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Abstract: Aggregating gold(I) complexes in solution through short aurophilic contacts promotes
new photoluminescent deactivation pathways (aggregation-induced emission, AIE). The time de-
pendence of spontaneous AIE is seldom studied. We examine the behavior of complex [Au(N9-
hypoxanthinate)(PTA)] (1) in an aqueous solution with the aid of variable-temperature NMR, time-
resolved UV–Vis and photoluminescence spectroscopy, and PGSE NMR. The studies suggest that
partial ligand scrambling in favor of the ionic [Au(PTA)2][Au(N9-hypoxanthinate)2] pair followed
by anion oligomerization takes place. The results are rationalized with the aid of computational
calculations at the TD-DFT level of theory and IRI analysis of the electron density.

Keywords: gold(I); nucleobases; aurophilicity; aggregation-induced emission; nuclear magnetic
resonance; photoluminescence; computational studies

1. Introduction

The aqueous chemistry of linear gold(I) ([Xe] 5d10) is far less developed than that
of its square-planar congener, gold(III) ([Xe] 5d8). The higher Pearson softness of gold(I)
relative to gold(III) makes it less suitable for water coordination and thus disproportionate
to give metallic gold(0) and gold(III). However, if the unstable gold(I) center is protected
with suitable ligands, the complexes are stable in aqueous media and water-enriched
mixtures [1]. This allows the exploitation of the interesting and characteristic properties of
gold(I), e.g., catalytical [2–8] and biological [9–11] activity in these appealing media.

As an instance, gold(I) complexes have been popularized during the last years as
Aggregation-Induced Emission Luminogens (AIEgens) [12] thanks to the ability of gold(I)
to self-aggregate through short aurophilic contacts of <3.2 Å [13–15]. Gold(I) AIEgens
essentially comprise highly hydrophobic complexes, e.g., pentafluorophenylgold(I) units
bound to alkyl- or arylisocyanide ligands featuring long alkyl spacers or chains [16]. Ag-
gregation is commonly forced by adding water to a neat solution of AIEgen. The spatial
proximity of the gold(I) atoms in the nanosized aggregates gives rise to new excited states
accessible by optical excitation, switching on new photoluminescent deactivation pathways.
The degree of aggregation and the photoluminescence intensity are controlled by a balance
between hydrophobicity and hydrophilicity.

There are fewer examples where AIE is achieved in gold(I) chemistry, not by modi-
fying the solvent composition but spontaneously to gain thermodynamic stability. These
include spontaneous self-assembly, as in the case of metallogelation [15,17,18], and lig-
and rearrangement conducive to diauracycles for releasing strain [19] or forming stabler
species [20].

In this context, the water-soluble phosphine 1,3,5-triaza-7-phosphaadamantane (PTA;
see Figure 1, left) [21] is widely employed as a ligand because of its small cone an-

Molecules 2023, 28, 5680. https://doi.org/10.3390/molecules28155680 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28155680
https://doi.org/10.3390/molecules28155680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-9291-6187
https://orcid.org/0000-0002-9672-8279
https://doi.org/10.3390/molecules28155680
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28155680?type=check_update&version=1


Molecules 2023, 28, 5680 2 of 15

gle of 103◦, the absence of π-delocalized electron density, and its extremely rich chem-
istry [22–24]. These properties allow gold(I)· · · gold(I) aggregation and the observation
of AIE unencumbered by intraligand transitions. There are numerous studies on the self-
aggregation of discrete gold(I) complexes of PTA and DAPTA (3,7-diacetyl-1,3,7-triaza-5-
fosfabiciclo[3.3.1]nonane) [25,26] by Rodríguez’s group; see [27–29] as examples. However,
the time dimension of the process is seldom studied. We reported in 2021 that complex
[Au(N9-adeninate)(PTA)], an auration product of the natural purinic nucleobase adenine
(see Figure 1, center), experiences a spontaneous supramolecular rearrangement in water
solution leading to broad red phosphorescence centered at 700 nm [30]. Aurophilic dimers
further stabilized by C-H· · ·π interactions were proposed as a source of phosphorescence,
in contrast to the initial blue-fluorescent hydrogen-bonded dimers. The rearrangement
process occurs even within the semirigid fibrous matrix of a hydrometallogel.
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Figure 1. Molecular structures of PTA, adenine (canonical numbering in red) and hypoxanthine.

We herein expand our previous study, considering the natural oxypurinic nucleobase
hypoxanthine (6-hydroxypurine; see Figure 1, right). Hypoxanthine is an intermediate in
adenine biosynthesis and the major product of the C2-deamination of guanine. The substitu-
tion of the C6-amino group of adenine by a C6-hydroxy one gives rise to a different balance
and pattern of supramolecular hydrogen bond interactions. There are fewer examples of
metal complexes of hypoxanthine, or oxypurines in general, than of adenine [31,32]. The
spontaneous rearrangement process of complex [Au(N9-hypoxanthinate)(PTA)] (1) taking
place exclusively in water solution is studied using time-resolved spectroscopical techniques,
TD-DFT computational calculations, and IRI electron density topological analysis.

2. Results and Discussion

2.1. Synthesis and Characterization of Complex [Au(N9-Hypoxanthinate)(PTA)] (1)

Complex [Au(N9-hypoxanthinate)(PTA)] (1) was prepared in a single step by coordi-
nating a [Au(PTA)]+ unit to the hypoxanthinate anion formed in situ by deprotonation of
hypoxanthine with the acetylacetonate [(acac)−] ligand of [Au(acac)(PTA)] (see Figure 2).
A N9 coordination mode of the [Au(PTA)]+ fragment to hypoxanthinate is proposed for
complex 1 by analogy with the X-ray structure of other reported gold(I) complexes of the
adeninate anion [18,30,33–35]. N9 is also the most basic position of purines. Complex 1 is
freely soluble in water, where it experiences a spontaneous color change at room tempera-
ture associated with a nascent red photoluminescent emission (see below). It is also soluble
in methanol, sparingly soluble in ethanol, and barely soluble in organic solvents such as
dichloromethane, chloroform, diethylether, and n-hexane.
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The presence of hypoxanthine as a ligand in complex 1 is suggested by the observed
characteristic ν(C=O) (1682 cm−1) and ν(C=N) (1621 cm−1) stretching vibrations of the
nucleobase and the loss of a broad ν(N-H) absorption centered at 2750 cm−1 in the UATR–
FTIR spectrum (see Figures S1 and S2). The 1H NMR [ν0 of 400 MHz, in deuterium
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oxide (D2O); see Figure S3] nucleobase resonances are observed as broadened singlets at
7.99 (C8H) and 7.85 (C2H) ppm, deshielded with respect to free hypoxanthine [8.21 ppm
(C8H), 8.19 ppm (C2H); see Figure S4]. Also, the 1H NMR phosphine signals appear as an
AB system (lower rim, NCH2N) in the interval 4.46–4.56 ppm and as a virtual singlet (upper
rim, PCH2N) centered at 4.30 ppm. Curiously, no effective 2JPH coupling is detected, which
seems to be characteristic of (PTA)gold(I) complexes [22]. The 31P{1H} NMR spectrum (ν0
of 162 MHz, in D2O; see Figure S5) is complicated with additional unexpected signals, but
a major singlet at −52.63 ppm suggests one type of [Au(PTA)]+ coordination mode for the
hypoxanthinate ligand. These spectra were recorded at temperatures ranging from 10 ◦C
to 70 ◦C (see Figures 3 and S6). The low freezing point of D2O restricted the temperature
interval, precluding collection at lower temperatures. Up to three signals are observed in
the 31P{1H} NMR spectrum at 10 ◦C. The downfield signal at −39.98 ppm is isochronous
with that of the [Au(PTA)2]+ cation (−39.77 ppm, see below). In contrast, the upfield
one at −55.56 ppm is assigned to coordination products of [Au(PTA)]+ to hypoxanthinate
different from that of N9. The presence of [Au(PTA)2]+ can only be explained if the ligand
scrambling process of Figure 4 is considered. In this process, two neutral molecules of
complex 1 interchange their ligands. This renders the homoleptic ions [Au(PTA)2]+ and
[Au(N9-hypoxanthinate)2]−. Indeed, the high polarity of water favors the partial formation
of an ionic species. When the temperature is increased to 70 ◦C, the signals coalesce,
averaging the chemical shifts to −51.21 ppm. This suggests that the different species are
related by a thermal equilibrium.
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The molecular peaks of [Au(N9-hypoxanthinate)(PTA)]+ (490 Da) and [Au(PTA)2]+

(511 Da) are observed in the MALDI-MS(+) spectrum (see Figures S7–S9). Other peaks
of species of higher nuclearity are also observed, such as [Au2(hypoxanthinate)(PTA)2]+

(843 Da) and the sodium adduct {[Au3(hypoxanthinate)2(PTA)2]+Na}+ (1196 Da). These are
produced by the stepwise addition of neutral [Au(hypoxanthinate)] units to [Au(PTA)2]+

under the harsh measurement conditions of MS. The aged solutions of complex 1 feature a
peak of an even higher nuclearity, [Au4(hypoxanthinate)3(PTA)2]+ (1528 Da).

The freshly prepared water solutions of complex 1 behave as an expected non-
electrolyte. However, its molar conductivity experiences a slight increase from 24.06
to 34.34 cm2 Ω−1 mol−1 during a 54-h period (see Figure S10).

These experimental findings, for example, the presence of [Au(PTA)2]+ in the 31P{1H}
NMR spectrum of complex 1, the detection of high-nuclearity species in the MALDI-MS(+)
spectrum, the increase in the molar conductivity, and particularly the spontaneous color
change of the solution (see below), reveal that complex 1 is not static in water solution.

2.2. Synthesis and Characterization of Complexes [Au(PTA)2](ClO4) (2) and
(NBu4)[Au(N9-Hypoxanthinate)2] (3)

The homoleptic congeners of complex 1, namely, [Au(PTA)2]+ cation and [Au(N9-
hypoxanthinate)2]− anion, as perchlorate (complex 2) and tetrabutylammonium (complex 3)
salts, respectively, have also been prepared. Complex [Au(PTA)2](ClO4) (2) was prepared
by displacement of the two labile tetrahydrothiophene (tht) ligands of [Au(tht)2](ClO4) with
two equivalents of PTA in dichloromethane (see Figure 5, top). Complex (NBu4)[Au(N9-
hypoxanthinate)2] (3) was prepared similarly to 1 by adding two equivalents of hypox-
anthine to a solution of (NBu4)[Au(acac)2] in absolute ethanol (see Figure 5, bottom).
Complex 2 is soluble in water, sparingly soluble in methanol and ethanol, and insoluble
in organic solvents such as acetone, diethylether, and n-hexane. Complex 3 is sparingly
soluble in water and insoluble in organic solvents such as dichloromethane, diethylether,
and n-hexane. Interestingly, neither complex 2 nor complex 3 experience color changes or
photoluminescence appearances in water solutions.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 4. Proposed ion pair formation by ligand rearrangement in aqueous solution. 

The molecular peaks of [Au(N9-hypoxanthinate)(PTA)]+ (490 Da) and [Au(PTA)2]+ (511 
Da) are observed in the MALDI-MS(+) spectrum (see Figures S7–S9). Other peaks of spe-
cies of higher nuclearity are also observed, such as [Au2(hypoxanthinate)(PTA)2]+ (843 Da) 
and the sodium adduct {[Au3(hypoxanthinate)2(PTA)2]+Na}+ (1196 Da). These are pro-
duced by the stepwise addition of neutral [Au(hypoxanthinate)] units to [Au(PTA)2]+ un-
der the harsh measurement conditions of MS. The aged solutions of complex 1 feature a 
peak of an even higher nuclearity, [Au4(hypoxanthinate)3(PTA)2]+ (1528 Da). 

The freshly prepared water solutions of complex 1 behave as an expected non-elec-
trolyte. However, its molar conductivity experiences a slight increase from 24.06 to 34.34 
cm2 Ω−1 mol−1 during a 54-h period (see Figure S10). 

These experimental findings, for example, the presence of [Au(PTA)2]+ in the 31P{1H} 
NMR spectrum of complex 1, the detection of high-nuclearity species in the MALDI-MS(+) 
spectrum, the increase in the molar conductivity, and particularly the spontaneous color 
change of the solution (see below), reveal that complex 1 is not static in water solution. 

2.2. Synthesis and Characterization of Complexes [Au(PTA)2](ClO4) (2) and (NBu4)[Au(N9-
Hypoxanthinate)2] (3) 

The homoleptic congeners of complex 1, namely, [Au(PTA)2]+ cation and [Au(N9-hy-
poxanthinate)2]- anion, as perchlorate (complex 2) and tetrabutylammonium (complex 3) 
salts, respectively, have also been prepared. Complex [Au(PTA)2](ClO4) (2) was prepared 
by displacement of the two labile tetrahydrothiophene (tht) ligands of [Au(tht)2](ClO4) 
with two equivalents of PTA in dichloromethane (see Figure 5, top). Complex 
(NBu4)[Au(N9-hypoxanthinate)2] (3) was prepared similarly to 1 by adding two equiva-
lents of hypoxanthine to a solution of (NBu4)[Au(acac)2] in absolute ethanol (see Figure 5, 
bottom). Complex 2 is soluble in water, sparingly soluble in methanol and ethanol, and 
insoluble in organic solvents such as acetone, diethylether, and n-hexane. Complex 3 is 
sparingly soluble in water and insoluble in organic solvents such as dichloromethane, di-
ethylether, and n-hexane. Interestingly, neither complex 2 nor complex 3 experience color 
changes or photoluminescence appearances in water solutions. 

 
Figure 5. Syntheses of complexes 2 and 3. 

The spectroscopic measurements are consistent with the proposed stoichiometries 
for both complexes (see Supplementary Materials). Particularly for complex 2, a sharp 

Figure 5. Syntheses of complexes 2 and 3.

The spectroscopic measurements are consistent with the proposed stoichiometries for
both complexes (see Supplementary Materials). Particularly for complex 2, a sharp singlet
at −39.77 ppm in the 31P {1H} NMR spectrum (ν0 of 162 MHz, in D2O; see Figure S12)
suggests the presence of equivalent phosphine ligands. The molecular peaks of both ions
are observed in their respective MALDI-MS spectra: {511 Da for [Au(PTA)2]+ and 98 Da
for (ClO4)−} (see Figures S13 and S14). The presence of bound hypoxanthinate ligands
in complex 3 is suggested by the ν(C=O) (1663 cm−1) and (C=N) (1610 cm−1) stretching
vibrations of the nucleobase in the UATR–FTIR spectrum of 3 (see Figure S16).

To confirm whether the proposed equilibrium depicted in Figure 4 is indeed an equi-
librium and if it can also be reached from the right side of the equation, an equimolecular
mixture of complexes 2 and 3 in D2O has been characterized by variable-temperature 1H
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and 31P{1H} NMR (see Figure S20 and Figure 6, respectively). It can be observed that
the 31P{1H} NMR spectrum of the mixture is fully different from that of neat complex 2
and is similar to that of 1, featuring two major signals at −39.70 and −52.46 ppm, which
correspond to [Au(PTA)2]+ and [Au(N9-hypoxanthinate)(PTA)], respectively. This confirms
that the in situ formed ionic [Au(PTA)2][Au(9N-hypoxanthinate)2] pair equilibrates with
neutral [Au(N9-hypoxanthinate)(PTA)] in water solution by ligand scrambling.
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2.3. Photophysical Studies

As was advanced, the initially colorless water solutions of complex 1 turn to an amber
color and emit red light (λex of 365 nm) as a spontaneous result of aging (see Figure 7).

Molecules 2023, 28, x FOR PEER REVIEW 5 of 15 
 

 

singlet at −39.77 ppm in the 31P {1H} NMR spectrum (ν0 of 162 MHz, in D2O; see Figure 
S12) suggests the presence of equivalent phosphine ligands. The molecular peaks of both 
ions are observed in their respective MALDI-MS spectra: {511 Da for [Au(PTA)2]+ and 98 
Da for (ClO4)-} (see Figures S13 and S14). The presence of bound hypoxanthinate ligands 
in complex 3 is suggested by the ν(C=O) (1663 cm−1) and (C=N) (1610 cm−1) stretching vi-
brations of the nucleobase in the UATR–FTIR spectrum of 3 (see Figure S16). 

To confirm whether the proposed equilibrium depicted in Figure 4 is indeed an equi-
librium and if it can also be reached from the right side of the equation, an equimolecular 
mixture of complexes 2 and 3 in D2O has been characterized by variable-temperature 1H 
and 31P{1H} NMR (see Figures S20 and 6, respectively). It can be observed that the 31P{1H} 
NMR spectrum of the mixture is fully different from that of neat complex 2 and is similar 
to that of 1, featuring two major signals at −39.70 and −52.46 ppm, which correspond to 
[Au(PTA)2]+ and [Au(N9-hypoxanthinate)(PTA)], respectively. This confirms that the in situ 
formed ionic [Au(PTA)2][Au(9N-hypoxanthinate)2] pair equilibrates with neutral [Au(N9-
hypoxanthinate)(PTA)] in water solution by ligand scrambling. 

 
Figure 6. 31P{1H} NMR spectra of the equimolecular mixture of complexes 2 and 3 in D2O. 

2.3. Photophysical Studies 
As was advanced, the initially colorless water solutions of complex 1 turn to an amber 

color and emit red light (λex of 365 nm) as a spontaneous result of aging (see Figure 7). 

 
Figure 7. The color change of complex 1 in water solution (2 mM) upon aging. Figure 7. The color change of complex 1 in water solution (2 mM) upon aging.

The UV–Vis spectra of freshly prepared solutions of complexes 1–3 (50 µM in water
solution) are plotted in Figure 8a,b. The spectrum of hypoxanthine is also included for
comparative purposes. The spectrum of complex 1 features two distinct asymmetric
absorptions at 245 and 200 nm. The energy of the bands is coincident with those of free
hypoxanthine, suggesting an intraligand origin for them, with a slight perturbation arising
from the [Au(PTA)]+ fragment. This is confirmed by computational calculations at the
TD-DFT level of theory (see below). The coordination of two hypoxanthinate ligands to a
single gold(I) center has a more significant impact on the spectrum. The spectral profile of
complex 3 still features two absorptions, but these are broader and less defined. Notably,
the band edge is redshifted. The spectrum of complex 2 shows two structured absorptions
at 242 and 209 nm, with shoulders at 257 and 214 nm. The aqueous solutions of PTA do not
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show absorptions at wavelengths longer than 210 nm [36], so a metal-perturbed intraligand
origin is proposed.
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(blue) and 3 (red). (b) Absorption spectrum of complex 2. (c) Absorption spectra of complex 1 at 0
(black) and 54 h (red). (d) Ampliation of the low energy region of (c). The spectra were measured in a
water solution at a concentration of 50 µM.

The amber color of the aged solutions of complex 1 relates to the subtle band edge
redshift and increment of absorbance measured after 48 h (see Figure 8c,d). Its origin may
be the steady formation of the [Au(N9-hypoxanthinate)2]− anion since the band edge of 3
is red-shifted with respect to that of 1. The 48-h spectrum of 1 is intermediate between 0-h
1 and 3.

The photoemission spectrum of complex 1 (2 mM in water solution) has been recorded
at different times for 54 h (see Figure 9). Initially, the emission spectrum (λex of 320 nm)
featured a broad asymmetric band with a maximum of 445 nm and an emission lifetime
of 73 ns. As time passed, a new lower-energy band (620 nm) with a longer lifetime of
628 ns as a shoulder of the former appeared. The excitation spectra of both bands overlap
(see Figure S21); however, the low-energy band can be better resolved if the excitation
wavelength is moved to 340 nm (see Figure 9b). During the 54-h period, an intensity
increase in both bands is observed.
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Figure 9. Emission spectrum of complex 1 (2 mM in aqueous solution) at different times with (a) an
excitation wavelength of 320 nm and (b) an excitation wavelength of 340 nm.

This time-dependent variation of the photoemission in aqueous solution is ascribed to
the formation of fixed-size small aurophilic oligomers (see below), which may be formed
from discrete neutral molecules of complex 1 or the ions originated from the partial ligand
rearrangement proposed in Figure 4.

2.4. Pulsed-Field Gradient Spin Echo NMR Studies

The translational diffusion coefficients (Dt) of the ligands conforming to complex 1
were measured by pulsed-field gradient spin-echo (PGSE) 1H NMR (ν0 of 400 MHz, 25 mM
in D2O) [37,38]. The hydrodynamic radius (rH) and the molecular size of the diffusing
species are inversely proportional to Dt, as expressed by the Stokes–Einstein equation. The
Dt and derived rH of characteristic 1H NMR signals of the PTA and hypoxanthinate ligands
measured from a freshly prepared sample and after 48 h are compared in Table 1.

Table 1. Translational diffusion coefficients (in m s−1) and derived hydrodynamic radii (in Å) of
complex 1 at 0 and 48 h.

Time (h)
PTA Signal (4.32 ppm) Hypoxanthinate Signal (8.01 ppm)

Dt·10−10 (m s−1) rH (Å) Dt·10−10 (m s−1) rH (Å)

0 4.16 4.93 5.80 3.54
48 4.13 4.96 5.51 3.72

Table 1 shows that both ligands have different Dt irrespective of the sample preparation
time, suggesting they do not belong to the same molecule. Instead, the ligands may be
bound to different gold(I) atoms, diffusing differently. This fact agrees with the formation of
the ionic pair due to the redistribution of ligands proposed to occur in an aqueous solution.
Although the time variations of Dt and rH are small in both cases, the ones of PTA are almost
negligible. Thus, the PTA-containing species, namely [Au(N9-hypoxanthinate)(PTA)] (1)
and [Au(PTA)2]+, do not seem to participate in the oligomerization processes.

2.5. Computational Studies

The time-dependent optical properties of 1 in aqueous solution are explained with the
aid of three computational models. On the one hand, there is the [Au(N9-hypoxanthinate)(PTA)]
neutral monomer, model 1a. On the other hand, there are the [Au(N9-hypoxanthinate)(PTA)]2
neutral and [Au(PTA)2][Au(N9-hypoxanthinate)2] ionic dimers, models 1b and 1c, respec-
tively (see Figure 10). An aurophilically bound dimer for 1b instead of a hydrogen-bonded
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one was chosen to allow a more reasonable comparison with 1c. The structures of mod-
els 1a–1c were optimized at the RI-DFT/PBE0-D3(BJ)/def2-TZVP level of theory with a
continuum solvation model representing water. A TD-DFT calculation of the first singlet
and triplet vertical excitations was carried out. The energies, oscillator strengths, and
orbital contributions of a selection of these excitations are collected in Table 2. An overlay
of the experimental UV–Vis spectrum of complex 1 in water with the calculated singlet
excitations of models 1a–1c is plotted in Figure 11. The molecular orbitals contributing to
the excitations are collected in the Supplementary Materials.
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O, red; P, orange.

Table 2. Energies (in nm), oscillator strengths (dimensionless), and orbital contributions (in %) of
selected vertical singlet and triplet excitations of models 1a–1c.

Excitation Energy (nm) Oscillator Strength Orbital Contributions (%)

Model 1a

S1 ← S0 253 0.00 HOMO-1 (85) → LUMO (87) (51.8)
HOMO (86) → LUMO+1 (88) (32.7)

S5 ← S0 247 0.20 HOMO-1 (85) → LUMO+1 (88) (68.6)
HOMO (86) → LUMO (87) (20.5)

S20 ← S0 205 0.41 HOMO-4 (82) → LUMO (87) (74.7)
HOMO-1 (85) → LUMO+4 (91) (13.2)

T1 ← S0 336 - a HOMO-2 (84) → LUMO+2 (89) (57.2)
HOMO-2 (84) → LUMO (87) (34.5)

Model 1b

S1 ← S0 272 0.05 HOMO (172) → LUMO (173) (77.7)
HOMO-1 (171) → LUMO (173) (18.1)

S3 ← S0 271 0.08 HOMO-1 (171) → LUMO (173) (63.8)
HOMO-2 (170) → LUMO (173) (15.1)
HOMO (172) → LUMO (173) (14.7)

S12 ← S0 247 0.12 HOMO (172) → LUMO+1 (174) (46.5)
HOMO-4 (168) → LUMO+1 (174) (23.6)

S25 ← S0 232 0.31 HOMO-5 (167) → LUMO+3 (176) (43.4)
HOMO-4 (168) → LUMO+4 (177) (34.1)

T1 ← S0 337 - a HOMO-4 (168) → LUMO+1 (174) (32.9)
HOMO-5 (167) → LUMO+2 (175) (31.8)
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Table 2. Cont.

Excitation Energy (nm) Oscillator Strength Orbital Contributions (%)

Model 1c

S1 ← S0 288 0.00 HOMO (172) → LUMO+1 (174) (96.1)

S4 ← S0 281 0.13 HOMO-2 (170) → LUMO+1 (174) (60.4)
HOMO (172) → LUMO (173) (19.8)

HOMO-1 (171) → LUMO+1 (174) (16.8)

S5 ← S0 281 0.13 HOMO (172) → LUMO (173) (44.4)
HOMO-2 (170) → LUMO+1 (174) (34.9)
HOMO-1 (171) → LUMO+1 (174) (17.5)

S14 ← S0 253 0.36 HOMO-6 (166) → LUMO (173) (90.5)

T1 ← S0 336 - a HOMO-4 (168) → LUMO+2 (175) (42.5)
HOMO-5 (167) → LUMO+3 (176) (40.8)

a We cannot presently estimate the strength given by spin–orbit effects to the triplet transitions.
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The TD-DFT calculation on model 1a predicts the two most intense transitions at 247
and 205 nm, corresponding to the two absorption bands observed in the UV–Vis spectrum
of complex 1. Thus, the low-energy band is assigned to a mixture of HOMO to LUMO and
HOMO-1 to LUMO+1 transitions consisting of charge transfers from the PTA ligand to
the gold(I) center. In contrast, the high-energy band is assigned to a HOMO-4 to LUMO
metal-perturbed intraligand transition within the hypoxanthine ligand, with a second
arising from a HOMO-1 to LUMO+4 ligand-to-metal charge transfer.

The TD-DFT predictions for models 1b and 1c are more complicated, showing in-
creased transitions covering the whole UV–Vis spectrum of complex 1. It is noteworthy that
the transitions to the first excited singlet state are less energetic for the dimerized models
(272 nm, 1b; 288 nm, 1c) than for the monomer one (253 nm). This explains the increased
absorbance of the low-energy tail of the UV–Vis spectrum of 1 upon oligomerization. The
most intense transition among the lower-energy ones of model 1b consists of a mixture of
up to three charge transfers from the PTA-centered HOMO-1, HOMO-2, and HOMO to
LUMO, which has a major contribution on the intermetallic axis. The analogous transitions
for model 1c, which appear almost degenerate due to the C2 symmetry of the model, feature
a similar origin to that of 1b. However, in this case, the gold(I) atom bound to the PTA
ligands has more weight in the transition.

Finally, the optimized electron density was studied using the interaction region in-
dicator (IRI). The RGB-scale mapping of the IRI isosurfaces with the electron density (ρ)
weighted by the sign of the second largest eigenvalue of the Hessian (λ2) is a powerful tool
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to simultaneously reveal and visualize both covalent and non-covalent interactions at a
cheap computational cost. The IRI isosurfaces (isovalue of 1.1) of models 1b and 1c are
plotted in Figure 12. The sign of λ2 distinguishes between attractive (blue), van der Waals
(green), and repulsive (red) interactions.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 15 
 

 

model, feature a similar origin to that of 1b. However, in this case, the gold(I) atom bound 
to the PTA ligands has more weight in the transition. 

Finally, the optimized electron density was studied using the interaction region indi-
cator (IRI). The RGB-scale mapping of the IRI isosurfaces with the electron density (ρ) 
weighted by the sign of the second largest eigenvalue of the Hessian (λ2) is a powerful tool 
to simultaneously reveal and visualize both covalent and non-covalent interactions at a 
cheap computational cost. The IRI isosurfaces (isovalue of 1.1) of models 1b and 1c are 
plotted in Figure 12. The sign of λ2 distinguishes between attractive (blue), van der Waals 
(green), and repulsive (red) interactions. 

 
Figure 12. IRI isosurfaces (isovalue of 1.1) of models 1b and 1c. Color code: C, grey; H, white; Au, 
yellow; N, blue; O, red; P, orange. 

A strong aurophilic interaction as a green-to-blue disk between the gold(I) atoms and 
several C-H···π interactions as a green surface between the C-H bonds of PTA and the π-
electron density of the hypoxanthinate ligands keep the fragments bound in both cases. 

3. Materials and Methods 
3.1. General Procedures 

All reactions were carried out at room temperature in an open-air atmosphere. Com-
plexes [Au(acac)(PTA)] [35] and [Au(tht)2](ClO4) [39] were prepared as described in the 
bibliography, whereas (NBu4)[Au(acac)2] was prepared as described in [40] but employing 
(NBu4)[AuCl2] instead of [N(PPh3)2][AuCl2]. Hypoxanthine and 1,3,5-triazaphosphaada-
mantane were purchased from Sigma-Aldrich (Madrid, Spain) and employed as received. 
The Milli-Q water employed in photoluminescence measurements was saturated with ni-
trogen gas by continuous bubbling for 10 min. 

3.2. Instrumentation 
FTIR spectra were measured with a Perkin-Elmer Two (Perkin-Elmer, Waltham, MA, 

USA) spectrophotometer equipped with a diamond crystal UATR accessory. 1H, 31P{1H}, 
and 1H PGSE NMR spectra were measured with a Bruker AVANCE 400 (Bruker Corpora-
tion, Fällanden, Switzerland) spectrometer in D2O solution. Chemical shifts are quoted 
relative to SiMe4 (1H, external) and H3PO4 85% in D2O (31P, external). 1H PGSE-NMR meas-
urements were carried out with the doubly stimulated echo-pulsed sequence (Double 
STE) on a Bruker AVANCE 400 equipped with a BBI H-BB Z-GRD probe at 298 K without 
spinning at different times in D2O. Steady-state luminescence spectra were measured with 
a spectrofluorimeter of HORIBA Jobin Yvon Fluorolog-3 (HORIBA Jobin Yvon, Stow, MA, 
USA). Emission lifetimes with the time-correlated single photon counting technique were 
measured with the Datastation HUB (HORIBA Jobin Yvon) and a nanoLED (HORIBA 
Jobin Yvon) of 320 nm. Conductivities were measured in ca. 0.5 mM water solutions with 

Figure 12. IRI isosurfaces (isovalue of 1.1) of models 1b and 1c. Color code: C, grey; H, white; Au,
yellow; N, blue; O, red; P, orange.

A strong aurophilic interaction as a green-to-blue disk between the gold(I) atoms and
several C-H· · ·π interactions as a green surface between the C-H bonds of PTA and the
π-electron density of the hypoxanthinate ligands keep the fragments bound in both cases.

3. Materials and Methods
3.1. General Procedures

All reactions were carried out at room temperature in an open-air atmosphere. Com-
plexes [Au(acac)(PTA)] [35] and [Au(tht)2](ClO4) [39] were prepared as described in the
bibliography, whereas (NBu4)[Au(acac)2] was prepared as described in [40] but employing
(NBu4)[AuCl2] instead of [N(PPh3)2][AuCl2]. Hypoxanthine and 1,3,5-triazaphosphaadamantane
were purchased from Sigma-Aldrich (Madrid, Spain) and employed as received. The Milli-
Q water employed in photoluminescence measurements was saturated with nitrogen gas
by continuous bubbling for 10 min.

3.2. Instrumentation

FTIR spectra were measured with a Perkin-Elmer Two (Perkin-Elmer, Waltham, MA,
USA) spectrophotometer equipped with a diamond crystal UATR accessory. 1H, 31P{1H},
and 1H PGSE NMR spectra were measured with a Bruker AVANCE 400 (Bruker Corpo-
ration, Fällanden, Switzerland) spectrometer in D2O solution. Chemical shifts are quoted
relative to SiMe4 (1H, external) and H3PO4 85% in D2O (31P, external). 1H PGSE-NMR
measurements were carried out with the doubly stimulated echo-pulsed sequence (Double
STE) on a Bruker AVANCE 400 equipped with a BBI H-BB Z-GRD probe at 298 K without
spinning at different times in D2O. Steady-state luminescence spectra were measured with
a spectrofluorimeter of HORIBA Jobin Yvon Fluorolog-3 (HORIBA Jobin Yvon, Stow, MA,
USA). Emission lifetimes with the time-correlated single photon counting technique were
measured with the Datastation HUB (HORIBA Jobin Yvon) and a nanoLED (HORIBA Jobin
Yvon) of 320 nm. Conductivities were measured in ca. 0.5 mM water solutions with a
Jenway 4010 conductimeter (Jenway, Felsted, UK). MALDI-MS spectra in negative and
positive modes were measured with a Bruker MicroTOF-Q spectrometer equipped with
a MALDI-TOF ionization source (Bruker Corporation, Bremen, Germany). UV–Vis spec-
tra in aqueous solution were measured with a LAMBDA 265 UV/Vis spectrophotometer
(Perkin-Elmer).
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3.3. Computational Details

The calculations were carried out with TURBOMOLE version 7.5 [41]. Models [Au(N9-
hypoxanthinate)(PTA)] (1a), [Au(N9-hypoxanthinate)(PTA)]2 (1b), and [Au(PTA)2][Au(N9-
hypoxanthinate)2] (1c) were built from scratch. The structures were preoptimized at the
density functional theory (DFT) level [42] with the PBE0 functional [43–45], def2-SVP basis
sets on all atoms [46], the 60 core electron def2-ECP [47] for gold, the resolution-of-the-
identity (RI) approximation [48–50] to accelerate the calculations and the semiempirical
D3(BJ) correction [51,52] to dispersion interactions. It was followed by a second optimiza-
tion at the same level of theory but with the larger def2-TZVP basis sets [46] on all atoms. A
final optimization with the conductor-like screening model (COSMO) approximation [53]
of water (ε = 80.1) at the same level of theory was carried out. The first eighty singlets and
the first triplet vertical excitations were calculated at the time-dependent DFT (TD-DFT)
level [54–57] with the PBE0 functional [43–45], def2-TZVP basis sets [46] on all atoms,
def2-ECP [47] for gold, and the COSMO approximation [53]. The optimized models and
molecular orbitals were visualized and rendered using UCSF ChimeraX version 1.5 [58].
The interaction region indicator (IRI) [59] was computed with Multiwfn version 3.8 [60].
The IRI isosurfaces were plotted with VMD version 1.9.4a53 [61].

3.4. Synthesis of Complex [Au(N9-Hypoxanthinate)(PTA)] (1)

Hypoxanthine (white solid; 0.0310 g, 0.223 mmol) is added to a solution of [Au(acac)(PTA)]
(beige solid; 0.1015 g, 0.224 mmol) in 20 mL of absolute ethanol. The suspension is stirred for
6 h. The mixture is rotary evaporated to a volume of 2 mL. [Au(N9-hypoxanthinate)(PTA)]
(white solid; 0.0870 g, 0.178 mmol, 80%) precipitates by addition of 20 mL of n-hexane and
is isolated by suction filtration and washed with three fractions of 5 mL of n-hexane.

ATR-FTIR, cm−1: ν(C=O) = 1682 (m), ν(C=N) = 1621 (s). 1H NMR (400 MHz, D2O,
298 K), ppm: 7.99 (s, 1H, C8H), 7.85 (s, 1H, C2H), 4.56–4.46 (AB q, 6H, NCH2N), 4.30 (ps,
6H, PCH2N). 31P{1H} NMR (162 MHz, D2O, 298 K), ppm: −52.63 (s, PTA). MALDI-MS(+),
m/z: 490.1 [1+H]+ (calculated 490.1 Da), 511.2 [Au(PTA)2]+ (calculated 511.1 Da), 843.3
[Au2(N9-hypoxanthinate)(PTA)2]+ (calculated 843.1 Da).

3.5. Synthesis of Complex [Au(PTA)2](ClO4) (2)

PTA (white solid; 0.0803 g, 0.510 mmol) is added to a solution of [Au(tht)2](ClO4)
(white solid; 0.1207 g, 0.255 mmol) in 15 mL of dichloromethane. The suspension is stirred
for 3 h. The mixture is rotary evaporated to a volume of 2 mL. Complex [Au(PTA)2](ClO4)
(white solid; 0.1450 g, 0.237 mmol, 93%) precipitates by addition of 15 mL of n-hexane and
is isolated by suction filtration and washed with three fractions of 5 mL of n-hexane.

ATR-FTIR, cm−1: ν (C-H) = 2932 (s). 1H NMR (400 MHz, D2O, 298 K), ppm: 4.67–4.50
(AB q, 6H, NCH2N), 4.36 (ps, 6H, PCH2N). 31P{1H} NMR (162 MHz, D2O, 298 K), ppm:
−39.77 (s, PTA). MALDI-MS(+), m/z: 511.2 [Au(PTA)2]+ (calculated 511.1 Da). MALDI-MS
(-), m/z: 98.9 (ClO4

−) (calculated 98.9 Da).

3.6. Synthesis of Complex (NBu4)[Au(N9-Hypoxanthinate)2] (3)

Hypoxanthine (white solid; 0.0229 g, 0.168 mmol) is added to a solution of (NBu4)[Au(acac)2]
(white solid; 0.0534 g, 0.084 mmol) in 10 mL of absolute ethanol. The suspension is stirred
for 2 h. The mixture is rotary evaporated to a volume of 2 mL. Complex (NBu4)[Au(N9-
hypoxanthinate)2] (white solid, 0.0339 g, 0.048 mmol) precipitates by addition of 10 mL of
diethyl ether and is isolated by suction filtration and washed with three fractions of 5 mL
of diethyl ether.

ATR-FTIR, cm−1: ν(C=O) = 1663 (m), ν(C=N) = 1610 (s). 1H NMR (400 MHz, D2O,
298 K), ppm: 8.16 (s, 2H, C8H), 8.15 (s, 2H, C2H), 3.31 (ps, 8H, CH2CH2CH2CH3), 1.56 (ps,
8H, CH2CH2CH2CH3), 1.30 (ps, 8H, CH2CH2CH2CH3), 0.89 (ps, 12H, CH2CH2CH2CH3)
MALDI-MS(+), m/z: 242.2 (NBu4

+) (calculated 242.3 Da).
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4. Conclusions

The efficient dipole solvation properties of water prompt the partial redistribution
of the asymmetrically coordinated [Au(N9-hypoxanthinate)(PTA)] into the stable charged
species [Au(N9-hypoxanthinate)2]− and [Au(PTA)2]+. Afterwards, [Au(N9-hypoxanthinate)2]−

experiences an aggregation process as reflected by its decreasing Dt upon aging. [Au(PTA)2]+

remains undisturbed in solution, equilibrating the negative electric charge of the supposed
[Aun(hypoxanthinate)2n]n− aggregate and stabilizing it by C-H· · ·π interactions. The latter
species is proposed to be the source of phosphorescence. However, an unequivocal assign-
ment of the optical properties cannot be provided without conclusive structural data for
complex 1 and the emissive products. In contrast to regular AIE, no poor solvent addition
is needed to force gold(I)· · · gold(I) clustering and achieve photoemission. A tentative
scheme of the processes occurring after dissolving complex 1 in water is given in Figure 13.
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