
REVIEW National Science Review
10: nwad109, 2023

https://doi.org/10.1093/nsr/nwad109
Advance access publication 24 April 2023

ENVIRONMENT/ECOLOGY

The heterogeneity–diversity–system performance nexus
Nico Eisenhauer 1,2,∗, Gerrit Angst 1,2,3, Ana E. B. Asato 1,2,
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ABSTRACT
Ever-growing human population and nutritional demands, supply chain disruptions, and advancing climate
change have led to the realization that changes in diversity and system performance are intimately linked.
Moreover, diversity and system performance depend on heterogeneity. Mitigating changes in system
performance and promoting sustainable living conditions requires transformative decisions. Here, we
introduce the heterogeneity–diversity–system performance (HDP) nexus as the conceptual basis upon
which to formulate transformative decisions. We suggest that managing the heterogeneity of systems will
best allow diversity to provide multiple benefits to people. Based on ecological theory, we pose that the
HDP nexus is broadly applicable across systems, disciplines, and sectors, and should thus be considered in
future decision making as a way to have a more sustainable global future.
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HOMOGENIZATION IN A CHANGING
WORLD
Humans tend to homogenize the systems sur-
rounding them in order to increase their short-term
profitability and efficiency [1,2]. Homogenization,
or loss of heterogeneity (Box 1), has been observed
across systems (e.g. ecosystems, cities, human
bodies), disciplines (e.g. ecology, economics, ar-
chitecture, medicine), and scales (e.g. micro, meso,
macro). However, homogenization can affect diver-
sity and system performance in unintended ways.
Here, we suggest that the underlying principles
relating heterogeneity to system performance are
universal and broadly applicable across disciplines.
Accordingly, we introduce the general concept
of the heterogeneity–diversity–system performance
nexus (HDP nexus) (Box 1). This concept suggests
that increases in the heterogeneity of a system
can enhance the diversity of its components and,
in turn, influence the performance of the system.
Considering the relationships among heterogeneity,

diversity, and system performance is fundamental to
improving our understanding of many systems and
has direct implications for the individual and collec-
tive decision making of humans. To apply the HDP
nexus broadly, we define its individual components
(Box 1), present basic ecological theory that sup-
ports our claims (Fig. 1; Box 2) and provide interdis-
ciplinary examples (Fig. 2) of this phenomenon.The
HDP nexus provides testable hypotheses that can
be implemented across spatial and temporal scales,
ranging from small scales (e.g. gut microorganisms)
to whole landscapes, and across disciplines, from
land management to human nutrition and health,
psychology, and architecture, providing valuable in-
sights to inform decisions that will influence system
performance. Finally, we provide the example of si-
multaneously considering sustainable food produc-
tion and consumption [3] to highlight how theHDP
nexus can inform and facilitate the urgently-needed
transformative changes required for a sustainable
future [4,5].

C©TheAuthor(s) 2023. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
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Box 1. The elements and concept of the heterogeneity–diversity–system performance nexus.
Heterogeneity. Structural or environmental variance that provides the conditions required by diversity.
In ecological literature, this environmental space is often referred to as biotope space [6,7] or habitat
space [8]. A large environmental space with high heterogeneity provides many niches for diversity.
Diversity. Variation in the living components of a system. In ecological literature, biodiversity is the
variety of life, including variation among genes, species, functional traits, functional groups, phylogenetic
clades, biotic interactions, ecological networks, and ecosystems/landscapes [9]. It is often expressed as
(1) richness (a measure of the number of unique life forms), (2) evenness (a measure of the equitability
among life forms), and (3) β-diversity, or turnover among life forms. However, the separation of hetero-
geneity and diversity may not always be straightforward and needs careful consideration and definition.
For instance, the diversity of plants can provide heterogeneity in structures and resources for a wide range
of soil organisms [10], i.e. the biodiversity at one trophic level can beget biodiversity at other trophic levels
through environmental heterogeneity [11,12].
System performance. Ametric quantifying the amount or extent to which an activity or process is done,
i.e. an emergent process, property, or attribute that indicates the functioning of the system (e.g. produc-
tivity, stability, income). Higher levels of system performance would mean enhanced levels of productivity
(e.g. in ecology, economy, or personal achievements), income (economy), success (sports) etc. The per-
formance of ecological systems is measured as ecosystem functions, which are ecological processes
that control the fluxes of energy, nutrients, or organic matter through an environment [9].

Box 1, Figure 1. Abstract representation of the heterogeneity–diversity–system performance
(HDP) nexus. Heterogeneity is represented as the precondition for determining diversity, assuming that
low heterogeneity provides few niches to support diversity. With higher levels of heterogeneity, the num-
ber and types of niches increase, as indicated by the differently colored elements of the letters in the
word ‘heterogeneity’. Diversity (as represented by different geometric shapes and colors) emerges from
this heterogeneity and can be described by different facets, including the number of elements, the dis-
similarity of these elements (in terms of traits like shape and color [13]), and/or the interactions of these
elements (depicted by the lines connecting the geometric symbols). System performance is an emergent
property of this heterogeneity-driven diversity, which is mostly driven by the presence of certain geomet-
ric structures (selection or sampling effects [14]; see Fig. 1 in the main text) and the interactions among
all structures in a system (complementarity effects [14]; Fig. 1). Based on these relationships, the HDP
nexus describes a situation where heterogeneity begets diversity, and diversity begets system perfor-
mance. Heterogeneity, diversity, and system performance increase from left to right. Although we focus
on the directionality of H → D → P, there may also be feedback effects—e.g. diversity influencing the
heterogeneity of a system—but considering the HDP nexus implies that humans can most effectively
influence system performance by managing its heterogeneity. Based on niche theory [15–17], increasing
heterogeneity should always increase diversity and performance, if it increases the number of niches for
the focal diversity group. However, enhanced heterogeneity may also destroy niches, if the niche space
is not large enough to support a viable population size. An example from ecology would be that a certain
habitat with previously suitable conditions is fragmented too much to sustain the population of a focal
species [18]. Figure in Box drawn by Gabriela Rada (iDiv).
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UNDERLYING CONCEPTS AND
MECHANISMS: LEARNING FROM
ECOLOGY
Coexistence and niche theory from ecology suggest
that two species with the same resource require-
ments and without fitness differences cannot coex-
ist on a homogenous resource in the long term, be-
cause one will always outcompete and exclude the
other [15,16]. Building upon that ecological theory,
the HDP nexus suggests that a heterogeneous en-
vironment is essential for diversity to persist in any
complex system (Box 2, Fig. 1). Diversity, in turn,
enables higher performance, i.e. the enhanced ac-
tion or process of performing a task or function.
For instance, when diverse components comple-
ment each other, system processes can be optimized
and performance stabilizedwith improved resilience
to disturbances [19–21]. In ecology, positive re-
lationships between heterogeneity and biodiversity
have been documented within (Fig. 1) and across
(Box 2) trophic levels, i.e. biodiversity increaseswith
increasing levels of heterogeneity. In turn, biodiver-
sity and ecosystem function (BEF) has been ob-
served across a variety of biological communities
[9,22–24]. For example, thepositive relationshipbe-
tween the species richness of primary producers and
primary productivity has been shown across biomes
[24–32]. Niche differentiation and complementarity
are thought to be the main mechanisms behind
positive BEF relationships (Fig. 1a,b; see also def-
initions and illustration of mechanisms in this
figure [14,33]). Here, coexisting species fulfill dif-
ferent roles in an ecosystem, e.g. by using resources
in dissimilar ways (different plant species may take
up soil nutrients at different soil depths or points in
time), thereby complementing each other and in-
creasing community functioning (e.g. a species-rich
plant community produces more biomass than low-
diversity communities of the component species)
[27,28,34] (Box 1). Relatedly, different species can
facilitate eachother byproviding amore suitable abi-
otic and biotic environment (facilitation effect, which
is often subsumed under the complementarity ef-
fect [33]). Moreover, the presence of well-adapted
and particularly highly-productive species may con-
tribute to positive biodiversity effects on ecosys-
tem functioning (selection effect; [17]) (Box 1). Al-
though certain plant monocultures can be highly
productive, e.g. due to specific trait–environment
combinations or short-term inputs of fertilizers (to
compensate for nutrient depletion over time) and
pesticides (to decrease the detrimental effects of ac-
cumulating pathogens over time), complementarity
effects tend to dominate in the long term across set-
tings [27,28,32], may promote win-win scenarios in

agroecosystems, andmay be the basis for sustainable
land use [35].

Homogenization of environmental conditions
that influence the coexistence of species are likely to
affect the strength of BEF relationships [33,36,37].
Positive BEF relationships have been shown to be
strongest in heterogeneous environments, and to
become non-significant or even negative in homo-
geneous environments [8,12,38–40]. For instance,
Cardinale [25] manipulated the number of algal
species living in biofilms in homogeneous and het-
erogeneous streams. He observed that ecosystem
functioning increased linearly with species richness
in heterogeneous streams due to niche differences
among species: different algal species dominated
each unique habitat in a stream and complemented
each other in driving overall ecosystem functioning
[25].This example from simple communities is sup-
ported by multiple further studies that demonstrate
a strong relationship amongHDP, also inmore com-
plex systems (e.g. [41–43]; Box 2).

Further, environmental space can be reduced
through environmental homogenization, which a)
decreases the number of suitable species for that
environment, and b) reduces potential complemen-
tarity between species whilst increasing interspecific
competition (Fig. 1c, d). In both cases, homoge-
nization reduces ecosystem functioning. In the pre-
vious example, Cardinale [25] experimentally re-
duced the number of different niches by making all
of the habitats in a streamuniform.Under these con-
ditions, biodiversity effects on ecosystem function-
ing were limited and only due to the dominance of
a single species (selection effect; Fig. 1c). Cardinale
[25] concluded that communities withmore species
take greater advantage of the niche opportunities
in an environment, resulting in elevated ecosystem
functioning.

Similarly, changing environmental conditions
(e.g. precipitation, climatewarming, fertilization) al-
ter the conditions that influence species coexistence.
This may happen predictably (e.g. when seasonal
precipitation provides a suitable environment for
species [44]), or randomly (e.g. when stochastic
disturbances limit habitat suitability; Fig. 1e, f). In
those cases, biodiversity is also expected to stabilize
ecosystem functioning by increasing the ecosystem
resistance against disturbance through niche-related
mechanisms, i.e. overyielding and complementarity
[29,45]. In ecological systems, the existence and
dominance of such biodiversity-mediated effects is
associated with the degree of heterogeneity offered
by the environment [21]. Niche and coexistence
theory serve as a conceptual base to understand the
context-dependency of BEF relationships [17,33]
and diversity-performance relationships. Most
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Figure 1. Environmental space (green) describes the environmental conditions con-
straining species’ coexistence and interactions, and can be described along with an
infinite number of environmental parameters (a, n-dimensional hyperspace [46,47]).
Environmental conditions may vary over time or in space (e.g. variable temperature
or resource availability). The ecological niche (circles) is a property of the species, de-
fined as the totality of resources and conditions necessary for its survival, growth, and
reproduction [47,48]. A species’ ecological niche determines its presence, abundance,
and fitness in a given environment. Non-overlapping niches support the coexistence of
different species and are key to complementarity (orange) resource use and positive
BEF relationships (b [14,49]). Some species may dominate communities and ecosystem
functions under certain conditions, causing selection or sampling effects [14]. The de-
gree of overlap in niches among co-occurring species (yellow) determines the presence
and strength of competition among them. Environmental homogenization reduces to-
tal environmental space (c), resulting in a reduction of complementarity and a loss of
biodiversity (d). In contrast, environmental shifts (e.g. due to climate change), result-
ing in a change, but not necessarily a reduction in the environmental space (e). While
biodiversity and ecosystem function may decrease following environmental change,
several mechanisms, including invasion, adaptation, and range expansion may main-
tain or even increase both the diversity and the functioning of these ecosystems [50]
(f). Importantly, greater diversity may maintain ecosystem functioning in changing en-
vironments (i.e. the insurance hypothesis [20,21]).

importantly, if we broaden ‘biodiversity’ to ‘di-
versity’, and replace ‘ecosystem functioning’ by
‘performance’, the mechanisms underlying the
HDP nexus could be generalized and applied across
disciplines (Box 1).

GENERALITIES ACROSS
DISCIPLINES—MOVING FROM APPLIED
ECOLOGY TO OTHER FIELDS
TheHDP nexus is broadly applicable to a large vari-
ety of ecological systems (e.g. [8,25,76,77]).Wefind
rich evidence frommultiple fields suggesting that the
HDP nexus is also widely applicable to disciplines
beyond ecology (Fig. 2). For instance, in traditional
intensive farming, few crop species and varieties are
planted resulting in homogenous landscapes [78],
which provide few niches for multi-trophic biodi-
versity (e.g. herbivores and pollinators). Without
high input of resources and labor, the overall perfor-
mance (i.e. pollination and natural pest control) and
stability of the system declines ([76]; Fig. 2a).
Conversely, organic farming, intercropping, and
the creation of small-scale heterogeneity can in-
crease biodiversity in space and time, while sup-
porting the long-term multifunctionality of ecosys-
tems [2,76,77,79] thatmaybemore stable to climate
change and extremes [24,29].

Similarly, human diets link environmental and
human health [91,92]. Globally, rising incomes and
urbanization are driving dietary transitions in which
traditional diets are replaced by processed diets that
are rich in simple sugars, fats, but lack complex fibers
[91,93]. These dietary shifts have been shown to
substantially decrease the diversity and functioning
of human gut microbiomes (Fig. 2b), and result in
higher rates of type II diabetes, obesity, cardiovas-
cular disease and mortality, as well as colon can-
cer [94]. Fiber-rich diets provide heterogeneous re-
sources for beneficial gut microbes and can alleviate
a number of conditions in their hosts, including col-
itis, colorectal cancer, asthma, obesity, and diabetes
[95–97]. In this example, increasing the heterogene-
ity of fiber-rich diets enhances the biodiversity of gut
microbes that drive critical body processes. This re-
sulting elevated diversity of gut microbes thus in-
creases human health.

Aside from the effects of dietary intake on hu-
man well-being, the heterogeneity of cityscapes also
affects human physical and mental health [98]. In
homogeneously-structured cities, the lack of open
spaces, such as parks, recreational areas, and com-
munity hubs leads to social isolation, an increase in
air pollution [99], and other health-related issues
like heat stress [100]. In contrast, cities with more

Page 4 of 10

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/10/7/nw

ad109/7140545 by U
niversidad de La R

ioja user on 05 D
ecem

ber 2023



Natl Sci Rev, 2023, Vol. 10, nwad109

Box 2. Linkages between heterogeneity, interaction strength, diversity, and stability.
The formal consideration of heterogeneity has played a key role in resolving a major controversy in ecol-
ogy over the role of diversity in stability of food webs, one important measure of performance in [51–54].
In theory, large (i.e. diverse) networks of randomly interacting species were predicted to be unstable and
prone to environmental perturbations [6,7,55]. However, this prediction contradicts observations in nat-
ural and experimental systems, where diverse networks are often more stable than species-poor ones
[51,56]. This discrepancy between theoretical predictions and empirical observations caused a surge
in the investigation of stabilizing features in ecological networks [57–61]. Two important determinants
of network stability are the influences of heterogeneity in the patterning and strength of interactions
[58,59,62–64]. That is, when patterns of species interactions are organized according to spatial hetero-
geneity in landscapes, disturbances propagate within subsystems of species that interact closely with
each other within a patch, but resistance is conveyed to the landscape or system as a whole [63,64].
Examples of such heterogeneity include the stratification of water bodies [65], agricultural fields and
surrounding landscapes [66], and salt marsh islands [67]. Similarly, compartmentalization has been sug-
gested to convey stability in other types of complex systems, such as pollination [68], and banking [69].
Importantly, stability based on patterning does not need to be conveyed only by the black and white—
presence and absence—of links; shades of gray also convey important components of heterogeneity.
Utilizing nonlinear ecological models, McCann and colleagues [57] showed that links of weak to inter-
mediate strength are important in promoting community persistence and stability. Theoretical work was
supported by empirical results, demonstrating that some ‘weak interactors’ in food webs increased the
spatiotemporal variation in community structure [58], not only highlighting the role of weak interactions
in stabilizing networks but also their relationship with spatial and temporal variation [58,70].
Indeed, the classic experiment by Huffaker [71] showed that spatial heterogeneity could induce stabil-

ity in predator–prey interactions and thus promote biodiversity, while spatially homogeneous conditions
led to unstable dynamics and extinction. Follow-up work confirmed this finding by reporting a more stable
control of population dynamics when the environment was spatially more heterogeneous and there was
a balance between the extent of heterogeneity and the amount of basic food. Further support was pro-
vided by empirical [72,73] and modeling [74] work in (agricultural) landscapes of different heterogeneity.
Ryser et al. [74] identified two main mechanisms of how landscape heterogeneity can promote biodiver-
sity and stability under environmental change: (1) the ‘rescue effect’ maintains local biodiversity by rapid
recolonization after a local crash in population densities; (2) the ‘drainage effect’ stabilizes biodiversity
by preventing overshooting of population densities.
These basic principles of ecological networks may apply to a wide range of networks composed of

interacting entities, including species in food webs, human or other animals transmitting infection, pro-
teins in cells, cells in organisms (e.g. neuronal networks), gene regulatory networks, and the World Wide
Web [53,75]. For instance, recent work on mammalian gene regulatory networks show that microRNAs
can stabilize gene products [75]. As in the case of weak biotic interactions stabilizing food webs, weak
repressions cumulatively enhanced the stability of gene regulatory networks, and broad and weak re-
pressions conferred greater stability than a few strong ones [75]. As a consequence, we propose that
heterogeneity may be a universal feature fostering weak interactions and performance across systems.

heterogeneous cityscapes can reduce the amount of
air pollution [101], protect from global change re-
latedheatwaves [102], andallow for communities to
interact [103], improving overall human well-being
[104].

The HDP nexus may also provide a framework
to analyze human social dynamics, team compo-
sition, and success. Social media that filters infor-
mation and only provides information similar to
the user’s viewpoints becomes homogenized over
time, reducing the diversity of ideas and world-
views leading to increased vulnerability to pro-

paganda and radicalization [105]. For instance,
biases embedded in online information filtering al-
gorithms may have unintended consequences, such
as dependence on popularity signals like PageR-
ank, trending topics, and likes, which may foster
the dominance of established sources at the ex-
pense of novel ones [106,107]. Moreover, filtered
news in social networks of like-minded individu-
als has been claimed to bias the attention of in-
dividuals toward information that they are already
likely to know of or agree with [107], and result-
ing homogeneous social groups facilitated by online

Page 5 of 10

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/10/7/nw

ad109/7140545 by U
niversidad de La R

ioja user on 05 D
ecem

ber 2023



Natl Sci Rev, 2023, Vol. 10, nwad109

Figure 2. Homogenization (loss of heterogeneity) reduces diversity and influences system performance, often in unintended
ways. (a) Landscape heterogeneity. Land-use change and intensification, while increasing agricultural productivity for specific
crops [80], have reduced the spatial and temporal heterogeneity of environmental conditions [76], resulting in a substantial
loss of biodiversity [81], ecosystem functions [82], and ecosystem services [83]. Photo credit: Archaecopteryx, CC BY-SA
4.0 〈https://creativecommons.org/licenses/by-sa/4.0〉, via Wikimedia Commons. (b) Gut microbiome. Similarly, industrial-
ized human diets rely heavily on few food sources [84] that favor a select group of microbial taxa in the human gut [85] and
simplified food supply chains [86]. Photo credit: nobeastsofierce/stock.adobe.com. (c) Urbanization. Urbanization and growing
cities have also been highlighted as another main source of environmental homogenization across the globe, posing strong
selective pressures on species by changing or simplifying habitat structures and environmental conditions, such as tempera-
ture, light, and pollution levels [87] as well as causing a loss of native species [88,89] and genotypic diversity [90]. Considered
together, these observations indicate intimate linkages between the heterogeneity of environmental conditions, diversity of
the focal system, and system performance [77]. Photo credit: teamjackson/stock.adobe.com.

interactions may also make people more vulnerable
to misinformation [107,108].

In contrast, studies have shown that communities
and teamswithheterogeneousbackgrounds, e.g. cul-
tural, social, and gender, support diverse ideas and
approaches that may allow for holistic and inclusive
problem-focused solutions [109,110]. For instance,
in competitive team sports, the team with more
heterogeneous skills and talents can employ more
diverse tactics, increasing their chance of success
[111]. Similarly, in science, multi-authored trans-
disciplinary papers manage to tackle scientific ques-
tions from multiple angles, thus contributing to the
advancements ofmultiple scientific fields simultane-
ously and increasing the scientific impact of the re-
sulting research [112,113].

Although diversity is often expected to increase
with increasing heterogeneity, HDP relationships
may not always positively co-vary, and we might
expect to see some neutral or even negative rela-
tionships betweendiversity and systemperformance
as a consequence of some types of heterogeneity
and in specific contexts [9]. This is expected be-
cause the benefit of heterogeneity for diversity and
performance depends on a) the ability to support
minimum viable population sizes, b) the comple-
mentarity of the species/elements supported, and c)
on the performance of components influenced by
heterogeneity (Box 1). Heterogeneity that supports
complementarity among productive system compo-
nents will enhance system performance and its sus-
tainability. Based on niche theory [15,23,73], this
means that increasing heterogeneity should increase
diversity and performance, if it increases the num-
ber of niches for the focal diversity group (Box 1).

As a consequence, high heterogeneity in a given area
can also reduce the niche space for any given com-
ponent, thus increasing the likelihood of stochas-
tic extinction, ultimately reducing the overall sys-
tem performance [13] and stressing the necessity to
consider the appropriate spatial and temporal scale
when applying the HPD nexus. Moreover, separat-
ing heterogeneity from diversity may be challeng-
ing for some examples and require a clear definition
of the focal system (Box 1). However, the wealth
of positive examples from ecology and beyond pro-
vides support for the utility of theHDP nexus across
disciplines with important implications for decision
making.

IMPLICATIONS FOR DECISION MAKING
Ever-growing human population and nutritional de-
mands [114], supply chain disruptions [115], ad-
vancing climate change [116], and unprecedented
biodiversity loss [117], have led to the realization
that changes in heterogeneity, diversity, and sys-
tem performance are intimately linked [118]. Mit-
igating these changes and promoting sustainable
living conditions requires transformative decisions
[4]. The HDP nexus provides a basis upon which
to formulate transformative decisions by managing
the heterogeneity of systems and allowing diversity
to provide multiple benefits to people. We argue
that it is more promising, efficient, and straightfor-
ward to manage heterogeneity for greater diversity
and meeting goals of system performance, as this
approach tackles the basis of theHDPnexus and not
only the outcomes. This strategy may be similar to
curing a disease rather than treating its symptoms.

Page 6 of 10

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/10/7/nw

ad109/7140545 by U
niversidad de La R

ioja user on 05 D
ecem

ber 2023

https://creativecommons.org/licenses/by-sa/4.0


Natl Sci Rev, 2023, Vol. 10, nwad109

Both the individual and collective decisions of soci-
ety will benefit from the HDP nexus. For example,
individuals that choose diverse andorganic foods can
not only help to reduce diseases and extend global
life expectancies, but also influence the environmen-
tal effects of foodproduction, including land clearing
and greenhouse gas emissions [91]. The same prin-
ciples apply to large-scale collective decision making
by promoting the incorporation of multiple, hetero-
geneous values, knowledge, world views, commu-
nities, value chains, ecological concepts, and man-
agement strategies [5] and, therefore, increasing the
diversity and performance of the solutions found.
Having the same ecosystem types, crop varieties,
species, skills, or nutrition everywhere and all the
time has allowed us to simplify our lives and in-
crease short-term productivity in unprecedented
ways [119]. Notably, as known from ecology,
fostering heterogeneity may not necessarily max-
imize individual outputs in the short term, but
will enhance the sustainable supply of multiple
societal and ecological benefits in the long term
[79,119,120]. For instance, the HDP nexus re-
lates to the tight connections among humans,
animals, and the environment, such as acknowl-
edged by the One Health concept [121]. Enhanc-
ing heterogeneity can promote diversity, which
is critical to improving the health and well-being
of all components of an ecosystem [121,122].
Respective incentives need to be introduced at var-
ious political levels to encourage the multidimen-
sional benefits of sustainably treating our bodies and
ecosystems [123,124]. Currently, there are already
tools to track changes in heterogeneity and their
consequences for diversity and performance (c.f. es-
sential variables [125–128]). Nevertheless, placing
these tools in the context of the HDP nexus will im-
prove support for decision making. Such knowledge
about the HDP nexus and its effects on daily life and
ecology needs to enter basic educational programs,
such as school curricula, to enable people to make
well-informed decisions affecting themselves, their
fellow human beings, and future generations. In a
highly connected world where humans and ecologi-
cal systems are fully interdependent, theHDP nexus
embraces heterogeneity across realms, which is
crucial to address someof themost pressing environ-
mental and societal challenges. In doing so, it pro-
vides a basis for transformative decisions that sup-
port global sustainability [129], and ensures that
local solutions have global sustainable impacts
across scales, ecosystems, issues, and sectors.
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