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Abstract
The merits of a perturbation theory based on a mean-to-osculating transformation that is
purely periodic in the fast angle are investigated. The exact separation of the perturbed Keple-
rian dynamics into purely short-period effects and long-period mean frequencies is achieved
by a non-canonical transformation, which, therefore, cannot be obtained by Hamiltonian
methods. For this case, the evolution of the mean elements strictly adheres to the average
behavior of the osculating orbit. However, due to the unavoidable truncation of perturbation
solutions, the fact that this kind of theory confines in the mean variations the long-period
terms of the semimajor axis, how tiny they may be, can have adverse effects in the accuracy
of long-term semi-analytic propagations based on it.

Keywords Mean elements · Artificial-satellite theory · Perturbed Keplerian motion ·
Perturbation theory · Lie transforms · Semi-analytic propagation

1 Introduction

Mean elements are useful in a variety of aerospace engineering tasks, like maneuver design
or fast-orbit propagation. They are roughly understood as the result of an averaging process
whose aim is to isolate the long-trend variations of the osculating orbit, which are modulated
with short-period fluctuations.While the averaging ensues from a particular transformation of
variables it happens that different transformations can be applied, a fact that raises recurrent
concern since the early days of the space era (Walter 1967; Ely 2015; Lara 2021b; Izzo
et al. 2022; Arnas 2022). Therefore, the “mean elements” terminology is loosely used with
the meaning of elements that are free from short-period effects, a vague definition that may
cause misunderstandings in the implementation and use of available perturbation solutions
in the literature—refer to the caveats in pp. 616, 690, and 695 of Vallado (2013).
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Ideally, the transformation from mean to osculating elements should be purely periodic
in the mean anomaly, so that the resulting mean elements comprise all the secular and long-
period variations of the osculating orbit. But this is not often the case, and the mean-to-
osculating transformation of different satellite theories may involve non-periodic and long-
period terms in addition to the short-period terms. This is, in particular, the case of common
analytical solutions in closed formof the eccentricity, inwhich some long-period terms remain
hidden in the mean-to-osculating transformation due to the implicit dependence of the true
anomaly on the mean anomaly and eccentricity through Kepler’s equation (Kozai 1962).
Because of that, the mean orbit will depart from the average osculating orbit in long-period
displacements of small amplitude.

The lack of agreement between mean and average dynamics is not a concern in usual
analytical or semi-analytical orbit theories, a case in which the osculating solution is obtained
after recovering the periodic effects using the mean-to-osculating transformation. This is the
case of usual solutions computed by canonical-perturbation theory (Brouwer 1959; Kozai
1959; Coffey et al. 1996; Lara 2021). However, the disagreement may be unwanted in those
cases inwhich the information provided by themean elements alone is crucial for the problem
at hand, as may happen in some space geodesy applications (Wagner et al. 1974; Métris
and Exertier 1995) or when high accuracy is needed in preliminary orbit and maneuver
design (Bhat et al. 1990; Guinn 1992). Conversely, the reported aim of some non-canonical
perturbation methods is to achieve the removal of only the short-period fluctuations from the
mean orbit (see McClain 1977; Danielson et al. 1994, and references therein). In this way,
it is expected that the mean-to-osculating transformation is free from long-period terms,
and, therefore, the resulting mean elements accurately represent the average behavior of the
osculating orbit (Métris and Exertier 1995).

Taking these facts into account is of primordial importancewhen comparing canonical and
non-canonical solutions (Lara et al. 2011, 2014). Moreover, special attention must be paid
to the correct computation of the short-period elimination when Hamiltonian-simplification
techniques are involved in the computation of the canonical solution (Lara et al. 2014b, a).
On top on that some confusion is added since canonical-perturbation methods have been
reported to be particularizations of non-canonical methods for the appropriate choice of the
arbitrary integration functions of the slow variables that arise in the solution of each different
approach (Morrison 1966). But this connection between canonical and non-canonical pertur-
bation theories simply recalls the obvious: that canonical transformations are very particular
instances of the wider field of transformation theory. Remarkably, the mean-to-osculating
transformation that produces the exact separation between short- and long-period variations
has been recognized as non-canonical for perturbed-Keplerian motion (Métris and Exertier
1995). More precisely, the exact separation of terms that are purely periodic in the mean
anomaly can only be guaranteed up to the first order of the small parameter when using
Hamiltonian methods (Ferraz-Mello 1999).

Regarding artificial-satellite theory, this issue is mainly relevant in the computation of
second-order effects of the zonal harmonic of the second degree, hereafter noted J2. Indeed,
for Earth-like bodies, the second-order effects of J2 are comparable to those produced by
the higher-order harmonics of the gravitational potential, and, therefore, are routinely incor-
porated into operational software (Coffey and Alfriend 1984; Coffey et al. 1996; Folcik and
Cefola 2012; Lara et al. 2018).

The generalized method of averaging (see Nayfeh 2004 p. 168 and ff., for instance) is a
suitable, non-canonical optionwhen approaching semi-analytically the solution of non-trivial
perturbation models, which may include both Hamiltonian and non-Hamiltonian perturba-
tions (McClain 1977). Rather, we focus on the simple J2 perturbation and resort to the
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On mean elements in artificial-satellite theory        

versatile method of Lie transforms to compute explicit expressions of the mean variations
as well as their concomitant periodic corrections. Beyond its original goal of dealing with
perturbed Hamiltonian flows (Hori 1966; Deprit 1969), the Lie transforms method generally
applies to systems of ordinary differential equations with minor modifications of the original
formulation, and is readily implemented by means of efficient recursive algorithms (Kamel
1970; Henrard 1970). Most notably, the method allows for the explicit computation of the
inverse, osculating-to-mean transformation, in addition to the direct, mean-to-osculating one.
The former, we will see, is fundamental for understanding the consequences of choosing a
mean-to-osculating transformation that is purely periodic in the mean anomaly in order to
obtain the mean frequencies of the motion.

To clearly illustrate the non-canonical nature of a mean-to-osculating transformation that
is purely periodic in themean anomaly, we strip the formulation of non-essential complexities
stemming from the closed-form integration of implicit functions of the mean anomaly. That
is, we base our exposition on a J2-type potential in which the implicit dependence of the
J2-problem on the mean anomaly is avoided by resorting to the usual expansions of the
elliptic motion (Brouwer and Clemence 1961). Furthermore, we truncate these expansions
to the lower orders of the eccentricity to shorten the length of printed expressions.

The toy model is assumed exact in the computation of the mean variations so that the
mandatory analytical tests carried out to ensure the correctness of the theory provide imme-
diate insight without need of making additional expansions. In particular, at each order of the
perturbation approach we checked that the successive composition of the mean-to-osculating
and osculating-to-mean analytic transformations yields formally the identity up to the trun-
cation order of the theory. We also checked that replacing the transformation equations of the
short-period elimination in the original, osculating variation equations, leads to mean varia-
tion equations that match term for term the mean frequencies obtained with the perturbation
approach up to the truncation order of the perturbation solution. These tests and model also
serve us to illustrate the paradox that the inverse of a non-canonical transformation that is
purely periodic in the fast angle may bear long-period as well as non-periodic terms.

Moreover, the toy model permits the computation of high orders of the perturbation
approach with relatively little computational effort. We need to compute them to show that,
for amean-to-osculating transformation that is purely periodic in themean anomaly, themean
variation of the semimajor axis ceases to vanish at the third order. This is in clear contrast with
the canonical-transformation approach, in which making the mean anomaly ignorable in the
Hamiltonian definitely results in a constantmean semimajor axis at any order. Because of that,
we may anticipate the inadequacy of a perturbation theory based on a purely periodic mean-
to-osculating transformation for long-term propagation. Indeed, because the more important
source of errors of a perturbation solution is related to the truncation of the mean frequencies,
the neglected long-period effects in the variation of the semimajor axis unavoidably introduce
long-period errors that will become dominant in the long term. Tests carried out to check
the accuracy of perturbation solutions based on different choices of the mean-to-osculating
transformation confirm this conjecture.

For the same reasons of simplicity and insight, we constructed the perturbation solution
in Keplerian orbital elements, which are singular for circular orbits as well as for equato-
rial orbits. The implementation of alternative non-singular solutions useful for operational
purposes can be approached analogously.

The paper is organized as follows. For completeness, the basic equations of the Lie-
transforms method are summarized in Sect. 2. Then, the toy model is formulated in usual
orbital elements in Sect. 3. Also in this section we discuss the two basic instances in which
the computation of the m-th-order terms of the mean variations can be decoupled from the
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computation of the mean-to-osculating transformation of the same order, and illustrate the
paradox that the inverse of a purely periodic transformation may yield long-period effects of
higher order than the first. The perturbation solution based on a mean-to-osculating transfor-
mation that is purely periodic in the mean anomaly is described in Sect. 4, showing that the
appearance of long-period terms in the variation of the mean semimajor axis starts at the third
order. Section5 deals with the case of a perturbation solution based on the purely periodic
character of the vectorial generator of the Lie-transforms method, which, like in the Hamilto-
nian case, results in null mean variation of the semimajor axis at any order. Finally, selected
propagations that illustrate the main features of each perturbation approach are presented in
Sect. 6.

2 The Lie transformsmethod for vectorial flows

In this section, we present the basic formulation that should allow interested readers to
reproduce our computations. Full details in the derivation of the algorithms can be consulted
in the original reference of Kamel (1970), as well as in the reformulation by Henrard (1970),
to which we rather adhere.

A Lie transformation x j = x j (yk, ε), with j and k integers ranging from 1 to l, is defined
as the solution of the differential system

dx j
dε

= Wj (xk, ε), j, k = 1, 2, . . . , l, (1)

where ε is the independent variable and Wj denote the l components of some vectorial
generating function, for the initial conditions

y j = x j (yk, 0). (2)

When such kind of transformation is applied to an analytical function F = F(x j , ε) given
by its Taylor-series expansion

F =
∑

m≥0

εm

m!
∂mF

∂εm

∣∣∣∣
ε=0

=
∑

m≥0

εm

m! Fm,0(x j ), (3)

the transformed function F∗ = F(x j (yk, ε), ε) can be directly obtained as a Taylor series in
the new variables

F∗ =
∑

m≥0

εm

m!
dmF

dεm

∣∣∣∣
ε=0

=
∑

m≥0

εm

m! F0,m(yk), (4)

by the recursive computation of the coefficients F0,m from Deprit’s triangle

Fm,q+1 = Fm+1,q +
m∑

i=0

(
m

i

)
Li+1(Fm−i,q), (5)

in which L denotes the linear, scalar operator

Lm(ψ) =
l∑

k=1

∂ψ

∂xk
Wk,m, (6)
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and Wk,m are the coefficients of the Taylor-series expansion of the vectorial generator.
Namely,

Wj =
∑

m≥0

εm

m! Wj,m+1(xk), j, k = 1, 2, . . . , l. (7)

On the other hand, the formulation of a differential system, say

dx j
dt

= X j (xk, ε) ≡
∑

m≥0

εm

m! � j,m,0(xk), � j,m,0 = ∂m X j

∂εm

∣∣∣∣
ε=0

, (8)

in the new variables y j = y j (xk, ε) needs to take the Jacobian of the transformation into
account. Thus,

dy j
dt

=
l∑

k=1

∂ y j
∂xk

X j (xk, ε) = Y j (xk, ε), (9)

whose series expansion in the new variables is

dy j
dt

= Y j (xk(yi , ε), ε) ≡
∑

m≥0

εm

m!� j,0,m(yk), � j,0,m = dmY j

dεm

∣∣∣∣
ε=0

. (10)

Now, the coefficients� j,0,n are obtained directly in the new variables from the new recursion

� j,m,q+1 = � j,m+1,q +
m∑

i≥0

(
m

i

)
L∗

j,i+1(�k,m−i,q), j, k = 1, 2, . . . , l, (11)

which still adheres to the structure of Deprit’s triangle but with a different, vectorial operator
under the summations. To wit,

L∗
j,i (�k) =

l∑

k=1

(
∂� j

∂xk
Wk,i − ∂Wj,i

∂xk
�k

)
, j, k = 1, 2, . . . , l. (12)

In a perturbation approach, we search for a generator that transforms the vectorial flow (8)
to some desired, simplified formgiven by (10)—commonlywith one of the variables removed
up to a given order of the small parameter ε. For this task, the first order of recursion (11)
yields

L∗
j,1(�k,0,0) = � j,0,1 − �̃ j,0,1, (13)

where �̃ j,0,1 = � j,1,0. After choosing the terms� j,0,1 in agreementwith our needs, Eq. (13)
is solved for the Wj,1 from the system of partial differential equations obtained replacing
L∗

j,1 from Eq. (12). Analogously, at the second order repeated iterations of Eq. (11) yield

L∗
j,2(�k,0,0) = � j,0,2 − �̃ j,0,2, (14)

where �̃ j,0,2 = � j,2,0 +L∗
j,1(�k,1,0)+L∗

j,1(�k,0,1) depends only on first-order terms, and
hence is computable. Then, after choosing � j,0,2 at our convenience, we solve Eq. (14) for
Wj,2. That is, in general, Eq. (11) is rearranged as the homological equation

L∗
j,m(�k,0,0) = � j,0,m − �̃ j,0,m, j = 1, . . . , l, (15)

in which the terms �̃ j,0,m are known from previous computations, whereas those � j,0,m are
chosen in agreement with some desired objective. Therefore, everything becomes known in
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the homological equation save for them-components of the vectorial generating function (7),
which are then solved from the corresponding partial differential system.

The direct transformation

x j = x j (yk, ε) ≡
∑

m≥0

εm

m! x j,0,m(yk), j, k = 1, . . . , l, (16)

is derived from the vectorial generating function W as a particular instance of the scalar
recursion (5) for the functions x j = ∑

m≥0(ε
m/m!) x j,m,0(xk), in which x j,0,0 = x j and

x j,m,0 = 0 for m ≥ 1. The inverse transformation y j = y j (xk, ε) is analogously obtained
from the vectorial generating function Vj = −Wj , which in turn must be written in the yk
variables. Because W is itself a vectorial flow, the reformulation of W = W (xk(yk, ε), ε) as
a power series in the yk variables is done based on Eq. (11), which is readily implemented
replacing Bj,i,0 = Wj,i+1(xk). Once the terms Bj,0,i are computed recursively fromEq. (11),
the inverse transformation

Vj =
∑

m≥0

εm

m! Vj,m+1(yk), (17)

is obtained bymaking Vj,i+1 = Vj,i+1(yk) ≡ −Bj,0,i (xk)|ε=0. In particular, V1 = V1(yk) ≡
−W1(xk)|ε=0, from which it follows that the first-order terms of direct and inverse transfor-
mations are formally opposite—yet they are evaluated in distinct sets of variables. On the
other hand, making m = q = 0 in Eq. (11) immediately yields Bj,0,1 = Bj,1,0 = Wj,2, and
hence V2 = V2(yk) ≡ −W2(xk)|ε=0. Remark that this trivial equivalence between direct and
inverse generating function terms no longer applies beyond the second order of ε.

3 A J2-type perturbed Keplerianmodel

The J2 non-spherical term exerts the dominant gravitational perturbation of the Keplerian
motion on Earth-orbiting, artificial satellites. This is the reason why this perturbation model
is known as the “main problem” in the theory of artificial satellites (Brouwer 1959). For this
problem, the only disturbance of the two-body potential V = −μ/r is due to the term

D = −μ

r
J2

R2⊕
r2

1

4

[
2 − 3 sin2 I + 3 sin2 I cos 2( f + ω)

]
, (18)

where r = a(1 − e2)/(1 + e cos f ) is the distance from the center of mass of the attracting
body, a, e, I , �, ω, and M are usual Keplerian elements, denoting semimajor axis, eccen-
tricity, inclination, right ascension of the ascending node, argument of the periapsis, and
mean anomaly, respectively, whereas the true anomaly f is an implicit function of M and
involves the solution of the Kepler equation. For a given body, the disturbing potential (18)
is particularized by the physical parameters μ, R⊕, and J2, standing for the gravitational
parameter, the equatorial radius, and the oblateness coefficient, respectively.

The fact that themean anomalyM , which is the fast angle to be removed in the computation
of the mean variations, appears implicitly in Eq. (18) as a function of the true anomaly f ,
introduces additional complications in the solution of the integrals involved in the perturbation
approach if the closed form is wanted. Therefore, in order to focus on the relevant facts of the
solution inmean elementswe rely on the usual expansions of the ellipticmotion (Brouwer and
Clemence 1961), which, besides, are truncated to the lower orders of the eccentricity. In this
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On mean elements in artificial-satellite theory

way, we not only sidestep many of the difficulties arising in the computation of the closed-
form solution, but also shorten higher-order expressions stemming from the perturbation
solution to a manageable extent.

Therefore, we replace the disturbing potential of the main problem in Eq. (18), by the
substitute

T = μ

2a
J2

R2⊕
a2

1

4

[
2(3s2 − 2)(1 + 3e cosM) + 3es2 cos(M + 2ω)

− 6s2 cos(2M + 2ω) − 21es2 cos(3M + 2ω)
]
, (19)

that depends explicitly on the mean anomaly, in which we abbreviate s ≡ sin I . Then, the
variations of the osculating orbital variables are cast in the form of Eq. (8), where ε = J2,
and dx j/dt denote the time variations of a, e, I , �, ω, and M , for j = 1, . . . 6, respectively.
In particular,

� j,0,0 = 0, j < 6, (20)

�6,0,0 = n, (21)

�1,1,0 = an
R2⊕
a2

3

4

[
(6s2 − 4)e sinM + es2 sin(M + 2ω) − 4s2 sin(2M + 2ω)

− 21es2 sin(3M + 2ω)
]
, (22)

�2,1,0 = n
R2⊕
a2

η

e

3

8

[
eη(6s2 − 4) sinM + e(η − 2)s2 sin(M + 2ω)

− 4(η − 1)s2 sin(2M + 2ω) − 7e(3η − 2)s2 sin(3M + 2ω)
]
, (23)

�3,1,0 = n
R2⊕
a2

cs

η

3

4

[
e sin(M + 2ω) − 2 sin(2M + 2ω) − 7e sin(3M + 2ω)

]
, (24)

�4,1,0 = −n
R2⊕
a2

c

η

3

4

[
2 + 6e cosM + e cos(M + 2ω) − 2 cos(2M + 2ω)

− 7e cos(3M + 2ω)
]
, (25)

�5,1,0 = −n
R2⊕
a2

1

eη

3

8

{
4e(s2 − 1)

[
1 − cos(2M + 2ω)

]

+ [
e2(6s2 − 8) + 6s2 − 4

]
cosM + [

e2(s2 − 2) + s2
]
cos(M + 2ω)

− 7
[
e2(s2 − 2) + s2

]
cos(3M + 2ω)

}
, (26)

�6,1,0 = −n
R2⊕
a2

1

e

3

8

{
4e

[
(3s2 − 2 − 3s2 cos(2M + 2ω)

] + (7e2 − 1)

× [
(6s2 − 4) cosM + s2 cos(M + 2ω) − 7s2 cos(3M + 2ω)

]}
. (27)

where n = (μ/a3)1/2 denotes the Keplerian mean motion, η = (1 − e2)1/2, and we also
abbreviate c ≡ cos I . Terms � j,m,0 vanish for m ≥ 2. The appearance of the eccentricity in
denominators of the first-order terms of the variations of the argument of the periapsis and the
mean anomaly given inEqs. (26) and (27), respectively,may cause trouble in the integration of
low-eccentricity orbits.However, because the toymodel is chosen just for illustrative purposes
this is not a concern, and we simply will take care in our numerical experiments of choosing
initial conditions far away enough from problematic cases. Certainly, a perturbation solution
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intended for operational purposes should rather be implemented in some set of non-singular
variables.

Remarkably, for perturbed Keplerian motion the homological equation of the Lie trans-
forms method can be solved by indefinite integration. More precisely, for the m-th term,
Eq. (15) turns into

Wj,m = 1

n

∫ (
�̃ j,0,m − � j,0,m

)
dM, j = 1, . . . 5, (28)

W6,m = 1

n

∫ (
�̃6,0,m − �6,0,m + ∂n

∂a
W1,m

)
dM, (29)

where ∂n/∂a = −3n/(2a), as follows from the definition of the mean motion of a Keple-
rian flow. An attentive reader will have noticed the similarities between Eqs. (28)–(29) and
Eqs. (55)–(58) of (Hori 1971).

It is important to note that� j,0,m should be chosen in such away that it cancels the average
of the known, tilde terms over the mean anomaly, namely, 〈�̃ j,0,m〉M , in this way preventing
the appearance of secular terms in the solution of the homological equation for j = 1, . . . 5.
On the other hand, the choice of such�6,0,m that cancels the terms 〈�̃6,0,m− 3

2 (n/a)W1,m〉M ,
thus avoiding the undesired secular terms, relies on the previous computation ofW1,m . More
precisely, we only need to know 〈W1,m〉M = C1,m(a, e, I ,�, ω,−), which can be chosen in
advance in two relevant cases due to the freedomprovided by the arbitrary integration function
that arises in the integration of Eq. (28). In particular, imposingW1,m to be purely periodic in
the mean anomaly makes C1,m = 0 trivially, and hence we can choose �6,0,m = 〈�̃6,0,m〉M
like in the other cases. Alternatively, imposing the mean-to-osculating transformation of the
semimajor axis to be purely periodic in the mean anomaly, allows for the direct computation
of C1,m from previous orders of the perturbation solution.

For the last case, the mean-to-osculating transformation in Eq. (16) of the semimajor axis
a = a′ + J2a0,1 + 1

2 J
2
2 a0,2 + . . . is recursively computed from Eq. (5) as follows. At the first

order a0,1 = L1(a) = W1,1, as follows from the definition of the scalar operator in Eq. (6).
Then,

C1,1 = 0, (30)

and hence �6,0,1 = 〈�̃6,0,1〉M . At the second order, a0,2 = a1,1 + L1(a0,1), where a1,1 =
W1,2, as follows from Eq. (5). Hence W1,2 = a0,2 − L1(a0,1), where, for a purely periodic
mean-to-osculating transformation 〈a0,2〉M = 0. Therefore, the computation of C1,2 =
〈W1,2〉M yields

C1,2 = −〈L1(a0,1)〉M = −
6∑

k=1

〈∂a0,1
∂xk

Wk,1

〉

M
, (31)

that only relies on first-order terms. Then, �6,0,2 = 〈�̃6,0,2〉M − 3
2 (n/a)C1,2. Analogously,

at the third order, Eq. (5) leads to the sequence

a2,1 = W1,3,

a1,2 = L2(a0,1) + L1(a1,1) + a2,1,

a0,3 = L1(a0,2) + a1,2,

from which W1,3 = a0,3 − L1(a0,2) − L2(a0,1) − L1(a1,1). Therefore, the requirement that
〈a0,3〉M = 0 yields

C1,3 = −〈L1(a0,2)〉M − 〈L2(a0,1)〉M − 〈L1(a1,1)〉M , (32)
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On mean elements in artificial-satellite theory

and the long-period terms 〈�̃6,0,3〉M − 3
2 (n/a)C1,3 that should be cancelled by �6,0,3 are

computed with the only knowledge of second-order terms and so on.
In a paradox, the choice of arbitrary functions that make the mean-to-osculating transfor-

mation purely periodic may prevent the inverse transformation from having the same nature.
Using vectors, we denote x = x′ + εx0,1(x′)+ 1

2ε
2x0,2(x′)+O(ε3) the mean-to-osculating

transformation, and x′ = x + εx′
0,1(x) + 1

2ε
2x′

0,2(x) +O(ε3) its inverse. Neglecting terms

O(ε3) and higher, their sequential composition yields

x =
[
x + εx′

0,1(x) + 1

2
ε2x′

0,2(x)
]

+ εx0,1(x + εx′
0,1(x)) + 1

2
ε2x0,2(x), (33)

where the term εx0,1 still needs to be expanded. That is,

0 = ε
[
x′
0,1(x) + x0,1(x)

] + 1

2
ε2

[
x′
0,2(x) + 2x′

0,1(x)
∂x0,1(x)

∂x
+ x0,2(x)

]
, (34)

in which x′
0,1(x) and x0,1(x) cancel each other out because they are just opposite. Hence,

x′
0,2 = −2x0,1(x)

∂x0,1(x)

∂x
− x0,2(x), (35)

where x0,2 is purely periodic in M by our choice of the arbitrary integration functions.
However, the product x0,1∂x0,1/∂xmay give rise—and it certainly does for the J2 problem—
to constant and long-period terms in spite of each factor is purely periodic in the mean
anomaly.

Details on the construction of perturbation theories based in these two noteworthy cases
are provided in the two following Sections.

4 Theory 1

In this Section, we obtain the perturbation solution based on a mean-to-osculating trans-
formation that is purely periodic in the mean anomaly, which we label as “Theory
1”.

At first order, n = 0 and q = 0 in Eq. (11), and hence �̃ j,0,1 = � j,1,0. Besides,C1,1 = 0,
as follows from Eq. (30), and we choose � j,0,1 = 〈�̃ j,0,1〉M . We obtain �1,0,1 = �2,0,1 =
�3,0,1 = 0, and

�4,0,1 = −n
R2⊕
a2

3c

2η
, �5,0,1 = −c�4,0,1, �6,0,1 = n

R2⊕
a2

3

2
(3c2 − 1). (36)

Then, the trivial integration of Eqs. (28)–(29) for m = 1 provides the first-order terms Wj,1

of the vectorial generating function, each of which will depend on an arbitrary integration
function C j,1 ≡ C j,1(a, e, I ,�, ω,−) save for C1,1, whose value has already been fixed.

The mean-to-osculating transformation is of the form of Eq. (16) and is computed using
recursion (5) in which Fm,0 = 0 for m ≥ 1 and F is successively replaced by each orbital
element x j ∈ (a, e, I ,�, ω, M). In these equations, the arbitrariness of the functions C j,1 is
suppressed by imposing that the transformation from mean elements to osculating elements
be purely periodic in the mean anomaly, which yields C j,1 = 0. Then, we obtain
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W1,1 = a0,1 = −a
R2⊕
a2

3

4

[
e(6s2 − 4) cosM + es2 cos(M + 2ω) − 2s2

× cos(2M + 2ω) − 7es2 cos(3M + 2ω)
]
, (37)

W2,1 = e0,1

= − R2⊕
a2

1

8

[
6η2(3s2 − 2) cosM + 3η(η − 2)s2 cos(M + 2ω)

+ 6eηs2

1 + η
cos(2M + 2ω) − 7η(3η − 2)s2 cos(3M + 2ω)

]
, (38)

W3,1 = I0,1

= − R2⊕
a2

cs

4η

[
3e cos(M + 2ω) − 3 cos(2M + 2ω)

− 7e cos(3M + 2ω)
]
, (39)

W4,1 = �0,1

= − R2⊕
a2

c

4η

[
18e sinM + 3e sin(M + 2ω) − 3 sin(2M + 2ω)

− 7e sin(3M + 2ω)
]
, (40)

W5,1 = ω0,1

= − R2⊕
a2

1

eη

1

8

{
6[e2(3s2 − 4) + 3s2 − 2] sinM

+ 3[e2(s2 − 2) + s2] sin(M + 2ω) − 6e(s2 − 1)

× sin(2M + 2ω) − 7[e2(s2 − 2) + s2] sin(3M + 2ω)
}

(41)

W6,1 = M0,1

= − R2⊕
a2

1

8e

{
(4e2 − 1)

[
6(3s2 − 2) sinM + 3s2 sin(M + 2ω)

− 7s2 sin(3M + 2ω)
] − 9es2 sin(2M + 2ω)

}
. (42)

The reader will forgive the abuse of notation with the aim of reducing the number of printed
expressions, for the components of the generator Wj,m depend on the osculating orbital
variables, whereas the periodic corrections are functions of the mean variables. This change
of the osculating variables by themean ones in the periodic corrections, which also affects the
mean variations, should be carried out at the end of the whole procedure in order to run the
perturbation theory in a semi-analytical way. On the other hand, the first-order terms of the
inverse, osculating-to-mean transformation, are formally the opposite of those in Eqs. (37)–
(42), but they are evaluated in the original, osculating variables.

At the second order, the solution of Eqs. (28)–(29) needs the previous computation of the
tilde terms �̃ j,0,2. Repeated application of Eq. (11) yields

�̃ j,0,2 = � j,2,0 +
6∑

k=1

[
Wk,1

∂(� j,0,1 + � j,1,0)

∂xk
− (�k,0,1 + �k,1,0)

∂Wj,1

∂xk

]
, (43)

whose evaluation only involves straightforward operations. Then, the second-order terms of
the mean variations of a, e, I , �, and ω are chosen by averaging, to get
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�1,0,2 = 0, (44)

�2,0,2 = −n
R4⊕
a4

9

16

s2e

1 + η

[
11η2(3s2 − 2) + 3η(13s2 − 10) + 12(s2 − 1)

]
sin 2ω, (45)

�3,0,2 = n
R4⊕
a4

9

16

1

η2

cse2

1 + η

[
11η2(3s2 − 2) + 3η(13s2 − 10) + 12(s2 − 1)

]
sin 2ω, (46)

�4,0,2 = n
R4⊕
a4

3c

16η2
{
33η3(43s2 − 12) + 104η2(s2 − 1) − 81η(15s2 − 4)

− 116(2s2 − 1) + 6
[
11η2(3s2 − 1) + 3η(13s2 − 5) + 6(2s2 − 1)

]

× (η − 1) cos 2ω
}
, (47)

�5,0,2 = n
R4⊕
a4

3

32η2
{
33η3(43s4 − 86s2 + 16) + 52η2(3s4 − 6s2 + 4) − 162η

× (s2 − 1)(15s2 − 4) − 116(s2 − 1)(5s2 − 2) + 6
[
11η3(3s4 − 6s2 + 2)

+ η2(9s4 − 16s2 + 8) − 18η(s2 − 1)(3s2 − 1) − 6(s2 − 1)(5s2 − 2)
]

× cos 2ω
}
. (48)

Finally, we compute C1,2 = 〈W1,2〉M from Eq. (31), to obtain

C1,2 = −a
R4⊕
a4

3

32η

{
21η3(43s4 − 24s2 + 8) + 104η2s2(s2 − 2)

− 15η(45s4 − 24s2 + 8) − 232s2(s2 − 1)

+ 6(η − 1)
[
7η2(3s2 − 2) + η(27s2 − 22) − 12c2

]
s2 cos 2ω

}
, (49)

from which �6,0,2 = 〈�̃6,0,2〉M − 3
2 (n/a)C1,2, and hence

�6,0,2 = n
R4⊕
a4

3

64η

{
459η3(43s4 − 24s2 + 8) + 1456η2s2(s2 − 2) − 315η

× (45s4 − 24s2 + 8) − 2784s2(s2 − 1) + 6s2
[
153η3(3s2 − 2)

+ 28η2(3s2 − 4) − 105η(3s2 − 2) − 144(s2 − 1)
]
cos 2ω

}
. (50)

It follows the solution of Eqs. (28) and (29) for m = 2 to obtain the components of
the vectorial generator Wj,2, which again introduce arbitrary integration functions that are
particularized for obtaining a purely periodic, mean-to-osculating transformation. In addition
to the function C1,2 in Eq. (49), for j ≥ 2 we readily obtain C j,2 = 0.

For instance, for the semimajor axis we obtain

a0,2 = a
R4⊕
a4

3

32

1

1 + η

2∑

i=0

2i+2∑

j=1+δ2,i

2+2δ2i, j∑

k=δ2,i

Pi, j,kη
k−1e| j−2i |s2i cos(2iω + jM), (51)

where δi, j denotes the Kronecker delta and the inclination polynomials Pi, j,k are presented
in Table 1. That a0,2 is purely periodic in the mean anomaly results from the subindex j ≥ 1.
On the contrary, the inverse, osculating-to-mean correction to the semimajor axis takes the
form

a′
0,2 = a′

0,2,long + a
R4⊕
a4

3

16

2∑

i=0

2i+2∑

j=1

1+2δ2i, j∑

k=1−δ2,i

P ′
i, j,kη

k−1e| j−2i |s2i cos(2iω + jM), (52)
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Table 1 Inclination polynomials Pi, j ,k in Eq. (51)

0,1,0 : −208s2(s2 − 1) 1,2,2 : 8(255s2 − 142) 2,3,1 : 3
0,1,1 : −4(289s4 − 196s2 + 48) 1,2,3 : −8(405s2 − 298) 2,3,2 : −3

0,1,2 : −8(125s4 − 72s2 + 24) 1,2,4 : −968(3s2 − 2) 2,4,1 : −54

0,2,0 : 224s2(s2 − 1) 1,3,0 : 40(s2 − 1) 2,4,2 : −54

0,2,1 : 2(247s4 − 40s2 − 24) 1,3,1 : 2(281s2 − 194) 2,4,3 : 70
0,2,2 : 2(191s4 + 72s2 − 24) 1,3,2 : 162(3s2 − 2) 2,4,4 : 70
1,1,0 : 168(s2 − 1) 1,4,0 : −336(s2 − 1) 2,5,1 : −63

1,1,1 : 6(109s2 − 82) 1,4,1 : −84(7s2 − 6) 2,5,2 : −77

1,1,2 : 198(3s2 − 2) 1,4,2 : −140(3s2 − 2) 2,6,1 : −147

1,2,0 : 720(s2 − 1) 2,2,1 : −3 2,6,2 : −147

1,2,1 : 72(43s2 − 32) 2,2,2 : −3

Table 2 Non-null coefficients P ′
i, j ,k in Eqs. (52) and (53)

0,0,0 : −232s2(s2 − 1) 0,1,1 : 96(3s4 − 3s2 + 1) 1,3,1 : −108(3s2 − 2)

0,0,1 : −15(45s4 − 24s2 + 8) 0,2,1 : 6(11s4 − 24s2 + 8) 1,4,1 : −84(3s2 − 2)

0,0,2 : 104s2(s2 − 2) 1,1,0 : 24(s2 − 1) 2,2,1 : 3
0,0,3 : 21(43s4 − 24s2 + 8) 1,1,1 : −12(3s2 − 2) 2,3,1 : −12

1,0,0 : −72(s2 − 1) 1,2,0 : −24(s2 − 1) 2,4,1 : −30

1,0,1 : −30(3s2 − 2) 1,2,1 : −96(3s2 − 2) 2,4,3 : 42
1,0,2 : 12(3s2 − 4) 1,2,3 : 72(3s2 − 2) 2,5,1 : 84
1,0,3 : 42(3s2 − 2) 1,3,0 : −56(s2 − 1) 2,6,1 : 147

with the new inclination polynomials P ′
i, j,k of Table 2, and the long-period terms

a′
0,2,long = a

R4⊕
a4

3

16

1∑

i=0

3∑

k=0

P ′
i,0,kη

k−1s2i cos 2iω, (53)

with coefficients P ′
i,0,k in the same table, which clearly show the non-purely periodic nature

of the osculating-to-mean transformation announced in Eq. (35). Indeed, it is immediate to
see that 〈a′

0,2〉M = a′
0,2,long. The same features are also observed in the direct and inverse

corrections to the other orbital variables.
This apparent inconsistency in the osculating-to-mean transformation does not corrupt

the solution, which, as desired, is made of the mean elements resulting from the numerical
integration of the mean frequencies, and the analytic purely periodic corrections. Still, this
kind of solution may be not the best one when the theory is intended for accurate long-term
orbit propagation. To show that, we compute the third-order terms of the mean variations.
Recalling that � j,k,0 = 0 for k ≥ 2, from repeated iterations of recursion (11) we obtain

� j,0,3 = L∗
j,1

(
� j,0,2

) + � j,1,2,

� j,1,2 = L∗
j,2

(
� j,0,1

) + L∗
j,1

(
� j,1,1

) + � j,2,1,

� j,2,1 = L∗
j,3

(
� j,0,0

) + 2L∗
j,2

(
� j,1,0

) + � j,3,0,
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On mean elements in artificial-satellite theory

where, from the same recursion,� j,1,1 = � j,0,2−L∗
j,1

(
� j,0,1

)
. Then, the computable terms

are �̃ j,0,3 = L∗
j,1

(
� j,0,2 + � j,1,1

)+L∗
j,2

(
� j,0,1 + 2� j,1,0

)
, and, like before, we compute

the third-order components of the mean variations as� j,0,3 = 〈�̃ j,0,3〉M for j < 6, whereas
the computation of �6,0,3 = 〈�̃6,0,3 − 3

2 (n/a)W1,3〉M requires the preliminary computation
of C1,3 = 〈W1,3〉M from Eq. (32). For j = 1 we obtain

�1,0,3 = an

(
R⊕
a

)6 c2s2e2

η2(1 + η)

81

16

[
7η2(3s2 − 2) + η(27s2 − 22) + 12(s2 − 1)

]
sin 2ω.

(54)

The non-vanishing character of the mean variation of the semimajor axis is a crucial fact
that remains hidden when the perturbation approach is truncated to the lower orders. Indeed,
due to the Lyapunov instability of the Keplerian motion, the semimajor axis is the more
sensitive element in the propagation of errors. So neglecting these terms of the variation of
the mean semimajor axis, how tiny they may be, sooner or later will introduce observable
errors in the mean elements propagation. This feature of Theory 1 will be clearly illustrated
in the semi-analytical propagations presented in Sect. 6.

Finally, it is worth mentioning that the formulation of Theory 1 in a different set of
variables, as for instance, non-singular ones based on the semi-equinoctial elements κ =
e cosω, σ = e sinω, while feasible, will lose the purely periodic character of the mean-to-
osculating transformation as soon as we reach the second order. The reason is the same stated
above that the product of two purely periodic terms yields, in general, non-periodic terms.
Thus, for instance, up to second-order terms κ = (e′ + εe0,1 + 1

2ε
2e0,2) cos(ω′ + εω0,1 +

1
2ε

2ω0,2), which, after expansion and truncation to O(ε3) yields

κ = e′ cosω′ + ε
(
e0,1 cosω′ − ω0,1e

′ sinω′) + 1

2
ε2

(
e0,2 cosω′ − ω0,2e

′ sinω′)

− 1

2
ε2

(
2e0,1ω0,1 sinω′ + ω2

0,1e
′ cosω′) , (55)

where the products e0,1ω0,1 and ω2
0,1 will naturally spring long-period terms that will remain

after reformulation of the orbital elements into semi-equinoctial variables. Therefore, Theory
1 should be recomputed in the new variables from scratch if we want to preserve the purely
periodic character in the fast variable of the mean-to-osculating transformation.

5 Theory 2

Other case in which the successive order of the mean variations can be computed based only
on previous orders of the vectorial generator is when we prescribe the vectorial generating
function to be purely periodic in themean anomaly. That is, the arbitrary integration functions
C j,m = 〈Wj,m〉M vanish at any order of the perturbation theory. We label this case as Theory
2.

To the first order, both approaches match and the results in Sect. 4 apply also to this case.
At the second order, for j < 6 the mean frequencies � j,0,2 are the same as those given in
Eqs. (44)–(48), but the integration function C1,2 in Eq. (49) must be replaced by C1,2 = 0.
Hence,
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�6,0,2 = n
R4⊕
a4

3

32η

{
198η3(43s4 − 24s2 + 8) + 572η2s2(s2 − 2) − 135η(45s4

− 24s2 + 8) − 1044s2(s2 − 1) + 6s2
[
66η3(3s2 − 2) + 11η2(3s2 − 4)

− 45η(3s2 − 2) − 54(s2 − 1)
]
cos 2ω

}
, (56)

whose structure is analogous to Eq. (50) but with different coefficients. The second-order
terms of the vectorial generator Wj,2 are consequently the same as before for j < 6, but
change for W6,2. Since they all are involved in the computation of each transformation
equation, now all of them are affected of long-period terms, which at this order are exactly
the same in the direct and inverse transformations.

In particular, now

a0,2 = a0,2,short + a0,2,long, (57)

where a0,2,short is the same as Eq. (51), which only comprises short-period terms, and the
long-period terms a0,2,long are exactly one half of those reported in Eq. (53). Analogously,
now

a′
0,2 = a′

0,2,short + a′
0,2,long, (58)

where the short-period terms a′
0,2,short are those obtained from Eq. (52) as a′

0,2 − a′
0,2,long,

whereas a′
0,2,long = a0,2,long. The same happens to the other variables, in which the long-

period terms appearing in the osculating-to-mean transformations of the previous approach
are now distributed in equal parts between the direct and inverse transformation.

Contrary to Theory 1, the current choice of a purely short-periodic vectorial generator
makes that now the variation of the mean semimajor axis vanishes at each order. Besides,
since there are not special requisites related to the periodic character of the short-period
elimination, Theory 2 can be reformulated in a different set of variables without need of
approaching the Lie transformations from scratch, as it also happens in the Hamiltonian case
(Lyddane 1963; Deprit and Rom 1970).

6 Semi-analytical propagations: A test case

The aim of this section is just to illustrate the different behavior of the two non-canonical
perturbation theories described in the previous sections. The actual relevance of the differ-
ences observed between both kinds of solutions regarding the implementation of operational
software falls out of the scope of the current study. Therefore, we are satisfied with running
our tests for a favorable case in the orbital variables used, which we borrow from (Coffey and
Alfriend 1984). In particular, we limit the reported tests to the case of an elliptical orbit with
e = 0.2, I = 20◦, a = 9500 km, � = 0.1 rad, ω = 274.56◦, and M = 0. The gravity-field
parameters used in the propagations are μ = 398600.4415 km3/s2, R⊕ = 6378.1363 km,
and J2 = 0.001082634.

First of all, we recall that a semi-analytic propagation is made of three parts. The
osculating-to-mean transformation is applied first to the initial conditions in order to get
the initial state in mean variables, as well as, more importantly, to initialize the mean fre-
quencies of the motion. Next, the mean variations are integrated numerically for the mean
initial conditions, which is achieved with very long steps. Finally, osculating elements are
obtained at each evaluation step from the mean-to-osculating transformation. Because the
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On mean elements in artificial-satellite theory        

Fig. 1 Test case. Position errors of the first order of Theory 1 (left) and 2 (right)

Fig. 2 Test case. Semimajor axis errors of the first order of Theory 1 (left) and 2 (right)

more important source of errors stems from the mean-elements propagation, usual pertur-
bation theories include a higher order of the mean variations than the order of the periodic
corrections (Brouwer 1959; Kozai 1959; Deprit and Rom 1970; McClain 1977). On the
other hand, the initialization process is crucial to avoiding the abnormal growth of errors
in the along-track direction, so the osculating-to-mean transformation is commonly patched
including higher-order information related to the semimajor axis conversion (Lyddane and
Cohen 1962; Breakwell and Vagners 1970; Lara 2021a, 2022). In this fashion, we denote as
m-th order a theory that comprises the (m + 1)-th-order effects of the mean frequencies and
the m-th-order effects of the transformation equations, but in which the osculating-to-mean
transformation is patched with the (m + 1)-th-order effects of the semimajor axis. The usual
calibration of the solution using the energy equation is not used in this case to strictly adhere
to the general formulation of a non-Hamiltonian problem.

The first-order effects of both distinct perturbation approaches yield identical terms. How-
ever, in our notation of afirst-order theory theydisagree ina′

0,2, cf. Eqs. (52)–(53) andEq. (58),
as well as in�6,0,2, cf. Eqs. (50) and (56). These small differences in the formulation produce
small but significant changes in the time-history of the errors resulting from each perturbation
theory, which are computed with respect to a reference orbit obtained from the numerical
integration of the osculating variations provided by Eqs. (20)–(27).

The time-histories of the root sum square (RSS) of the position errors for a three-day
semi-analytic propagation of the test case with each theory are shown in Fig. 1, where we
observe that the RSS errors remain of the same order and present the same behavior. This
kind of representation is useful in illustrating the accuracy of each theory for orbit-prediction
purposes, but does not illustrate relevant differences between the two distinct perturbation
approaches.

More precisely, Theory 1 yields mean elements that strictly adhere to the average behavior
of the osculating orbit, as expected, which is not the case of Theory 2. This is illustrated in
Fig. 2 for the semimajor axis, which shows that the propagation errors are of the same order
and behave almost identically, with periodic oscillations of the same amplitude. However, the
average of the errors, depicted by horizontal black lines in each plot of Fig. 2, nearly vanishes
for Theory 1, averaging to about 1cm in this example, whereas it is affected of a clear shift
from the zero average in the case of Theory 2, of about 3m in this particular propagation.
Differences in the time-histories of the errors of the other orbital elements obtained with each
theory, as well as in their respective averages, are of minor nature and are not presented. In
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Fig. 3 Test case. Position errors of the second order of Theory 1 (left) and 2 (right)

Fig. 4 Test case. Semimajor axis errors of the first order of Theory 1 (left) and 2 (right)

particular, with both theories the errors of the eccentricity average to ∼ 10−6 for the test
case, and to values below one tenth of arc second for the orbital angles.

Taking additional terms clearly improves the accuracy of each perturbation theory, whose
position errors reduce from tens of meters to several centimeters when propagating the test
case with second-order theories, in agreement with a O(J2) improvement. This is shown in
Fig. 3 , where we also note the lower amplitude of the RSS errors resulting from Theory
1. Nevertheless, in view of the RSS errors that remain in both cases with values of the
expected order of the truncation of the perturbation theory, we consider that both theories
are of comparable accuracy for the test case along the 3-day interval. In particular, in both
propagations the errors are O(10−8) relative to distance.

Correspondingly, the propagation errors of the semimajor axis reduce their amplitude from
the meter to the centimeter level, as depicted in Fig. 4, also in agreement with the expected
improvement provided by an additional order of the perturbation theories. As shown in the
right plot of Fig. 4, the shift from the zero-average in Theory 2 remains, but now reduced to
less than 1cm due to the general improvements of the perturbation solution. The semimajor
axis’ errors stemming from the semi-analytical propagation using Theory 1 fall now below
the mm level. Regarding the errors of the other orbital elements, they remain small as well
as similar in both cases, like it happened to the lower-order solutions.

On the other hand, as already pointed out in the text, the apparent superiority of Theory
1 must be better qualified. For the truncation of the non-vanishing mean variation of the
semimajor axis, additional errors mainly affecting the mean motion and hence the mean-
anomaly propagation turn this perturbation theory into a less accurate tool for long-term
propagation. This is illustrated for the second-order versions of the perturbation theories
in Fig. 5 , in which the propagation interval of the test case is extended from 3 days to 3
weeks. Now, rather than RSS errors, we display the projections of the position error in the
intrinsic (along-track, radial, and cross-track) directions, which better illustrate the nature
of the resulting errors. Thus, we clearly see that along-track errors resulting from Theory
1 notably deteriorate passed one week and a half, whereas those of Theory 2 only worsen
slightly (top plots of Fig. 5). This is the expected consequence of the truncation error of the
mean motion in the propagation of the mean anomaly, which does not affect Theory 2 as far
as the mean variation of the semimajor axis vanishes at any order. Due to the elliptic character
of the test orbit, this error in the mean anomaly propagation is also observed in the radial
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Fig. 5 Intrinsic errors of a 3-week semi-analytical propagation of the test case with second-order Theory 1
(left) and Theory 2 (right)

Fig. 6 Intrinsic errors of a 3-week semi-analytical propagation of the test case with second-order patched
Theory 1 (left) and Theory 2 (right)

errors, yet with less adverse effects (center plots of Fig. 5), but barely affects the errors in
the cross-track direction (bottom plots of Fig. 5).

Still, there is no doubt that Theory 1 is certainly correct. To check that, we patched both
second-order theories with the fourth-order terms of the mean variation of the semimajor
axis, which changes nothing in Theory 2 for the vanishing of the mean semimajor axis in
this approach, but clearly refines Theory 1. These additional corrections bring both theories
again to comparable accuracy for orbit propagation purposes, as shown in Fig. 6, in which
the plots in the right column are the same as corresponding ones in the right column of Fig. 5
but represented in different scales to ease comparison. It is worth to mention that in this last
case, the second-order patched Theory 1 provides errors of the semimajor axis that average
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Fig. 7 Relative RSS position
errors between the second-order
patched theories 1 and 2

to just a few hundredths of mm, whereas the average of the semimajor axis error of Theory
2 remains in the cm level in spite of the expanded propagation interval. As before, the errors
of the other orbital elements presented by each distinct theory are analogous and very small.
On the other hand, the amplitude of the errors remain similar to the previous case because
the patched theories still rely only on second-order direct corrections.

For reference, the relative RSS error between both different semi-analytical solutions is
presented in Fig. 7 for the last case, showing that they remain within 10−8 of the satellite’s
distance (corresponding to the cm level) in the chosen time interval.

The choice of the step size for the numerical integration of the mean variations obviously
affects the accuracy of both perturbation theories. For this particular example, we checked
that the accuracy of the semi-analytical solutions using the standard Runge–Kutta method
of the Mathematica 12 software, does not suffer significant changes for constant integration
step sizes as long as 2 days, which amounts to about 19 orbital periods. Undeniably, patching
the mean variation of the semimajor axis with additional terms increases the computational
burden of Theory 1. However, the increase is just slight, and due to the small number of
steps needed in the numerical-integration part, this fact should not be taken as a critical
shortcoming of patched-Theory 1.

Finally, we must mention that, beyond the illustration purposes of this Section, both
perturbation solutions of the toy model have been also obtained in non-singular variables—
recomputed for Theory 1, to preserve the purely periodic character of the mean-to-osculating
transformation, and simply reformulated in the case of Theory 2—in this way allowing us
to carry out additional tests for less elliptical orbits that, while non-exhaustive, confirm the
reported characteristics of each distinct perturbation approach.

Conclusions

For perturbed Keplerian motion, a non-canonical perturbation theory based on a mean-
to-osculating transformation that is purely periodic in the fast angle has the advantage of
providing mean elements that strictly adhere to the average evolution of the osculating orbit.
On the other hand, extending this kind of perturbation theory to higher orders shows that the
mean variation of the semimajor axis only vanishes up to second order of J2 effects. Because
the accuracy of a perturbation solution for a given time is essentially related to the truncation
order of the mean frequencies, and on account of the Lyapunov instability that is inherent
to Keplerian motion, the non-vanishing of the mean variation of the semimajor axis turns
the theory based on the purely periodic, mean-to-osculating transformation less accurate
for long-term propagation than classical perturbation approaches due to increasing errors in
the along-track direction. Therefore, there is not an always-best perturbation approach, and
the choice of the proper kind of perturbation theory must be done depending on the user’s
particular needs.
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For didactic purposes, the exposition avoids the use of implicit functions of the mean
anomaly and relies on a toy model in common orbital elements, which has been derived from
the J2 problem bymeans of usual expansions of the elliptic motion. Computing an analogous
theory in closed form requires to confront the solution of non-trivial integrals. Still, most of
the solutions of these integrals are already reported in the literature or can be approached
with known techniques of integral calculus. The computation of such kind of perturbation
solution is under development and will be published elsewhere when fully completed and
tested.
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