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The most useful methods for computing homology of finite topological spaces require 
that certain regularity conditions are satisfied. In particular, the most suitable algorithmic 
methods, from the point of view of complexity, are only applicable to h-regular spaces. 
In this paper, we show a procedure to h-regularize a finite topological space X of height 
at most 2, that is, to construct an h-regular space that is simple homotopy equivalent to 
X . This enables us to carry out some topological computations (homology groups) on the 
h-regular space obtained from this h-regularization process.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Recently, several authors have studied finite topological spaces, not only for their intrinsic importance as objects with 
interesting properties to be discovered, but also for their relationship with other mathematical structures. One of the most 
significant results of this theory is the correspondence between finite topological spaces and finite partially ordered sets (fi-
nite posets), which was first considered by Alexandroff in [1]. Another example of the interactions between finite spaces and 
other structures is the claim that every finite simplicial complex is weak homotopy equivalent to a finite topological space 
(which is referred to as a finite model of the simplicial complex) [13], allowing to study topological properties (homotopical 
or homological) of simplicial complexes from a different perspective.

More generally, it is known that regular CW-complexes can be modeled by their face posets and the wider class of h-
regular CW-complexes also admits finite models. A CW-complex is h-regular if the closed cells are contractible subcomplexes 
[2] and the face poset of an h-regular CW-complex satisfies Minian’s definition of h-regular poset [14]. Moreover, Minian 
introduced a version of discrete Morse theory for h-regular spaces, allowing to study the topology of the order complexes 
of h-regular spaces from the critical points of admissible Morse matchings defined on the associated posets, which makes 
it possible to determine their homology groups by working on chain complexes with a smaller number of generators. In 
this sense, h-regular spaces permit the application of known techniques directly on them in order to study their topological 
properties. In [9], some algorithms and programs to compute topological invariants of finite spaces were shown, which are 
based on newly developed constructive versions of theoretical results found in [6], [14]. In particular, effective algorithms 
to compute homology groups and their generators of h-regular spaces were implemented, as well as the computation of 
homologically admissible Morse matchings on finite spaces, in order to use Minian’s version of discrete Morse theory.

In the literature, there exist some modifications that can be applied to a finite topological space X in order to obtain a 
smaller finite space with the same homotopy type as X . Eliminating beat points [18], weak points, and γ -points [2], as well 
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as qc-reductions and middle-reductions [11], are some of the alternatives to be applied on a finite space without modifying 
its weak homotopy type. However, the resulting spaces after such procedures are not h-regular in general.

Given a finite topological space X , its barycentric subdivision X ′ , which is the face poset of the order complex associated 
to X , is an h-regular finite space that is simple homotopy equivalent to X (in particular, it is weak homotopy equivalent 
to X). Until now, examples of h-regular spaces in the literature have been restricted to face posets of h-regular complexes 
and regular CW-complexes (in particular, simplicial complexes). Indeed, algorithms designed to be applied on simplicial 
complexes, such as those in [11] and [15], are used to compute the homology groups of a finite T0-space X , so that the 
order complex K(X) is used to find such invariants of X . Therefore, the barycentric subdivision X ′ = X (K(X)) is an h-
regular space that, in principle, can be taken as input of algorithms in [9]. However, the size of barycentric subdivisions can 
become quite large, since each n-maximal chain of the original finite T0-space produces (n + 1)! chains in the subdivision. 
This raises the question of whether there exist h-regular spaces, other than X ′ , that are weak homotopy equivalent to X but 
have a smaller number of elements than X ′ that can be used as input of our implemented algorithms.

In this paper, we aim to illustrate a procedure for constructing, from an arbitrary finite topological space X of height at 
most 2, an h-regular space that is distinct from the barycentric subdivision of X , and is simple homotopy equivalent to X . 
This construction can be used to compute topological invariants of X by applying homologically admissible vector fields, as 
in [9], or other techniques applicable to h-regular spaces that cannot be used on arbitrary finite spaces.

The paper is organized as follows. In Section 2, finite topological spaces, their relation with simplicial complexes, and 
basic point reduction techniques are discussed. In Section 3, the concept of glueable pair is introduced, and its relevance 
to the study of weak homotopy types of finite spaces is shown. Section 4 considers h-regular spaces and states some new 
results related to them. The main results of the paper are presented in Section 5, where the h-regularization process of 
finite spaces of height at most 2 is developed. Section 6 describes an implementation of the h-regularization process in the 
Kenzo system, providing some examples of computations. Finally, Section 7 presents the conclusions and outlines further 
work.

2. Preliminaries

In this section, we introduce some known concepts and results about finite topological spaces, which will be used 
throughout this paper. Details can be found in [2].

A topological space X whose underlying point set is finite is called a finite topological space or finite space for short. The 
minimal open set containing an element x ∈ X , denoted by U X

x , can be defined as the intersection of all the open sets that 
contain x (observe that this concept is well-defined since arbitrary intersections of open subsets in a finite space are always 
open). The collection UX = {U X

x }x∈X is the minimal basis of the finite space X .
A one-to-one correspondence between finite topological spaces and finite pre-ordered sets was provided by Alexandroff 

[1], wherein a pre-order relation on a finite topological space X can be defined as follows:

x � y ⇐⇒ x ∈ U X
y ⇐⇒ U X

x ⊆ U X
y . (1)

The antisymmetry property of the relation � corresponds to the separation axiom T0 of X , thus finite T0-spaces are 
equivalent to finite partially ordered sets (posets). Furthermore, the study of homotopical invariants can be restricted to the 
class of finite T0-spaces, since any finite topological space is homotopy equivalent to a finite T0-space [18].

Notation 2.1. Given two finite topological spaces X and Y , we will use the symbols X
hom≈ Y , X

he≈ Y and X
we≈ Y when X and 

Y are homeomorphic, homotopy equivalent, and weak homotopy equivalent, respectively.

By using the pre-order in (1), minimal open subsets can be written as U X
x = {z ∈ X : z � x} and the (topological) closure

of {x} is denoted by F X
x = {z ∈ X : x � z}; the set C X

x = U X
x ∪ F X

x is called the star of x. The reduced versions Û X
x = U X

x − {x}, 
F̂ X

x = F X
x − {x} and Ĉ X

x = C X
x − {x} are often used; when there is no ambiguity about the finite space where we are working, 

we can omit the superscript of the above symbols.
Given a finite T0-space X , the Hasse diagram H(X) of the poset (X, �) is a digraph whose vertices are the points of 

X and whose edges are the ordered pairs (x, y) such that x < y and there exists no z such that x < z < y (here x < y
means x � y and x 
= y); the set of edges is denoted by E(H(X)). The height of x in X , h(x), is one less than the maximum 
cardinality of chains in X containing x as maximum; the cardinality of a set A, the set of its minimal elements, and the set 
of its maximal elements will be denoted by #A, mnl(A), and mxl(A), respectively.

There is an important connection between finite topological spaces and simplicial complexes involving the following 
concepts:

Definition 2.2. The order complex K(X) of a finite T0-space X is the (finite) simplicial complex whose simplices are the 
non-empty chains of X . The face poset X (K ) of a finite simplicial complex K is the poset of simplices of K ordered by 
inclusion.
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Recall that a continuous map f : X −→ Y between topological spaces is said to be a weak homotopy equivalence if it 
induces isomorphisms in all homotopy groups, that is, if f∗ : π0(X) −→ π0(Y ) is a bijection and the maps f∗ : πn(X, x0) −→
πn(Y , f (x0)) are isomorphisms for every n � 1 and every base point x0 ∈ X . McCord [13] provides a weak homotopy equiv-
alence between X and |K(X)|, where |K(X)| is the geometric realization of K(X). Conversely, if K is a finite simplicial 
complex, McCord also proved that |K | is weak homotopy equivalent to X (K ). The simplicial complex K(X (K )) is the 
barycentric subdivision of K , and the poset X ′ =X (K(X)) is called the barycentric subdivision of X . It follows that X ′ we≈ X .

The order complex K(X) can be used to compute topological invariants of X by employing techniques on simplicial 
complexes. However, the size of K(X) often restricts the possible computations on it. Nevertheless, there exist methods that 
can be directly applied to finite topological spaces, which provide reductions to smaller spaces with the same topological 
invariants. For instance, Stong [18] proved that, given an element x ∈ X , if the subposet Ûx has a maximum or the subposet 
F̂ x has a minimum, then X � {x} is a strong deformation retract of X .

Definition 2.3. Let X be a finite T0-space. A point x ∈ X is a down beat point if Ûx has a maximum; x is an up beat point if 
F̂ x has a minimum. In either of these cases, x is a beat point of X and we will say that there is an elementary strong collapse
from X to X � {x}. There is a strong collapse X ↘↘ Y (or a strong expansion Y ↗↗ X) if there is a sequence of elementary 
strong collapses starting in X and ending in Y . A core of X is a strong deformation retract of X which has no beat points.

The terms elementary strong collapse and strong collapse, along with their corresponding notations, were introduced in [4]. 
From a computational perspective, the key points of these concepts are that the core of a finite topological space X is 
unique (up to homeomorphism) and that, when x is a beat point, X and X � {x} are homotopy equivalent spaces [18]. Thus, 
it provides a method for computing a minimal space with the same homotopy type as X .

The notion of weak point, introduced in [3], generalizes that of beat point and has proven to be useful in the study of 
weak homotopy types of finite topological spaces.

Definition 2.4. Let X be a finite T0-space. A point x ∈ X is a down weak point if Ûx is contractible; x is an up weak point if 
F̂ x is contractible. In either of these two cases, we say that x is a weak point of X and in this case we will say that there 
is an elementary collapse from X to X � {x}. There is a collapse X ↘ Y (or an expansion Y ↗ X) if there is a sequence of 
elementary collapses starting in X and ending in Y . Two finite T0-spaces X and Y are simple homotopy equivalent if there 
is a sequence X = X1, X2, . . . , Xn = Y of finite T0-spaces such that for each 1 � i < n, Xi ↘ Xi+1 or Xi ↗ Xi+1. We denote 
this case as X�↘Y .

Simple homotopy equivalent finite spaces are, in particular, weak homotopy equivalent. Indeed, the deletion of a weak 
point x ∈ X does not modify the weak homotopy type of X since the inclusion map ι : X � {x} −→ X is a weak homotopy 
equivalence [2].

As a different process to modify a finite T0-space in order to maintain its weak homotopy type, we can consider quotients 
by some subspaces. The next lemma provides a necessary and sufficient condition for the quotient by a subspace A ⊆ X to 
be a T0-space. The open hull of A is A = ⋃

a∈A U X
a , and its closure is A = ⋃

a∈A F X
a .

Lemma 2.5. [2] Let A be a subspace of a finite T0-space X, then X/A is T0 if and only if A ∩ A = A.

The minimal open subsets in a quotient space are given by the following result:

Lemma 2.6. [2] Let x ∈ X and let q : X −→ X/A be the quotient map. If x ∈ A, then Uq(x) = q(Ux ∪ A). If x /∈ A, then Uq(x) = q(Ux).

The standard way to check if a continuous map f : X −→ Y between finite T0-spaces is a weak homotopy equivalence 
is to verify that it is a local weak homotopy equivalence over a basis-like open cover of the codomain, that is, a basis for 
a topology in the underlying set of Y , which may be different from the original topology. In particular, the minimal basis 
U = {U y}y∈Y is a basis-like open cover of Y and is the most commonly used.

With respect to the weak homotopy type, the next result is highly useful in practice, as the weak homotopy equivalence 
between finite topological spaces corresponds to a weak homotopy equivalence between the spaces of which they are 
models [2].

Theorem 2.7. [13] Let X and Y be topological spaces and let f : X −→ Y be a continuous map. Suppose that there exists a basis-like 
open cover U of Y such that each restriction

f | f −1(U ) : f −1(U ) −→ U

is a weak homotopy equivalence for every U ∈ U . Then f : X −→ Y is a weak homotopy equivalence.
3
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3. Glueable pairs

As mentioned above, there exist some techniques for reducing finite spaces that preserve certain topological invariants. 
In particular, some of the reductions found in the literature, in order to obtain weak homotopy equivalent spaces to a given 
finite T0-space, are contained in the following three definitions.

Definition 3.1. [2, Section 11.2] Let X be a finite T0-space of height at most 2 and let a, b ∈ X be two maximal elements 
of X such that Ua ∩ Ub is contractible. We say that there is a qc-reduction from X to Y � {a, b} where Y = X ∪ {c} with 
a < c > b. We say that X is qc-reducible if we can obtain a space with a maximum by performing qc-reductions starting 
from X .

Definition 3.2. [11, Definition 3.2.5] Let X be a finite T0-space of height at most 2 and let a, b ∈ X be neither maximal nor 
minimal points such that Ua ∩ Ub = {∗}. If, for every x ∈ Fa � Fb , Ub ∩ Ux = {∗}, and for every x ∈ Fb � Fa , Ua ∩ Ux = {∗}, 
then we say that there is a middle-reduction from X to the quotient X/{a, b}. We say that X is middle-reducible if it can be 
transformed into a connected space with a unique point (of height 1) by performing middle-reductions.

Definition 3.3. [11, Definition 3.2.10] Let X be a finite T0-space and let e = (a, b) be an edge in the Hasse diagram H(X), 
with b being a maximal element. If Ub � e is contractible, we say that there is an edge-reduction from X to X � e.

The above definitions are inspired by Theorem 2.7, a standard tool used to guarantee the existence of a weak homotopy 
equivalence between two finite T0-spaces. We have adopted the term glueable pair to refer to a more general type of 
reduction.

Definition 3.4. Let X be a finite T0-space. A subset A = {a, b} ⊂ X is a glueable pair if it satisfies the following conditions:

1. Ûa ∩ F̂b = ∅ and Ûb ∩ F̂a = ∅.
2. For every x ∈ Fa � Fb , Ux ∪ Ub is homotopically trivial, and for every x ∈ Fb � Fa , Ua ∪ Ux is homotopically trivial.

Note that if {a, b} is a glueable pair, Ua ∪ Ub is homotopically trivial. In the particular case when Ua ∪ Ub is contractible, 
Ua ∩ Ub is also contractible, as stated in the next proposition.

Proposition 3.5. [7] Let X be a finite T0-space and let a, b ∈ X. Then, Ua ∩ Ub is contractible if and only if Ua ∪ Ub is contractible.

The following new result shows that the quotient of a space by a glueable pair does not alter its weak homotopy type.

Proposition 3.6. Let X be a finite T0-space and A = {a, b} ⊂ X be a glueable pair. Then q : X −→ X/A is a weak homotopy equiva-
lence.

Proof. Observe that A = Ua ∪Ub and A = Fa ∪ Fb , then by condition 1 in Definition 3.4, it is clear that A∩ A = A. Hence, X/A
is a finite T0-space by Lemma 2.5. In order to prove that q : X −→ X/A is a weak homotopy equivalence, it is sufficient to 
show that for each x ∈ X , the restricted map q|q−1(Uq(x))

: q−1(Uq(x)) −→ Uq(x) is a weak homotopy equivalence (Theorem 2.7). 
For this purpose, we have two cases. On the one hand, if x /∈ A, by Lemma 2.6, Uq(x) = q(Ux). Since x /∈ Fa ∪ Fb , then a /∈ Ux

and b /∈ Ux , hence q−1(q(Ux)) = Ux . On the other hand, if x ∈ A, by Lemma 2.6, Uq(x) = q(Ux ∪ A). Note that if x ∈ Fa ∩ Fb , 
Ua ∪ Ub ⊆ Ux , then q−1(Uq(x)) = Ux . Observe that q−1(q(Ux ∪ Ub)) = Ux ∪ Ub if x ∈ Fa � Fb , and q−1(q(Ua ∪ Ux)) = Ua ∪ Ux

if x ∈ Fb � Fa . Therefore, for every x ∈ A, q−1(Uq(x)) is homotopically trivial, according to condition 2 in Definition 3.4.
In any case, the map q|q−1(Uq(x))

: q−1(Uq(x)) −→ Uq(x) is a weak homotopy equivalence for each x ∈ X , as desired. �
Example 3.7. Fig. 1 shows how to obtain a weak homotopy equivalent space to X (the face poset of the boundary of a 
triangle seen as a simplicial complex) by taking the quotient by the glueable pair A = {a, b}; after that, we delete A as a 
beat point of X/A.

Corollary 3.8. If X is a finite T0-space and a, b ∈ X satisfy that ̂Fa = F̂b and Ua ∪ Ub is homotopically trivial, then X
we≈ X/{a, b}.

The above corollary is a generalization of the next proposition.

Proposition 3.9. [7] Let X be a finite T0-space, and let a and b be maximal elements of X. If Ua ∪ Ub is homotopically trivial, then the 
quotient map q : X −→ X/{a, b} is a weak homotopy equivalence.
4
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X

• •
c

•
a

• •d •b

we≈

•

•

•
c

•d

• A ↘↘

• •
c

• •d

Fig. 1. The quotient of X by the glueable pair A = {a,b} followed by an elementary strong collapse.

• •

X

•

• •c •

•b

we≈

• • •

• •c •

•b •a

Y

↘↘

• • •

• •c

X � e

•

•b
e

Fig. 2. An edge-reduction seen as a quotient by a glueable pair followed by an elementary strong collapse.

Some remarks can be drawn from Proposition 3.6, indicating that the reduction operations discussed at the start of this 
section can be expressed in terms of quotients by glueable pairs:

• Suppose that b is a down beat point of X and a = max(Ûb). In particular, (a, b) is an edge of the Hasse diagram of X , 
and thus Ûa ∩ F̂b = ∅ and Ûb ∩ F̂a = ∅. Additionally, Ua ∪ Ub = Ub is contractible, and thus {a, b} is a glueable pair. A 
similar argument works when b is an up beat point of X and a = min( F̂b). This implies that elementary strong collapses 
in finite T0-spaces can be seen as quotients by glueable pairs.

• If a, b ∈ X are maximal elements, F̂a = ∅ = F̂b , then Proposition 3.6 generalizes Proposition 3.9. Bearing this in mind, 
edge-reductions can be seen as a sequence of quotients by some glueable pairs: if b is a maximal element of X and e =
(c, b) is an edge of H(X) such that U X

b � e is contractible (as in Definition 3.3), we consider the space Y = (X � e) ∪ {a}
where (c, a) is an edge of H(Y ) and a is a down beat point of Y , then the maximal elements {a, b} form a glueable 

pair of Y since U Y
a ∪ U Y

b = {a} ∪ (U X
b � e)↘↘ U X

b � e ↘↘∗ and therefore X � e ↗↗ Y
we≈ Y /{a, b} hom≈ X . The sequence of 

spaces in Fig. 2 is an example of this situation.
• Regarding finite spaces of height at most 2, qc-reductions can be seen as quotients by glueable pairs (by definition) and 

the same occurs for middle-reductions: if a, b ∈ X are neither maximal nor minimal points and Ua ∩ Ub = {∗} (as in 
Definition 3.2), then it is not possible for there to exist x ∈ X such that a < x < b or b < x < a (otherwise, either a or b
would be either maximal or minimal).

Now, we are going to describe the opposite process: instead of gluing a pair (which decreases the given space by one 
point), we add a point under certain conditions. The following lemma captures this idea and will be useful in the subsequent 
sections.

Lemma 3.10. Let X be a finite T0-space and a ∈ X. Consider the set Z = X ∪ {b}, where b /∈ X, and suppose that Z is endowed with a 
topology that satisfies the following properties:

1. F̂ X
a = F̂ Z

a = F̂ Z
b ,

2. Û X
a = Û Z

a ∪ Û Z
b ,

3. For x ∈ X � {a}, U Z
x =

{
U X

x ∪ {b} , x ∈ F̂ X
a

U X
x , x /∈ F̂ X

a

4. U Z
a ∪ U Z

b is homotopically trivial.

Then Z is weak homotopy equivalent to X. Moreover, if U Z
a ∪ U Z

b is contractible, then Z�↘X.

Proof. Properties 1 and 4 state that the map q : Z −→ Z/{a, b} is a weak homotopy equivalence (by Corollary 3.8). It is clear 
that the quotient Z/{a, b} and X are homeomorphic, which is sufficient to conclude Z

we≈ X .
5
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•a •b

•• •· · · · · ·

· · · · · · · · ·· · ·

(a)

•a •b

•• •· · · · · ·

· · ·· · · · · ·· · ·
•c

(b)

•b

•• •· · · · · ·

· · · · · · · · ·· · ·
•c

(c)

•• •· · · · · ·

· · ·· · · · · ·· · ·
•c

(d)

Fig. 3. Illustration of: (a) C Z
a ∪ C Z

b , (b) C M
c , (c) C M�{a}

c , (d) C M�{a,b}
c .

• • •

• • •

• •

• •

Fig. 4. An h-regular poset (shown in [14, Figure 1]).

Now, if U Z
a ∪ U Z

b is contractible, consider the space M that it is obtained from Z by adding a new point c which covers 
a and b and is covered by all the elements that cover a or b in Z (this construction is similar to the qc-reductions which 
appear in [2], see Fig. 3).

Note that c is a weak point of M and a, b are beat points of M . Then Z ↗ M ↘↘ M � {a}↘↘ M � {a, b}. Finally, observe 

that M � {a, b} hom≈ X (the homeomorphism replaces the label c in M � {a, b} by the label a), then Z�↘X . �
4. Some properties of h-regular spaces

The concept of h-regular space was introduced in [14].

Definition 4.1. A finite T0-space X is called h-regular if, for every x ∈ X , the order complex K(Ûx) is homotopy equivalent 
to the (h(x) − 1)-dimensional sphere, that is, Ûx

we≈ Sh(x)−1.

The face poset X (K ) of any h-regular CW-complex K (in particular, of any finite simplicial complex) is h-regular. In [14], 
Fig. 4 is presented as an example of an h-regular space which is not the face poset of a regular CW-complex.

In this section, we present some new results regarding h-regular spaces. In particular, we characterize h-regular spaces of 
height 1, which is a useful tool for developing the h-regularization process described in Section 5. We begin by introducing 
the following new definition.
6
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•
u1

•
u2

•
um−1

•
um

•v1 •v2 •vm−1 •

· · · · · ·

vm

Fig. 5. Hasse diagram of a 2m-crown.

Definition 4.2. Let X be a finite T0-space and let n ∈N . We say that X is n-h-regular if the subposet X (n) = {x ∈ X : h(x) � n}
is h-regular.

The next lemma is a straightforward consequence of the definitions previously mentioned.

Lemma 4.3. Let X be an n-h-regular space for some n ∈N0 , and let A ⊆ X be an open subset. Then A is n-h-regular. In particular, for 
all x ∈ X, U X

x and ̂U X
x are n-h-regular spaces.

The core of an h-regular space is not generally h-regular. However, in spaces of height 1, the h-regularity property is 
inherited by their cores.

Lemma 4.4. Let X be an h-regular space of height 1, and let Xc be a core of X. Then Xc is h-regular.

Proof. Without loss of generality, assume that X is connected (otherwise consider each connected component indepen-
dently). If X is contractible, there is nothing to proof. Suppose that X is not contractible and let x ∈ mxl(Xc) ⊆ mxl(X). 
Since Xc is a subspace of X , Û Xc

x = Û X
x ∩ Xc so that #Û Xc

x � #Û X
x = 2. Since h(x) = 1, then #Û Xc

x � 1, but Xc has no beat 
points, so necessarily #Û Xc

x = 2. �

If X is a connected finite T0-space of height 1, |K(X)| is a connected graph, so that X
we≈

q∨
i=1

S1 if and only if E(X) = 1 −q, 

where E(X) = #X − #E(H(X)) is the Euler characteristic of X .
Observing the Euler characteristic characterizes the weak homotopy type of a connected graph, it is possible to charac-

terize the h-regular spaces of height 1 by using this well-known fact. Note that an h-regular space of height 1 is the face 
poset of a regular CW-complex of dimension 1 (a graph). Since every connected graph is homotopy equivalent to a wedge 
of 1-spheres, and bearing in mind that a connected graph such that every vertex is in two edges is a circle, these remarks 
provide the following result.

Lemma 4.5. Let X be an h-regular connected finite T0-space of height 1. Then,

X
we≈

q∨
i=1

S1 if and only if #mnl(X) − #mxl(X) = 1 − q.

In particular, if Xop is h-regular then X
we≈ S1; the converse is true if X has no beat points, and in this case Xop hom≈ X.

Lemma 4.5 allows us to establish the following definition.

Definition 4.6. A 2m-crown is an h-regular finite model of S1 of height 1 without beat points whose cardinal is 2m. The 
Hasse diagram of a 2m-crown looks like in Fig. 5.

Crown spaces are going to play a crucial role in the h-regularization process. It should be noted that if a point is deleted 
from a crown (which is a connected space), the resulting space remains connected. More generally, when a point of a crown 
that is contained in a connected finite T0-space Z is deleted from Z , the connectedness is preserved.

Lemma 4.7. Let Z be a connected finite T0-space, and let Y ⊆ Z be a crown. If x ∈ Y , then Z � {x} is connected.
7
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•
a

•
b

•
c

•
d

•
e

•f • g •h • i • j

•k •l •m

Fig. 6. Hasse diagram of the finite T0-space M .

5. h-regularization of finite spaces

In this section, we show an effective method for constructing an h-regular space that is simple homotopy equivalent to a 
given finite T0-space of height at most 2. We will illustrate the application of our results on the finite T0-space M in Fig. 6
(we will h-regularize the space M). Note that M is not h-regular, as evidenced by the fact that h(i) = 1 but #Û i = 3.

5.1. h-regularization of points of height 1

The process begins by modifying the minimal open sets of the elements of height 1. This procedure does not affect the 
elements of higher heights, so we adopt the following notation to emphasize this:

Notation 5.1. If X and Y are finite T0-spaces such that X�↘Y and X � X (n)
hom≈ Y � Y (n) for some n ∈ N , we will write 

X ≈n Y .

As previously established, each element x of height 1 in an h-regular space must satisfy the condition #Ûx = 2 (the 
0-dimensional sphere is a discrete poset with two elements). The next proposition allows us to separate the elements of Ûx
when #Ûx > 2. Note that in the case #Ûx = 1, x is a beat point and can be removed.

Proposition 5.2. Let X be a finite T0-space and let x ∈ X such that h(x) = 1 and #Û X
x = n � 3. Then, there exists a finite T0-space Xx

such that #Û Xx
x = n − 1 and X ≈1 Xx.

Proof. Let Û X
x = {u1, . . . , un} ⊆ mnl(X). Consider the space Xx = X ∪ {x′}, with x′ /∈ X , whose minimal basis {U Xx

z }z∈Xx is 
given by:

X (1) =
•

u1
•

u2
•

u3
•

un

•x

· · · · · ·

X (1)
x =

•
u1

•
u2

•
u3

•
un

•x′ •x

· · · · · ·

, Û Xx
z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{u1, u2} , z = x′

{u2, . . . , un} , z = x

Û X
z ∪ {x′} , z ∈ F̂ X

x

Û X
z , z /∈ F̂ X

x .

By construction, F̂ X
x = F̂ Xx

x = F̂ Xx
x′ . Furthermore, by Proposition 3.5, U Xx

x ∪ U Xx
x′ is contractible since U Xx

x ∩ U Xx
x′ = {u2} is 

contractible, and thus, by Lemma 3.10 we have that Xx�↘X . Finally, observe that Z := X − X (1) equals Xx − X (1)
x as sets; 

moreover, for all y ∈ Z , since x′ /∈ Z , then U Z
y = U X

y ∩ Z = U Xx
y ∩ Z . Consequently, the topologies of X and Xx coincide on 

Z . �
The above result allows us to modify the reduced minimal open set of a point of height 1 in X that does not satisfy 

the h-regular property. Applying the process of Proposition 5.2 to each point of height 1 of X , we obtain a space X1 that is 
1-h-regular and X1 ≈1 X .

Regarding the space M in Fig. 6, observe that #Û i = 3 and #Û j = 3, therefore we apply Proposition 5.2 to points i and 
j, resulting in the 1-h-regular space in Fig. 7 (we have 1-h-regularized the space M).
8
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• • • • •

• • • •i • j

• •l •m

•i′ • j′

Fig. 7. 1-h-regularization of M .

5.2. h-regularization of points of height 2

Once we have modified a given space so that its elements of height 1 satisfy the h-regularity property, we must ensure 
that for each element x of height 2, the subspace Ûx to be weak homotopy equivalent to S1. In particular, Ûx must be 
connected; if this is not the case, the following result allows us to modify the space in order to address this local situation.

Proposition 5.3. Let X be a finite T0-space and let x ∈ X with h(x) � 2. Then, there exists a finite T0-space Xx such that Û Xx
x is 

connected and X ≈1 Xx. Moreover for n ∈N0 , if X is n-h-regular, then so is Xx.

Proof. If Û X
x is connected, take Xx = X ; otherwise, consider Û X

x =�m
k=1 Ck , where Ck are the connected components of Û X

x . 
Since Ck 
= ∅, fix any xk ∈ mnl(Ck) for each k = 1, . . . , m. Consider the T0-space Xx = X ∪ {v1, . . . , vm−1}, whose minimal 
basis {U Xx

z }z∈Xx is defined by:

Û Xx
z =

⎧⎪⎨⎪⎩
{xk, xk+1} , z = vk for k = 1, . . . ,m − 1

Û X
z ∪ {v1, . . . , vm−1} , z ∈ F X

x

Û X
z , z /∈ F X

x .

X (h(x))
x =

•
xk−1

•
xk

•
xk+1

•vk−1 •vk

•x

Observe that F̂ Xx
vk

= F X
x for each k = 1, . . . , m − 1. This implies that vk is an up beat point of X1 and thus Xx ↘↘ X . To 

prove the connectedness of Û Xx
x it is sufficient to observe that x1 < v1 > x2 < · · · > xm−1 < vm−1 > xm is a fence in X1

connecting all the Ck . Finally, by construction, X (0)
x = X (0) , X − X (1)

hom≈ Xx − X (1)
x and for n � 1, X (n)

x = X (n) ∪{v1, . . . , vm−1}, 
h(vk) = 1 and #Û Xx

vk
= 2. Therefore, if X is n-h-regular, then Xx is also n-h-regular. �

Considering the 1-h-regular space in Fig. 7, we can use Proposition 5.3 to make Ûl and Ûm connected subspaces by 
adding the points l′ and m′ , as depicted in Fig. 8. This results in a 1-h-regular space with connected reduced minimal open 
sets for all elements of height 2.

Proposition 5.3 allows us to assume, from this point forward in this section, that the reduced minimal open sets of 
elements of height greater than 1 are connected. Now, once we have 1-h-regularized a given space, the subspace Ûx is an 
h-regular space of height 1, for every element x of height 2, therefore Ûx is weak homotopy equivalent to a finite wedge 
of q 1-dimensional spheres by Lemma 4.5. The case q = 0 indicates that x is a weak point and we can remove it and if 
q = 1 the desired condition is satisfied. However, if q > 1 we can separate such 1-spheres in order to satisfy the (h-regular) 
condition Ûx

we≈ S1 as is shown in the next result.
9
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• • • • •

• • • • •

•k •l •m

• ••l′ •m′

Fig. 8. Making Ûl and Ûm connected by adding the points l′ and m′ .

Proposition 5.4. Let X be a 1-h-regular finite T0-space and let x ∈ X such that h(x) = 2. Suppose Û X
x

we≈ ∨q
i=1 S1 for q > 1. Then 

there exists a 1-h-regular finite T0-space Xx such that ̂U Xx
x

we≈ ∨q−1
i=1 S1 and X ≈2 Xx.

Proof. Let #mnl(Û X
x ) = r and #mxl(Û X

x ) = R . Let Xc be a core of Û X
x , then Xc

we≈ ∨q
i=1 S1. Also, by Lemmas 4.3 and 4.4, 

Xc is h-regular. Observe that Xc is a wedge of q crowns, therefore we can take one of them: let {u1, . . . , us, v1, . . . , vs}
be a 2s-crown, s > 1, where {u1, . . . , us} ⊆ mnl(M) and {v1, . . . , vs} ⊂ mxl(M); we label the rest of minimal and maximal 
elements of Û X

x such that mnl(Û X
x ) = {u1, . . . , us, us+1, . . . , ur} and mxl(Û X

x ) = {v1, . . . , vs, vs+1, . . . , v R}.
Consider the space Xx = X ∪ {x′}, with x′ /∈ X , whose minimal basis {U Xx

z }z∈Xx satisfies:

Û Xx
z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{u1, . . . , us, v1, . . . , vs} , z = x′

{u1, . . . , ur, v2, . . . , v R} , z = x

Û X
z ∪ {x′} , z ∈ F̂ X

x

Û X
z , z /∈ F̂ X

x .

X (2) =

•
u1

•
u2

•
u3

•v1 •v2 •v3 •v4

•x

X (2)
x =

•
u1

•
u2

•
u3

•v1 •v2 •v3 •v4

•x′ •x

By construction, F̂ X
x = F̂ Xx

x = F̂ Xx
x′ . Furthermore, by Proposition 3.5, the subposet U Xx

x′ ∪ U Xx
x is contractible, since U Xx

x′ ∩
U Xx

x = Û Xx
x′ ∩ Û Xx

x = {u1, . . . , us, v2, . . . , vs} is connected by Lemma 4.7 and

#mxl
(

Û X1
x′ ∩ Û X1

x

)
= #mnl

(
Û X1

x′ ∩ Û X1
x

)
− 1 =⇒ Û X1

x′ ∩ Û X1
x

we≈ ∗.

Therefore, Xx�↘X by Lemma 3.10. Note that, since Û Xx
x′ = {u1, . . . , us, v1, . . . , vs} is a 2s-crown, Û Xx

x′
we≈ S1 (by using 

Lemma 4.5). On the other hand, taking Z = Û X
x , Y = Û Xx

x′ and x = v1 in Lemma 4.7, we obtain the connectedness of 
Û Xx

x = {u1, . . . , ur, v2, . . . , v R} and therefore, by Lemma 4.5

#mxl
(

Û Xx
x

)
= #mnl

(
Û Xx

x

)
+ (q − 1) − 1 =⇒ Û Xx

x
we≈

q−1∨
i=1

S1.

Finally, observe that W := X − X (2) is equal to Xx − X (2)
x as sets; moreover, for all y ∈ W , since x′ /∈ W then U W

y =
U X

y ∩ W = U Xx
y ∩ W , thus the topologies of X and Xx are the same on W . �

Repeating the procedure of Proposition 5.4 to each point of height 2 of X , we can obtain a space Xh such that the 
reduced minimal open sets of the points of height 2 are weak homotopy equivalent to one 1-sphere, thus establishing the 
central result of this work:
10



J. Cuevas-Rozo, L. Lambán, A. Romero et al. Discrete Mathematics 346 (2023) 113636
• • • • •

• • • • •

•k •l •

• •• ••l′′

•k′

Fig. 9. 2-h-regularization of M .

Theorem 5.5. Given a finite T0-space X, the space Xh constructed previously is 2-h-regular and Xh ≈2 X. In particular, if X has height 
2, Xh is h-regular.

It is important to point out that the resulting space Xh in Theorem 5.5, obtained after the h-regularization of a finite 
T0-space, is not unique, as the involved constructions depend on expansions, collapses, and quotients by glueable pairs, 
which can be performed in different ways.

Continuing with our example, in order to 2-h-regularize the space in Fig. 8, we consider the elements of height 2. Note 
that Ûm has 5 minimal elements and 5 maximal elements so that by Lemma 4.5, such a subspace is weak homotopy 
equivalent to S1, satisfying the h-regular property. On the other hand, Ûk is a finite model of S1 ∨ S1, and Ûl is contractible. 
Therefore, by using the above construction, we obtain the h-regular space in Fig. 9.

Our construction of Xh allows us to obtain from X an h-regular space smaller than X ′ , thus enabling us to work with 
larger finite spaces in order to compute homotopical invariants, as we will show in Section 6. For example, observe that the 
space in Fig. 9 is an h-regular space with 19 elements that is simple homotopy equivalent to M; in contrast, the barycentric 
subdivision of M has 63 elements.

The method of h-regularization has been completely developed for finite T0-spaces of height at most 2. The complete 
process can be done for such spaces due to the fact that h-regular finite models of 1-spheres can be characterized by using 
Lemma 4.5. Unfortunately, there is not an analogous result on finite models of spheres in greater dimensions. However, most 
of the results that have been shown in this section can be applied to minimal finite T0 -spaces with no constraint on their 
heights. In particular, the construction of the space Xh can be used as a first step in the search of h-regular spaces weak 
homotopy equivalent to finite T0-spaces of height greater than two, as an alternative to the construction of barycentric 
subdivisions. Nevertheless, the developed procedure does not succeed in any circumstance for dimension greater than two.

6. Implementation and results

In Section 5, we have shown a procedure to obtain a simple homotopy equivalent h-regular space to a given one of 
height at most 2. In this section, we will describe an implementation of our algorithm in the Kenzo system, which allows for 
the h-regularization of finite spaces.

Kenzo [10] is a symbolic computation system devoted to algebraic topology. It was originally written in 1990 by Serg-
eraert and Rubio under the name of EAT (Effective Algebraic Topology) [17]. In 1998, it was rewritten by Sergeraert and 
Dousson, with the current name of Kenzo. The last official version dates from 2008, although there exists a more recent 
version maintained by G. Heber [12] with compatibility improvements and bug fixes.

The primary objective of Kenzo is to be able to handle spaces of infinite nature, encoded using the Common Lisp pro-
gramming language and making extensive use of functional programming. It is the only program for algebraic topology that 
is capable of performing computations on infinite structures.

The program allows for the computation of homology and homotopy groups of complicated spaces, such as iterated loop 
spaces of a loop space modified by a cell attachment or components of complex Postnikov towers, which were previously 
unknown [16].

Kenzo has been enhanced with a module for computing invariants of finite topological spaces (instances of the class
FINITE-SPACE) that was developed in [9] and is available at [8]. In this module, some methods have been implemented 
to identify beat points and weak points in finite spaces, allowing, in particular, the computation of cores and spaces with 
no weak points. Additionally, this module is able to compute homology groups of h-regular finite spaces working directly 
on the posets without having to go to the simplicial world. Moreover, the technique of discrete vector fields has been used 
to improve the computations of the homology by constructing a discrete vector field defined directly on the poset that can 
be applied to general h-regular finite spaces. Now, we have enhanced our module with a new function to compute the 
h-regular space by means of the algorithm presented in Section 5:
11
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Table 1
Comparison of the cardinalities of the barycentric subdivision (X ′) and our method of h-regularization (Xh). 
Twenty (20) random spaces of size #X and height 2, without beat points, were computed for each row.

#X Average #Xh Average #X ′ Average % reduction

10 22.30 73.10 69.66
15 67.45 177.75 62.40
20 144.15 325.55 56.11
25 257.50 539.50 53.87
30 435.20 847.20 50.19
35 731.55 1266.75 43.14

2-h-regularization minimal-finspace
It returns the FINITE-SPACE Xh in Theorem 5.5, i.e., a 2-h-regularization of minimal-finspace. The parameter minimal-
finspace must be a FINITE-SPACE without beat points.

By using our implementation of the method in Kenzo, we tested the h-regularization of random finite T0-spaces. We con-
structed 20 arbitrary finite T0-spaces X without beat points by using the function random-2space for some dimensions 
(#X) (this function generates random finite T0-spaces of height 2). We then used the method 2-h-regularization
to obtain instances of the class FINITE-SPACE representing the h-regularizations (Xh) of our testing examples. In the 
same way, the function bar-subdivision was used to compute the barycentric subdivisions (X ′). After computing these 
spaces, we found the average of the cardinalities of the spaces X , Xh , and X ′ in order to compare the results obtained. This 
information is summarized in Table 1.

It is clear that the execution of the h-regularization procedure entails a time cost which is usually greater than the 
time used to compute barycentric subdivisions. However, the smaller size of Xh compensates for this disadvantage. Most 
importantly, the developed method allows for computations which, in practice, cannot be realized by applying barycentric 
subdivisions. As an example, the h-regularization method can be used to repair some perturbations applied to finite spaces 
coming from the simplicial complex world. For instance, we have imported into Kenzo the data of the facets of a random 
2-dimensional simplicial complex with 25 vertices and 751 triangles, picked with probability 0.328, as described in the 
example “rand2_n25_p0.328” in [5], and we have constructed its face poset K1.

> (setf data_folder "...")
> (setf K1 (import-facets-to-finite-space "rand2_n25_p0.328"))
[K1 Finite-Space]

Then, we have taken a wedge of four copies of this finite T0-space and a random-2space of 19 elements (a non-h-
regular perturbation).

> (setf F2 (random-2space 19))
[K2 Finite-Space]
> (setf W (wedge-at-x1 K1 K1 K1 K1 F2))
[K3 Finite-Space]
> (cardinality W)
4373

As we can observe, the resulting space has 4373 points. Kenzo needed approximately two minutes to compute the h-
regularization of W and its homology groups, while the barycentric subdivision of W could not be constructed (the function
h-regular-homology-sim computes the homology groups of the input h-regular finite space of height at most 2).

> (time (2-h-regularization W))
Timing the evaluation of (2-H-REGULARIZATION W)

User time = 0:01:04.046
System time = 0.187
Elapsed time = 0:01:04.123
[K4 Finite-Space]

> (time (h-regular-homology-sim (k 4)))
Timing the evaluation of (H-REGULAR-HOMOLOGY-SIM (K 4))

Homology in dimension 0 : Z
Homology in dimension 1 :
12
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Homology in dimension 2 : Z ^ 1954
User time = 57.015
System time = 0.078
Elapsed time = 57.257

7. Conclusions and further work

The algorithms developed in [9] for computing homology groups are applicable to h-regular finite spaces. In the 
literature, there are few examples of h-regular finite spaces that differ from face posets of simplicial complexes. The h-
regularization process described in Section 5 produces a wide variety of h-regular finite spaces. As we have shown, any 
finite T0-space of height at most 2 can be h-regularized, thus allowing for the consideration of new examples of this kind 
of spaces.

Some modifications to finite T0-spaces had to be considered when searching for a correct implementation of h-
regularization. In particular, when the reduced open minimal set of an element of height two is not connected, we rectify
this by introducing a beat point, which makes the subspace connected in the new space. The most challenging part of our 
method was Proposition 5.4, where we showed an algorithmic way to partition the reduced open minimal set into 1-spheres, 
which was the key result to achieve the h-regularization of finite T0-spaces that we had in mind.

Moreover, the modifications considered to h-regularize a finite T0-space do not change the simple homotopy type, and 
all the spaces in the process are 3-deformations of the initial one. In the particular case when a homotopically trivial finite 
T0-space of height two satisfies the Andrews-Curtis conjecture, all the spaces in the process of h-regularization satisfy it 
too, which could be used to attack the conjecture in a future work by using simple homotopy equivalent spaces to the given 
one, as in [11], where some potential counterexamples to the conjecture have been discarded by means of techniques on 
finite topological spaces.
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