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Introduction: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

has infected a substantial portion of the world’s population, and novel

consequences of COVID-19 on the human body are continuously being

uncovered. The human microbiome plays an essential role in host health and

well-being, and multiple studies targeting specific populations have reported

altered microbiomes in patients infected with SARS-CoV-2. Given the global

scale and massive incidence of COVID on the global population, determining

whether the effects of COVID-19 on the human microbiome are consistent and

generalizable across populations is essential.

Methods: We performed a synthesis of human microbiome responses to

COVID-19. We collected 16S rRNA gene amplicon sequence data from 11

studies sampling the oral and nasopharyngeal or gut microbiome of COVID-

19-infected and uninfected subjects. Our synthesis included 1,159 respiratory

(oral and nasopharyngeal) microbiome samples and 267 gut microbiome

samples from patients in 11 cities across four countries.

Results: Our reanalyses revealed communitywide alterations in the respiratory

and gut microbiomes across human populations. We found significant overall

reductions in the gut microbial diversity of COVID-19-infected patients, but not

in the respiratory microbiome. Furthermore, we found more consistent

community shifts in the gut microbiomes of infected patients than in the

respiratory microbiomes, although the microbiomes in both sites exhibited

higher host-to-host variation in infected patients. In respiratory microbiomes,

COVID-19 infection resulted in an increase in the relative abundance of

potentially pathogenic bacteria, including Mycoplasma.

Discussion: Our findings shed light on the impact of COVID-19 on the human-

associated microbiome across populations, and highlight the need for further

research into the relationship between long-term effects of COVID-19 and

altered microbiota.
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Introduction

The emergence and rapid spread of the novel beta-coronavirus,

severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2),

caused severe and unprecedented public health and socioeconomic

challenges globally (Waters et al., 2022). Primarily, COVID-19

presents as a multifaceted and multi-organ infection with variable

severity. Symptoms range from acute respiratory distress syndrome

to pneumonia and include non-specific flu-like symptoms,

gastrointestinal symptoms, myocardial dysfunction, multiple organ

failure, and death (Kumar Singh et al., 2019; Baud et al., 2020; Onder

et al., 2020). In most cases, SARS-CoV-2-infected persons are either

asymptomatic or show mild symptoms. However, approximately 5%

of those infected, usually the elderly and/or individuals with

comorbidities, develop a severe form of the disease, resulting in

intensive medical care and death (Grasselli et al., 2020; Wiersinga

et al., 2020). As of April 2023, there have been 762,791,152 confirmed

COVID-19 cases with 6,897,025 mortalities worldwide (WHO

Coronavirus (COVID-19) Dashboard).

Among the many long-term effects associated with COVID-19

infection, numerous studies have reported altered microbiota in

COVID-19 patients. The human microbiome plays a vital role in

host health (Kumpitsch et al., 2019) and has been suggested to act as an

additional organ (Baquero and Nombela, 2012). These microbial

communities maintain host homeostasis through complex and

essential interactions, which result in improved immunomodulation,

metabolism, organ functions, mucosal barrier integrity, and structural

protection against intruding pathogens (Jandhyala et al., 2015;

Kumpitsch et al., 2019). Specific microbial communities are

associated with different human tissues (Human Microbiome Project

Consortium, 2012; Pflughoeft and Versalovic, 2012).

Perturbations such as COVID-19 can result in microbiome

dysbiosis in human microbiomes, in which the composition and

diversity of beneficial and/or commensal microorganisms are altered,

promoting the growth or opportunistic pathogens (Hoque et al., 2021b;

Ren et al., 2021; Sun et al., 2022). In particular, the observation of

increased host-to-host variability in the microbiomes associated with

unhealthy hosts has been dubbed the Anna Karenina Principle (AKP),

derived from the opening line of Tolstoy’s Anna Karenina: “All happy

families are all alike; each unhappy family is unhappy in its own way”.

Different human diseases including obesity, psoriasis, arthritis,

inflammatory bowel disease (IBD), influenza, HBV, and HIV have

been reported to significantly alter human microbiomes (Ling et al.,

2015; Lu et al., 2017; Gilbert et al., 2018; Gonçalves et al., 2019; Yun

et al., 2019; Sencio et al., 2021). Similarly, several reports have

demonstrated changes in the microbiomes (intestinal,

nasopharyngeal, and oral) of COVID-19 patients during active

infection and convalescent state, and these are usually characterized

by the depletion of beneficial commensal microbes and a higher

abundance of opportunistic pathogens (Zuo et al., 2020; Zuo et al.,

2020; Hoque et al., 2021a; Hoque et al., 2021b; Jochems et al., 2021;

Ren et al., 2021; Xu et al., 2021; Yeoh et al., 2021). The composition

and diversity of the gut, nasal, or oral microbiome of COVID-19

patients are now widely believed to be predictive of COVID-19

prognosis, progression, and severity (Mathieu et al., 2018; Wypych

et al., 2019; Chen et al., 2020; He et al., 2020; Hoque et al., 2021b).
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Moreover, the abundance of specific microbes within human

microbiomes are now identified as biomarkers to distinguish

COVID-19-infected individuals from healthy persons (Gou et al.,

2020; Zuo et al., 2020; Tian et al., 2021).

Extensive interactions exist between the host immune system and

microbiome. These interactions seem to induce immune responses to

diseases, and in turn, the immune system affects the composition and

diversity of the microbiome (Round and Mazmanian, 2009;

Mangalmurti and Hunter, 2020; Attaway et al., 2021; Sun et al.,

2022). COVID-19 has been reported to induce aberrant immune

responses that not only elevate inflammatory markers including

tumor necrosis factor-a, interleukin (IL)-10, and C-reactive

protein, but also affect gut microbiome composition with a

decreased population of beneficial bacteria especially bifidobacteria,

Eubacterium rectale, and Faecalibacterium prausnitzii (Mangalmurti

and Hunter, 2020; Attaway et al., 2021; Yeoh et al., 2021).

Understanding microbiome changes across multiple microbiome

compartments can shed light on the level and mechanisms of

microbiome perturbation/dysbiosis associated with COVID-19, and

may in turn aid the development of effective strategies for COVID-19

diagnosis, long-term management, and prevention.

All humans are susceptible to SARS-CoV-2 infection. Nevertheless,

the human microbiome slightly differs across age, ethnicity, sex, race,

and even geography (Human Microbiome Project Consortium, 2012;

Brooks et al., 2018). Consequently, determining the effects of COVID-

19 infections on the human microbiome requires assessing changes in

the microbiomes of a wide range of patients across geographic regions.

To this end, we performed a synthesis of humanmicrobiome responses

to COVID-19. We collected 16S rRNA gene amplicon sequence data

from 11 studies sampling the oral and nasopharyngeal, or gut

microbiome of COVID-19-infected and uninfected subjects. Our

synthesis included 1,159 respiratory (oral and nasopharyngeal)

microbiome samples and 267 gut microbiome samples and spanned

four countries. We hypothesized that (1) because of stronger immune

responses, infected patients would have a lower microbiome richness

across microbiome compartments; (2) the microbiomes of infected

patients would be more variable from host to host than that of healthy

individuals, in line with the AKP; (3) as SARS-COV-2 is primarily a

respiratory disease, the oral and nasopharyngeal microbiomes would be

more strongly affected than the gut microbiomes; and (4) COVID-19

infection would result in consistent shifts in microbiome composition

in both compartments.

Materials and methods

Literature search, selection criteria, and
data extraction

This study was conducted through a robust literature search

and selection using the RepOrting standards for Systematic

Evidence Syntheses (ROSES) guidelines (Haddaway et al., 2018)

(Figure 1). In January 2022, we performed a keyword search on the

Web of Science database (www.webofscience.com) to identify and

select relevant published articles. We used the terms “COVID-19”

OR “SARS-CoV-2” OR “severe acute respiratory syndrome

coronavirus 2” OR “coronavirus disease 2019” OR “nCoV” OR
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“novel coronavirus” AND “microbiome” OR “microbiota” OR

“microflora” or “flora’’ OR “biome”. Furthermore, additional

studies were included from other sources including PubMed and

Google Scholar. We included published articles that performed 16S

rRNA gene or transcript amplicon sequencing from gut/stool,

nasopharyngeal, and oral samples collected from COVID-19+

individuals. We only included articles that were published in the

English language. The authors independently reviewed the titles and

abstracts of all the selected studies. Other COVID-19-related

publications outside the scope of this study, as well as related

commentaries, editorials, reviews, systematic reviews, and meta-

analyses, were excluded.

For each selected study, we extracted information about the

NCBI accession numbers to the 16S rRNA gene/transcript
Frontiers in Cellular and Infection Microbiology 03
sequences, author names, patient characteristics, sample types,

sample size, the 16S rRNA gene region sequenced, and the

sequencing platform used. Studies were grouped based on the

systems examined: gut microbiome, or oral, nasopharyngeal, and

upper respiratory tract (URT) microbiomes (heretofore oral/URT).
Bioinformatics and statistical analyses

All sequences were downloaded from NCBI as.fastq files and

sequence data were processed using R (v 4.1) software (Bunn, 2008)

and the dada2 (Callahan et al., 2016) package. Following preliminary

assessments of quality, we downloaded data for 1,588 samples from 11

studies. First, forward reads from each study were inspected to
FIGURE 1

ROSES flowchart illustrating the systematic search, identification, screening, and final selection of articles.
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determine the optimal processing parameters using the

plotQualityProfile function (detailed for each study in Supplementary

Table 1), and trimmed to 100 base pairs with the filterAndTrim

function, with maxEE = 2 and truncQ = 2. Reads were assigned a

taxonomy using SILVA V.132 (Quast et al., 2013). The proportion of

reads lost at each processing step for each study is shown in

Supplementary Figure S1. According to available metadata, technical

controls (e.g., blanks, mock communities) were removed prior to

further processing.

Statistical analyses were performed with the phyloseq (McMurdie

and Holmes, 2013), vegan (Oksanen et al., 2022), Maaslin2 (Mallick

et al., 2021), and lmerTest (Kuznetsova et al., 2017) packages. Prior to

analyses, all samples were standardized to 2,000 reads per sample

using the rarefy_even_depth function, which led to a loss of 63

samples. To assess the effects of COVID-19 infection on different

compartments of microbial diversity (i.e., rare and dominant), we

calculated Hill numbers (richness, effective Shannon diversity, and

inverse Simpson diversity, or q = 0, q = 1, and q = 2, respectively;

Chao et al., 2014). Richness is more heavily affected by the diversity of

rare taxa, while inverse Simpson diversity is more affected by the

diversity of dominant taxa. To determine the contribution of

COVID-19 infection to oral/URT and gut microbiomes, we

performed a distance-based variance partitioning analysis using the

varpart function of vegan, with Bray–Curtis dissimilarities. The Bray–

Curtis dissimilarities between samples taken from the same region

among COVID-19-infected and uninfected patients were used to

measure microbiome variance. Unless otherwise noted, diversity

measures are presented as mean ± standard deviation.

To test the effect of COVID-19 infection on microbiome diversity

(i.e., Hill numbers, H1) and variability (i.e., Bray–Curtis

dissimilarities, H2), we used linear mixed effect models, with the

study as a random effect, and COVID-19 infection as a fixed effect

using the lmer function from the lmerTest package (Kuznetsova et al.,

2017). To compare the effect of SARS-CoV-2 infection on gut and

oral/URT microbiomes (H3), we used linear mixed effect models,

with the study as a random effect, and the interaction between

COVID-19 status and the sampled region (i.e., gut vs. oral/URT) as

a fixed effect. In addition, a contrast analysis was performed using the

emmeans function from the emmeans package (Lenth et al., 2023) to

quantify the effect of COVID-19 infection within sampled regions.

Model assumptions and performances were tested using the

performance package (Lüdecke et al., 2021); all model outputs and

performances are found in the Supplementary Materials.

To identify bacterial genera that were consistently under- or

overrepresented in SARS-CoV-2-infected patients, we used

microbiome-oriented linear models (MaAsLin2 package; Mallick

et al., 2021) for gut and oral/URT samples separately, with the study

and sample type as random effects, SARS-CoV-2 infection as a fixed

effect, and a prevalence threshold of 0.2.
Results

In total, we collected 1,426 high-quality, processed samples

from the USA (Chicago, Jackson, Nashville, New York City,

Philadelphia, and San Diego), Spain (Alicante), France (Paris),
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and China (Guangdong, Shanghai, and Wuhan) (Supplementary

Figure S2), represented by 29,491 amplicon sequence variants, or

ASVs (Supplementary Table 1). Of the 11 studies surveyed, 8

included COVID-19-infected patients and controls (Engen et al.,

2021; Merenstein et al., 2021; Minich et al., 2021; Newsome et al.,

2021; Shilts et al., 2021; Smith et al., 2021; Ventero et al., 2021; Wu

et al., 2021), and 2 of these (Newsome et al., 2021; Wu et al., 2021)

also included samples of recovered patients. Three of the studies

only sampled infected patients (Shilts et al., 2021; Xu et al., 2021;

Ventero et al., 2022), and one sampled infected and recovered

patients (Tian et al., 2021).

On average, gut microbiome samples were more diverse (136

± 54 ASVs) than oral/URT samples (80 ± 79 ASVs). Within

studies, COVID-19 infection caused minor, but consistent

decreases in gut microbial richness (Hill q = 0, estimate ± SE =

22.46 ± 6.22, p < 0.001), but not in oral/URT richness (p = 0.55,

Figure 2; Supplementary Figure S3). This decrease was also

significant for q = 1 and q = 2 (q = 1: 8.20 ± 2.50, p = 0.001; q =

2: 3.71 ± 1.38, p = 0.008, Figure 2), highlighting richness losses in

the dominant portion of the community.

SARS-CoV-2 infection led to changes in the microbiome

composition, significantly explaining 2% of the variation in the

microbial community, although these changes were study-

dependent (p < 0.001, Supplementary Figure S4). Notably, of the

14.9% of the variance in community composition explained by each

study, 7.3% could be ascribed to the participant’s country of origin

(Supplementary Figure S4). In line with the AKP, patients infected

with COVID-19 had a higher host-to-host variance in both the oral/

URT and gut microbiome than uninfected patients (an increase of

0.06 ± 0.003 in Bray–Curtis dissimilarity relative to uninfected

patients, p < 0.001, Figure 3).

In general, the gut microbiomes of infected and non-infected

patients had more consistent shifts across studies for the gut than for

the oral/URT microbiomes. We identified 51 dominant genera (38.3%

± 22.2% of the community) in the gut microbiome, whose relative

abundances consistently and significantly differed between infected and

non-infected patients across studies (Figure 4). These taxa belonged

predominantly to Firmicutes, with the most consistent decreases in

Fusicatenibacter, Lachnospiraceae NK4A316 group, Lachnoclostridum,

Blautia, and Roseburia and the most consistent increases in Finegoldia,

Porphyromonas, Anaerococcus, and Peptoniphilus for COVID-19-

infected patients, relative to uninfected patients. In contrast, we only

found 16 genera (23.8% ± 25.9% of the community on average) that

consistently differed between the oral/URTmicrobiome of COVID-19-

infected and uninfected patients (Figure 5). Of these, Enterococcus,

Pseudomonas, unclassified Enterobacteriaceae, and Solobacterium were

lower in uninfected patients, whereas Prevotella, Mycoplasma,

Veillonella, Cutibacterium, Atopobium, and Megasphaera were

consistently and significantly more abundant in COVID-19-

infected patients.
Discussion

SARS-CoV-2 invades the human body mainly through the

angiotensin-converting enzyme 2 (ACE2) and cofactor
frontiersin.org
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transmembrane serine protease 2 (TMPRSS2) receptors in the

epithelial cells of the nasopharyngeal tract, and then gradually

moves to initiate infection in the lungs, which gradually results in

gastrointestinal involvement as well as affects other organs including

the heart, kidneys, pancreas, eyes, and skin (Gavriatopoulou et al.,

2020; Hoque et al., 2021a; Rahman et al., 2021; Rahman et al., 2021).

Interestingly, high levels of both ACE2 and TMPRSS2 receptors are

naturally expressed in multiple organs of the human respiratory and

gastrointestinal tracts (Perlot & Penninger, 2013; Roncon et al., 2020;
Frontiers in Cellular and Infection Microbiology 05
Xiao et al., 2020), thus enabling SARS-CoV-2 to circulate and induce

severe inflammation, immune imbalance, and microbiome dysbiosis

within these systems (Hoffmann et al., 2020; Villapol, 2020).

Moreover, recent insights into coronavirus biology and SARS-CoV-

2-human interactions attribute COVID-19 pathophysiology to

aberrant and aggressive immune responses in SARS-CoV-2

clearance (Hoque et al., 2021b; Yeoh et al., 2021). COVID-19

infection can therefore result in a wide variety of responses in the

human-associated microbiome, which may be further modulated by
A

B

C

FIGURE 2

The effect of COVID-19 infection on the alpha diversity of the gut and oral/URT microbiomes. Hill richness (A: q = 0), effective Shannon (B: q = 1)
and Inverse Simpson (C: q = 2) diversity indices were calculated to assess the impact of increasingly dominant portions of the community. Points are
colored by studies, and the average across studies is shown with a black point. Significant differences between infected and non-infected patients
across studies are indicated with asterisks where significant (***p < 0.001; ** p < 0.01) and with “n.s.” otherwise.
FIGURE 3

COVID-19 increases host-to-host variability across microbiomes. Community distances were measured as the Bray–Curtis distance between
individuals in the same study, from the same body site, and with the same infection status. Points are colored by studies, and the average across
studies is shown with a black point. Significant differences between infected and non-infected patients across studies are indicated with asterisks
where significant (***p < 0.001).
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1211348
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Reuben et al. 10.3389/fcimb.2023.1211348
the host’s environment, such as diet and exposure to pollutants,

which is population-specific. By simultaneously reanalyzing

microbiome data from various microbiome compartments in

infected and uninfected patients across the world, we sought to

identify consistent, COVID-19 infection-specific changes in the

human microbiome.

Consistent with our hypotheses, we found that SARS-CoV-2-

infected individuals had a lower microbial diversity in the gut, but

not in the upper respiratory tract. The reduction of gut microbial

diversity in COVID-19 has been similarly reported (Zuo et al., 2020;

Mazzarelli et al., 2021; Tian et al., 2021), regardless of antibiotic use
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(Zuo et al., 2020; Mazzarelli et al., 2021) and even several weeks

after viral clearance (Zuo et al., 2020; Tian et al., 2021; Xu et al.,

2021). The gut microbiome is relatively stable, and a major

predictor of normal gut functioning, immunomodulation, and

overall host health (Rooks and Garrett, 2016; Tian et al., 2021; Xu

et al., 2021). Our study highlights SARS-CoV-2’s ability to disrupt

human gut microbiome eubiosis through the depletion of gut

microbial diversity, which may contribute to disease severity and

opportunistic infections. The consistent decrease in diversity found

across Hill numbers for the gut microbiome richness highlights that

richness loss occurs in dominant taxa. This may have major
FIGURE 4

Altered relative abundances of bacterial genera in the gut microbiome of SARS-CoV-2-infected individuals. Bacterial genera that exhibit significantly
different (p < 0.01) relative abundances between SARS-CoV- 2-infected and uninfected individuals in the gut microbiome were selected using the
MaAsLin2 approach, which included random effects for sample type and study. Only significantly different genera are displayed, relative abundances
are colored by quantiles, and genera are grouped according to Ward’s clustering method. Phylum membership is displayed on the left bar. These 51
genera make up 38.3% ± 22.2% of the community, on average across all samples.
FIGURE 5

Altered relative abundances of bacterial genera in the oral and URT microbiome of SARS-CoV-2-infected individuals. Bacterial genera that exhibit
significantly different (p < 0.01) relative abundances between SARS-CoV-2-infected and uninfected individuals in the oral or URT microbiome were
selected using the MaAsLin2 approach, which included random effects for sample type and study. The log2 fold changes in taxon abundances for
infected patients relative to non-infected patients are displayed. Only genera with significantly different (p < 0.01) abundances between these two
groups are displayed, and in total, they represent 23.8% ± 25.9% of the whole community, on average across all samples.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1211348
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Reuben et al. 10.3389/fcimb.2023.1211348
implications on the composition and diversity of the gut

microbiome in COVID-19 infection resulting in dysbiosis,

impaired immune functioning, pro-inflammatory conditions, etc.

Our study did not control for COVID-19 patients’ medication

use (e.g., antibiotics and antivirals), age, genetic background, sex, or

diet, which may also affect the gut microbial diversity and further

confound COVID-19-associated gut microbial signatures.

However, the consistent results we recorded across studies after

controlling for study–study particularities suggest that the decrease

in gut microbial diversity is indeed due to SARS-CoV-2 infection.

Intriguingly, the intestinal ACE2, which is the receptor of SARS-

CoV-2, plays a vital role in maintaining the gut microbiome

eubiosis (Hamming et al., 2004; Hashimoto et al., 2012; Tian

et al., 2021), and the SARS-CoV-2 infection may downregulate

the expression and availability of ACE2, which could disrupt gut

homeostasis, adversely impacting microbial diversity. Our inability

to detect a significant effect on the microbial richness of the oral/

URT microbiome may be attributed to the oral/URT microbiome

being more dynamic, resilient, and transient than the gut

microbiome due to frequent bidirectional air and mucus

movement as well as its regular exposure to the environment

(Huffnagle et al., 2017). Recent studies have found inconsistent

effects of COVID-19 on the microbial diversity of the URT (De

Maio et al., 2020; Mostafa et al., 2020; Braun et al., 2021; Miao et al.,

2021; Yamamoto et al., 2021; Zhang et al., 2021; Rafiqul Islam et al.,

2022; Uehara et al., 2022), and others have proposed that SARS-

CoV-2 has weak effects on the URT microbiome (De Maio et al.,

2020; Braun et al., 2021; Yamamoto et al., 2021) akin to acute

respiratory virus infections in humans (Ramos-Sevillano et al.,

2019; De Maio et al., 2020; Yamamoto et al., 2021).

Higher variability is generally associated with lower stability

and predictability. In accordance with previous studies (Ma, 2020;

Altabtbaei et al., 2021), we also found that host-to-host gut and

URT microbiome variability was greater in SARS-CoV-2-infected

patients than in non-infected controls, in line with the AKP

(Zaneveld et al., 2017) and with a previous synthesis, which

found that most human-associated diseases result in a higher

microbiome variability across patients (Ma, 2020).

Notably, our study shows that COVID-19 infection resulted in an

overall loss of beneficial bacteria, and worryingly, a consistent

increase in pathogenic bacteria, particularly in the oral/URT

microbiome. The increased relative abundances and colonization of

opportunistic pathogens including Mycoplasma, Prevotella,

Peptostreptococcus, Veillonella, Cutibacterium, and Saccharibacteria

in the oral/URT recorded in our study may be associated with the

early-stage SARS-CoV-2-induced inflammation, the loss of beneficial

bacteria, and the increased exposure and receptiveness to

allochthonous and indigenous microorganisms (Man et al., 2017;

Dubourg et al., 2019).

In the gut microbiome, increased relative abundances of

pathogenic bacteria including Campylobacter, Corynebacterium,

Staphylococcus, Clostridium, Peptostreptococcus, Prevotella,

Anaerococcus, Actinomyces, Porphyromonas, and Bacteroides were

recorded in SARS-CoV-2 infection. Increasingly, emerging reports

posit that alterations in the gut microbiome may facilitate blooms of

both pathogenic and previously rare bacteria, which can further
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aggravate overall gut inflammation (Mazzarelli et al., 2021; Tian

et al., 2021; Xu et al., 2021). The presence and increased abundance

of common oral/URT commensals and pathogens in the gut (e.g.,

Corynebacterium, Peptostreptococcus, Porphyromonas, Prevotella,

and Staphylococcus) may suggest a possible translocation of these

organisms from the oral/URT to the gut. Previously, inflammation,

disruption, and increased permeability of membrane mucosa were

associated with COVID-19 (Cao and Li, 2020). Increased

permeability of membrane mucosa facilitates the translocation of

some oral/URT microbes as well as enriched opportunistic

pathogens to the gut (Man et al., 2017; Cao and Li, 2020; Giron

et al., 2021).

We also detected the loss of beneficia l microbes

Fus i ca t en ibac t e r , Lachno sp i ra c eae NK4A316 g roup ,

Lachnoclostridium, Blautia, and Roseburia in the gut. These

beneficial bacteria often enhance and maintain the integrity and

function of mucosal barriers, metabolism, and immunomodulation,

and protect against pathogen invasion through several mechanisms

including the secretion of short-chain fatty acids (SCFA) and

antimicrobial peptides (Gallo and Hooper, 2012; Abt & Pamer,

2014; Zhang et al., 2015). In line with our findings, SARS-CoV-2-

associated microbiome perturbations were previously associated

with a decline in SCFA (Lv et al., 2021; Sokol et al., 2021), thus

promoting a systemic pro-inflammatory condition (Qin et al., 2015;

Esquivel-Elizondo et al., 2017) and the severity of pulmonary viral

infections such as COVID-19 (Chemudupati et al., 2020; Friedland

and Haribabu, 2020; Tang et al., 2020). In the same vein, Lv and

colleagues reported a pathogen-regulated feedback loop between

the decline in SCFA production and SARS-CoV-2 infection (Lv

et al., 2021).

Whether increased abundances of gut and oral/URT pathogenic

and pro-inflammatory bacteria in SARS-CoV-2 infection actually

play an active part in COVID-19 or mainly thrive opportunistically,

exploiting the depletion of commensal bacteria, remains unknown.

Nevertheless, our findings demonstrate that oral/URT and gut

microbiomes are systematically perturbed by COVID-19, resulting

in a lower microbial diversity, loss of beneficial microbes, and

increased presence of pathogenic bacteria, which could trigger

prolonged pro-inflammatory reactions, immunological changes,

and secondary bacterial infections that could account for chronic

COVID-19-associated symptoms, as well as prolonged sequelae.

Understanding the dynamics of COVID-19-associated microbiome

alterations may help identify microbiome-based strategies with

potential applications in COVID-19 management and treatment.

Furthermore, our findings highlight that non-invasive organ and/or

system-based microbiome profiling may serve not only for COVID-

19 diagnosis and prognosis but also, for the identification of

individuals at risk of secondary infections, chronic disease, and/or

degenerative inflammatory symptoms, including Kawasaki-like

disease (KLD) and multisystem inflammation, as is the case with

children and young adults (Akca et al., 2020; Cheung et al., 2020;

Sokolovsky et al., 2021; Elouardi et al., 2022).

Finally, human microbiome composition and diversity are

highly heterogeneous and largely driven by biogeographies,

environments, ethnicity, and socioeconomic status (Amato et al.,

2021; Yamamoto et al., 2021; Yeoh et al., 2021). While our study
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design highlights the importance of sampling across human

populations to understand a disease, our study lacks samples

from the Southern Hemisphere, in line with recent reports

indicating very limited public human microbiome data from the

Global South (Abdill et al., 2022). A global representation of data in

human microbiome studies is critical to understanding global

drivers and patterns of disease (in this case, COVID-19) to

provide sustainable interventions to all populations without bias.
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