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Humanity’s need for freshwater has more than doubled since the 1960s, in line with
population and economic growth [1]. Currently, the percentage of the world’s population
suffering from severe water scarcity ranges from 30% (considering only water quantity) to
40% (looking at both water quantity and quality) [2]. Global water demand is projected
to increase by more than 55% by 2050 [3]. As water scarcity is primarily driven by hu-
man water demands and management, solutions should also come from anthropogenic
actions [4]. However, moving towards more sustainable consumption and production
economies entails addressing complex global supply chains, which can transfer water
impacts, risks, and vulnerabilities between producer and consumer regions. Fortunately,
achieving these more sustainable economies might also be a way to mitigate water impacts
and build water resilience. Improving water resources management is, therefore, complex
as it involves all sectors and actors of the economy, including governments, companies,
farmers, investors, NGOs, consumers, and civil society.

In 2015, the United Nations Member States approved the 17 Sustainable Development
Goals (SDGs). These include a sixth Goal focused on water that aims not only to attain
access to safe drinking water and provision of sanitation but also to achieve sustainable
water management worldwide, addressing the challenges of water quality, efficiency,
integrated water resources management, and protection and restoration of water-related
ecosystems [5]. In this context, determining the key indicators and tools for assessing water
use in the economy that assure sustainable water management and water security for all
uses and users is imperative. Since what cannot be measured cannot be managed and
improved, the water footprint emerges as a key indicator for this purpose. Building on the
advances in the water footprint field within the last 20 years, the water footprint assessment
today can support different stakeholders in achieving the SDGs, particularly SDG 6, in the
areas of policy and planning and production and consumption of goods and services [6,7].
The water footprint has been proven to be an effective method and tool to achieve a more
water-circular economy [8].

The water footprint can support decision-making in different ways. Governments,
businesses, and end-consumers alike usually turn a blind eye to supply chains and the im-
pacts of imported goods. Water footprint assessments are a first step towards improving the
sustainability of worldwide production because they provide objective data and perspec-
tives on the big picture and on the drivers of water use and abuse [9,10]. A consideration
of trade-related water concerns might also suggest new global water-governance solu-
tions, which could be applied by introducing measures to ensure that existing food-trade
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frameworks of the European Single Market and the World Trade Organization are effective,
sustainable, and equitable [9]. Decision-making could also be supported by assessing
the water footprint in different scenarios. For instance, comparing the business-as-usual
scenario with a more sustainable path. For example, the comparative analysis between the
scenario with a Food Bank and the theoretical scenario without its action highlights the ben-
efits associated with its activity, which avoids the waste of food suitable for consumption
and the unnecessary consumption and pollution of freshwater resources [11]. The water
footprint indicator can also be used to assess different production systems, which hide an
enormous variability as regards the different productive and management aspects. For
instance, there are important differences in the water footprints of beef fed on two different
diets, with co-product and conventional feed, particularly when animal performance indi-
cators differ [12]. On the other side, advanced grey water footprint assessments are useful
for understanding the link between diffuse pollution pressures and their impacts on water
resources, which are generally difficult to monitor and regulate [13]. This might help to
elucidate the connections between consumption patterns and environmental consequences,
provide insight into solutions, and help anticipate pollution hotspots [13].

However, the path to achieving sustainable consumption and production in terms
of water is still long. The water footprints of production and consumption activities can
be calculated using different methodological approaches, yielding different results for the
same geographical region [14]. Moreover, specific calculation assumptions can yield very
different results [14]. Adequate models and harmonized approaches are needed to track
the water flows through the global trade network up to final consumption [14]. This could
facilitate the assessment measures and predict what measures are more effective. New
technologies, such as the application of Internet of Things-based monitoring systems, could
help to perform measurements more efficiently along the value chain [15].

As regards the energy sector, most studies have traditionally addressed the consump-
tive (blue and green) water footprint of energy [16–19]. However, they have generally
overlooked the grey water footprint, as there are missing data at regional [20] and global
scales [21]. Unfortunately, the grey water footprint of certain power generation technolo-
gies might be significant, as indicated by previous researchers [22–25]. The international
literature also still lacks rigorous studies on the water footprint of new energy alternatives,
such as green hydrogen. Although green hydrogen is presented as a proper alternative
for the reduction of greenhouse gas emissions, its impact in terms of water could not be
negligible. Likewise, given their potential to reduce pollutant emissions, new electric and
alternative fuel vehicles have been widely promoted by governments. As the transport
sector uses multiple types of energy and is a major source of water consumption from a
life-cycle perspective, the environmental water implications of these new types of vehicles
should be enhanced [26–28]. Finally, over the last decade, artificial intelligence models
have seen remarkable advances and successes in many areas of vital importance to our
society, including tackling climate change. Data warehouse centers are known to be energy-
intensive, collectively accounting for 2% of the world’s electricity consumption and leaving
a large carbon footprint [29]. However, much less is known about the unintended water
externalities of these data centers. Some recent studies have tried to estimate the water
footprint of artificial intelligence models or information retrieval systems, but efforts are
still insufficient [30,31].

Lastly, the water footprint can be a useful tool not only to raise awareness and inform
consumers about the hidden water use and resulting impacts of daily products and services
but also as a tool for capacity building [32] and educating children to protect local and global
water resources [33–37]. Education is crucial for achieving the water-related SDGs and is
one of the most powerful vehicles for improving water management and governance [38].
While some progress has been made in water footprint educational materials over the
past two decades, mainly at the secondary school level [33,35–37] and to a lesser extent at
the primary school level [37], it is still scarce and fragmented. The potential of the water
footprint for education remains an isolated area in general, and even more so when it comes
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to educational practices that integrate the acquisition of water footprint knowledge during
curricular training. As a result, more educational developments and practices related to
water footprint are urgently needed.

There is still much work to be performed to achieve more sustainable consumption and
production patterns related to water. The water footprint is a useful instrument to support
achieving this goal. Still, advances in the field are needed to fill the research gaps and better
understand the inter-linkages and water flows in the economy. This Special Issue, titled
“Water Use in a Thirsty World: Towards Sustainable Consumption and Production Using
the Water Footprint”, welcomes contributions that make progress in the field of green, blue,
and grey water footprint assessment and virtual water trade in different contexts and scales
that seek to achieve more effective, sustainable and equitable integrated water resources
management.
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