ∥ = max {Ψ ( f ),Ψ (− f )} ,
16
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a

W
t
o

where

Ψ ( f ) =

∞∑
n=1

b+

j w j − w∞

∞∑
n=1

b−

j ,

nd (b+

j )∞j=1 and (b−

j )∞j=1 denote the nonincreasing rearrangements of f + and f −, respectively.
Then,

Θ( f ) :=

∞∑
j=1

(b+

j + b−

j )(w j − w∞) = Ψ ( f ) + Ψ (− f ) ≤ 2 ∥ f ∥ .

This way, if w is not constant,

|am | ≤ b+

1 + b−

1 ≤
Θ( f )

1 − w∞

≤
2

1 − w∞

∥ f ∥ , m ∈ N.

As a consequence, even if f = (a j )∞j=1 is not real-valued,

|am | ≤
2

1 − w∞

ℜ( f
sign(am)

) ≤
2

1 − w∞

∥ f ∥ , m ∈ N. (3.4)

e deduce that ∥·∥ is a norm on c00 whose completion is a Banach space, say X, for which
he unit vector system (which we denote by (e j )∞j=1 = E) is 1-symmetric. From the definition
f ∥ · ∥ we see that ∥em∥ = 1 for all m, while (3.4) shows that the biorthogonal functionals

satisfy ∥e∗
m∥ ≤ 2/(1 − w∞).

If w∞ = 0,
1
2

∥ f ∥1,w ≤
1
2
Θ( f ) ≤ ∥ f ∥ ≤ ∥ f ∥1,w

for all real-valued f ∈ c00. This gives us a renorming of d1,w.
Let us show that if w∞ > 0, E is not unconditional for constant coefficients (UCC for

short). Let (sn)∞n=1 be the primitive weight of w. Set ε = ((−1)n)∞n=1 and, for each m ∈ N,
Am = { j ∈ N : j ≤ 2m}. If E were UCC, then there would be a constant C ∈ [1,∞) such that

s2m =
1Am

 ≤ C
1ε,Am

 = C(sm − mw∞).

Hence, if we set tn = sn/n for all n ∈ N,

2t2m ≤ C(tm − w∞), m ∈ N.

Since limm tm = w∞, we reach the absurdity 2w∞ ≤ 0.

The study of the lattice-unconditional constants of bases with Property (A) is also of
interest. Any 1-greedy basis is 1-suppression unconditional, hence 2-lattice unconditional for
real Banach spaces. Conversely, [9, Theorem 4.1] shows that the constant 2 is optimal, i.e.,
there is a 1-greedy basis which is not C-lattice-unconditional for any C < 2. The basis
constructed in the proof of Proposition 3.4 is 2-suppression unconditional by Proposition 3.3,
hence 4-unconditional.

On the other hand, taking w = (1, wn, wn, . . .) and comparing the norms in Dn := Dw of
gn = e1 + wn(1An − 1Bn ) and hn = e1 + wn(1An + 1Bn ), where wn , An and Bn are as in the
proof of Proposition 3.4, we see that the lattice unconditionality constant of the unit vector
system of Dn is at least

∥hn∥D,w
= 1 + 2nw2

n = 1 + (1 − 2ωn)
2n

−→ 2−.

∥gn∥D,w 2n + 1 n→∞

17
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Therefore, for every s < 2 there exists a sufficiently large n such that the lattice unconditionality
onstant of the canonical basis of Dn is greater than s. We do not know whether 2 or the upper
stimate for the lattice unconditionality constant we have achieved (that is, 4) is closer to its
ctual value.

uestion 3.10. Does an unconditional basis with Property (A) always have Kl ≤ 2? Does it
ave Ks ≤ 2? Does it have Ks ≤ D for some universal constant D?

. Remarks on property (A) in the finite-dimensional case

Property (A), like any other greedy-like property for that matter, can be defined for bases
n finite dimensional spaces with the obvious adjustments.

If a basis has Property (A), then any (finite or infinite) subbasis inherits this feature.
owever, unlike other greedy-like properties, Property (A) does not pass to direct sums even
hen the fundamental functions of the summands are the same. Therefore, it is by no means

lear how an infinite basis with Property (A) can be constructed from finite bases with Property
A). In this regard, it is worth mentioning that we can infer finite dimensional results from the
nfinite dimensional ones.

roposition 4.1. For each d ∈ N, d ≥ 2, there is a d-dimensional Banach space with a basis
hat satisfies Property (A) and has suppression unconditionality constant Ks ≥ 10/9.

roof. For d ≥ 3 we consider Rd with the norm

∥x∥d = ∥Jd (x)∥D,w , x ∈ Rd ,

here w = (1, 1/3, 1/3, . . .) and Jd :Rd
→ c00 is the natural embedding. In this situation, by

Lemma 2.5,

(a j )d
j=1


d

= max

⎧⎨⎩n + 2
3n

n∑
j=1

⏐⏐aπ ( j)
⏐⏐+ 1

3

⏐⏐⏐⏐⏐⏐
d∑

j=n+1

aπ ( j)

⏐⏐⏐⏐⏐⏐
⎫⎬⎭ ,

here the maximum is taken over n = 1, . . . , d and all permutations π of {1, . . . , d}. The
roof of Proposition 3.4 shows that Ks ≥ 10/9.

When d = 2, Property (A) gives us no information (beyond normalization); hence we do
not expect to attain 1-suppression unconditionality. For example, fix α ∈ (0, 1) and set

∥a1e1 + a2e2∥ = max {α |a1| , α |a2| , |a1 + a2|} .

The unit ball of the resulting normed space is the 6-gon with vertices ±(−α−1, α−1), ±(1 −
−1, α−1), and ±(α−1, 1 − α−1). Then

∥α−1(e1 − e2)∥ = 1, but ∥α−1e1∥ = α−1,

so the suppression unconditionality constant is at least α−1. □

Finally, we show that in the finite-dimensional setting Property (A) does not pass to the dual
basis. We do not know whether this still holds in infinite-dimensional spaces.

d ∥ ∥
Proposition 4.2. For d ≥ 3 the space R admits a norm · so that:

18
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w
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t
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(1) The unit vector system is E = (e j )d
j=1 and its dual basis E∗

= (e∗

j )
d
j=1 are normalized

and 1-symmetric.
(2) The basis E has Property (A).
(3) The dual basis E∗ fails Property (A).

In fact the proof shows that for A = {1, . . . , d − 1} there exist ε, δ ∈ EA so that
1∗

ε,A

 ̸=
1∗

δ,A

.

roof. For (a j )d
j=1 ∈ Rd we define

(a j )d
j=1

 =


d∑

j=1

a j e j

 := sup
π∈Πd

⎧⎨⎩⏐⏐⏐aπ (1) +
aπ (d)

3

⏐⏐⏐+ d−1∑
j=2

⏐⏐aπ ( j)
⏐⏐⎫⎬⎭ , (4.1)

where Πd denotes the set consisting of all permutations of {1, . . . , d}. Clearly both E and E∗

are 1-symmetric. Moreover,

sup
j

⏐⏐a j
⏐⏐ ≤


d∑

j=1

a j e j

 ≤

d∑
j=1

⏐⏐a j
⏐⏐ ,

o the bases E and E∗ are normalized. If some of the coefficients a j are equal to 0 then∑d
j=1 a j e j

 =
∑d

j=1

⏐⏐a j
⏐⏐ and the basis E has Property (A). We shall complete the proof

y showing that the functionals

h∗
= e∗

1 −

d−1∑
i=2

e∗

j , g∗
=

d−1∑
j=1

e∗

j

atisfy ∥h∗∥ ≤ 1 < ∥g∗∥. This will prove that the basis E∗ is not 1-superdemocratic and so
t fails Property (A). Here, a basis is said to be 1-superdemocratic if

1∗

ε,A

 =
1∗

δ,B

 for all
, δ ∈ E and for all A, B ⊂ N with |A| = |B|.

To estimate the norm of h∗, note that

∥ f ∥ = sup
f ∗∈F

⏐⏐ f ∗( f )
⏐⏐ , f ∈ Rd ,

here F consists of all functionals of the form

ε1

(
e∗

π (1) +
e∗

π (d)

3

)
+

d−1∑
j=2

ε j e∗

π ( j), ε = (ε j )d−1
j=1 ∈ Ed−1, π ∈ Πd .

herefore, ∥ f ∗∥ ≤ 1 for all f ∗
∈ F . The identity

h∗
=

1
2

⎛⎝⎛⎝e∗

1 +
e∗

d

3
−

d−1∑
j=2

e∗

j

⎞⎠+

⎛⎝−e∗

d−1 −
e∗

d

3
+ e∗

1 −

d−2∑
j=2

e∗

j

⎞⎠⎞⎠ ,
ells us that the functional h∗ belongs to the convex hull of F and so ∥h∗∥ ≤ 1. To estimate
he norm of g∗, we test it on

g =

d−1∑
e j −

ed

2
.

j=1

19
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n
t

As g∗(g) = d − 1, it suffices to prove that ∥g∥ < d − 1. Given π ∈ Πd , we compute the
umber on the right side of (4.1) depending on whether π (d) = d or not. In the former case,
he computation gives⏐⏐⏐⏐1 −

1
6

⏐⏐⏐⏐+ (d − 2) = d − 1 −
1
6
,

while in the latter case it produces⏐⏐⏐⏐1 +
1
3

⏐⏐⏐⏐+ (d − 3) +
1
2

= d − 1 −
1
6
.

Thus ∥g∥ = d − 7/6 < d − 1 as desired. □
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