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Abstract

The research about harmonic analysis associated with Jacobi expansions carried out in Arenas et al.
(2020) and Arenas et al. (2022) is continued in this paper. Given the operator [J @p) = jp) _
where J(@P) is the three-term recurrence relation for the normalized Jacobi polynomials and [ is the
identity operator, we define the corresponding Littlewood—Paley—Stein g]((a’ﬂ )_functions associated with
it and we prove an equivalence of norms with weights for them. As a consequence, we deduce a result
for Laplace type multipliers.
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1. Introduction

We begin by setting some aspects of our context as in the previous papers [2,3]. For
o, B > —1, we take the sequences {an ﬁ)}neN and {b( ﬂ)}neN given by

a®h = 2 m+Dn+a+Dn+p+Dn+a+p+1)
" tatp+2 Cn+a+B+1D)2n+a+p+3)

geh 2 (@+D(B+1)
0 a+p+2\ a+p+3 "

@) _ g -
b n >
Cn+a+BRn+a+B+2) -

, n>=1,

’

and
B = p—«
S+ p+2
For each sequence { f(n)},>0, we define the operator {J (@p) f(n)},>0 by the relation

TP [y = a0 f =D+ f) +afP f+ 1), nz L,

and J@P £(0) = by*” £(0) + ag"" £ (1).
Defining the Jacobi polynomials {P,fa’ﬂ )(x)}nzo through Rodrigues’ formula (see [19, p. 67,
eq. (4.3.1)])

PP (x) = —(Zjln),"a DRCE TN e

{(1 — X +x)/3+n} .

it is well known that they are orthogonal on the interval [—1, 1] with respect to the measure
dpep(x) = (1 —x)*(1 +x)f dx.

Moreover, the sequence {p\*”(x)}n=0, given by piP(x) = w'™? PP (x) where

w@h — 1
" 122 21,11 0
Z\/(2n+a+ﬂ+l)n!F(n+a+ﬁ+l) .
24 P n+a+ DI+ +1) ° T
and
w @B 1 _\/ I'a+B+2)
O T R  anany VP T@+ DIGE+D’

is an orthonormal and complete system in L>([—1, 1], dg, ), and it satisfies that
J@B p@-B () = xpl*P(x), x e[-1,1].

Along this paper we will work with the operator
TP fm) =P = Df ),

where I denotes the identity operator, instead of J@# since the translated operator —J @A
is non-negative. In fact, the spectrum of J@#) is the interval [—1, 1], so that the spectrum of
—J@P is [0, 2].
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This paper continues in a natural way the study of harmonic analysis associated with 7 ©#)
of [2] and [3]. In [2] we carried out an exhaustive analysis of the heat semigroup for J®#
and in [3] we investigated the Riesz transform. The main aim of this paper is to study another
classical operator in harmonic analysis, the Littlewood—Paley—Stein gi-function.

For an appropriate sequence { f (11)},en and ¢ > 0, the heat semigroup associated with 7@
is defined by the identity

WP fy =Y oK (m, ),

m=0

where

1
K“P (. n) :/ =09 5@ B () p @B () d i ().
—1

(@)

Then, the Littlewood—Paley—Stein g, "’-functions in this context are given by
0 k 2 12
&) = ( / W ) dr) Lo k=z L (M
0

The history of g-functions goes back to the seminal paper by J. E. Littlewood and R. E. A.
C. Paley [12], published in 1937, where they introduced the g-function for the trigonometric
Fourier series. The extension to the Fourier transform on R” was given by E. M. Stein in [16]
more than twenty years later. He himself treated the question in a very abstract setting in [17].
In the last few years, there has been a deep research of these operators in different contexts
and considering weights. For example, for the Hankel transform they were studied in [6], for
Jacobi expansions in [13], for Laguerre expansions in [14], for Hermite expansions in [18],
and for Fourier—Bessel expansions in [8].

Our work on discrete harmonic analysis related to Jacobi polynomials pretends to be a
generalization of the work in [7] for the discrete Laplacian

Aaf)=fin =1 =2f(m)+ f(n+1), n €, @

and in [5] in the case of ultraspherical expansions, which corresponds to the case « = 8 =
A —1/2 of J@#) In both cases the corresponding g-functions were analysed (in [7] only for
k=1).

To present our main result we need to introduce some notation. A weight on N will be a
strictly positive sequence w = {w(n)},>0. We consider the weighted £”-spaces

00 1/p
(N, w) = {f = (S az0 2 1S leriw = (Z If(m)lpw(m)> < oo} :
m=0
1 < p < o0, and we simply write £7(N) when w(n) =1 for all n € N.
Furthermore, we say that a weight w belongs to the discrete Muckenhoupt A ,(N) class,
1 < p < oo, provided that

v - N 1/(171)>p_1
oiggm (m—n+1)p (; w(k)) (Z w(k) < 00,

n,meN k=n

holds.
The main result of this paper is the following one.

3
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Theorem 1.1. Letoa,f>—1/2, 1 <p <oo, keN, k>1, and w € A,(N). Then,

Cill fllerara < 18P Ollerasuy < Call Fller vy, f e M) NN, w), 3)
where Cy and C, are constants independent of f.

To prove this theorem we will start by showing that the second inequality in (3) implies
the first one. After two appropriate reductions, the former will be deduced from the case
(o, B) = (—1/2, —1/2) and k = 1 that we will obtain from discrete Calderén—Zygmund theory.

It is very common to define g;-functions in terms of the Poisson semigroup instead of the
heat semigroup. In our case the Poisson semigroup can be defined by subordination through
the identity

PP fn) = W(;‘ P fydu, t>0, @
f 12/(4u)
and then we have the g,(f”ﬁ )-function

. 172
g,i“’ﬁ’(fxn):( /0 - dr) . k=L

The following result will be a consequence of Theorem 1.1.

PP f(n)

atk

Corollary 1.2. Leta,f>—1/2, 1 <p <oo, keN, k>1, and w € A,(N). Then,

Cill fllerav < g Plleraiwy < Call £ e f e M) NN, w),
where C| and C, are constants independent of f.

We will prove this corollary by controlling the g(a #_function by a finite sum of g(a A

functions (see Lemma 4.2). This fact will follow from the subordination identity (4).

As an application of Theorem 1.1, we will prove the boundedness of some multipliers of
Laplace type for the discrete Fourier—Jacobi series. As it is well known, for each function
F e L*([—1, 1], dq, p) its Fourier-Jacobi coefficients are given by

cwP(F) = / F)piP () d i, p(x)

and

Fx) =) e (F)plyP(),

m=0

where the equality holds in L([—1, 1], diq,g). Moreover, {c,,? ﬁ)(F)}m>0 is a sequence in £2(N).
Conversely, for each sequence f € ¢2(N), the function

Fop(x) =Y fm)piP(x) )

belongs to L*([-1,1], d e p) and Parseval’s identity

I L2y = 1 FapllL2-1.11.d10 ) ©)
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holds. Moreover, c,(,‘f’ﬁ )(Fa, g) = f(m). An obvious consequence of (6) is the relation
o0 1
PIOHOE / FupGap® dptap).  f.g € O, @
m=0 -1

where F;, g is given by (5) and G, g is defined in a similar way.
Given a bounded function M defined on [0, 2], the multiplier associated with M is the
operator defined, initially on ¢2(N), by the identity

Ty f(n) = &P (MA — )F, p).

We say that T), is a Laplace type multiplier when
oo
M(x) = x/ e a(t)dt, x € [0, 2],
0

with a being a bounded function.

The Laplace type multipliers were introduced by Stein in [17, Ch. 2]. There, it is observed
that they verify [X*M® )| < Cy fork=0,1,... and x € [0, 2], and then form a subclass of
Marcinkiewicz multipliers. For the operators T); we have the following result.

Theorem 1.3. Let o, 8> —1/2, 1 < p < 00, and w € A,(N). Then,
1T fllerywy < CIS Nleraywy fe@M)NerN, w),
where C is a constant independent of f.

From the identity,

. X o0 .
X'V = —/ e Mt dt, x>0, yeR,
Ir'a—iy)Jo

we deduce the following corollary.

Corollary 1.4. Let o, 8 > —1/2, 1 < p < 00, and w € A,(N). Then,
I=T PN flleran < Clflerarwys— f € CA) NN, w),
where C is a constant independent of f.

The rest of the paper is organized as follows. Section 2 contains the proof of Theorem 1.1,
which relies on a transplantation theorem and the Calder6n—Zygmund theory. The proofs of
two propositions that are necessary to apply the Calderén—Zygmund theory are provided in
Section 3. Section 4 and Section 5 contain the proofs of Corollary 1.2 and Theorem 1.3,
respectively.

2. Proof of Theorem 1.1

For k € N and k > 1, we consider the Banach space

By ={f : (0, 00) = C measurable : || |, < oo},

00 12
||f||msk=</(; |f<r>|2r2k—‘dr) :

where
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ie., By = L? ((O, 00), 121 dt). Moreover, we take the operator

O Z FG S m. n),
with

ak
G4 m, n) = o —K*P(m, n)

— (=1 / (1 — 050 p @B () pP () d g ().
Then, it is clear that
s = |Gl s

A first tool to prove Theorem 1.1 is the following result about the ¢>-boundedness of the

g,({ “P)_functions.

Lemma 2.1. Let o, > —1/2, k € N, and k > 1. Then, for every f € 2(N),

I'Ck
g P2y = ( )Ilfllzz(N) ®)

Proof. For a sequence f e ¢2(N), it is satisfied that

G f(m) = (—1)F / (1 — 2 e 19 Fy 400 p“P (1) d i ()
= (=D - ~>"e—’“—'>Fa,ﬁ>.

Then, by using (6), we have

0 o)
a, - o —t(1—- 2
I oy = D / P (1 = e IR, )| dt
n=0 0

o0 oo )
:/0 S L ((ED Oy W
n=0
o) 1 5
:/ ﬂk—l/ (1 —x)* e 2V |F, 5(x)|” dpa,p(x)dt
0 —1
1 00
:/ (1 —x)2k|Fa,5(x)|2/ tzk_'e_z’(l_")dtdua,,g(x)
—1 0

rer (! 2 I'(2k)
= 22]( /;1 |Faa,3(x)| dl‘l’Ol,ﬂ(x) = 22k ”f”?Z(N)
and the proof is completed. [
Now, let us see that it is enough to prove the second inequality in (3).
Lemma 2.2. Leta,f>—1/2, 1 <p<oo, keN k>1, andwe A,(N). If

|ng P (Oller,wy < ClLf lleray,wys f e (NN er(N, w), )
6
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then the reverse inequality

I flleray,wy < Ci ||g(a ) (Ollerav,w)» f e NN erN, w), (10)
holds.

Proof. First, we have to observe that (9) implies

”g(a ﬁ)(f)”[p’(N,w/) < C”f”(gp’(N,w/)’ f € gz(N) N Ep/(N’ w/)’ (11)

where w’ = w™"/®~D and p’ is the conjugate exponent of p;i.e., 1/p +1/p’ = 1. Note that
weAyN)if we A,,(N). Now, polarizing the identity (8), for f, h € ¢%(N) we have

o) )

Z fm)h(n) =

F(Zk)

and, obv1ously,

Z fmh@m| < C Z g PP mg P ).

Taking h(n) = w'/?(n) fi(n) with fi € cy, the space of sequences having a finite number of
non-null terms, we deduce that

<C Z g P (Hg P WP fi)(n)

n=0

Z fmyw'?(n) fi(n)

n=0

=C Z g (P! w7 () g PP fi)(m)

< Cug("‘ﬁ Pllerarm g @ Fll ot 4.y
and, by (11),

B 1
”gl(ca Pw /pfl)”ﬂ”(N wy = Cllw rf; ler v,y = ISl vy-

So, we obtain the estimate

Z Fw P ) fim)| < CligE (Plleratanl fillyy @y < 00
and taklng the supremum over all f; € cgp such that | f l”g])’(N) < 1 the inequality (10) is
proved. O

In this way, we have reduced the proof of Theorem 1.1 to prove (9). Now, we proceed with
two new reductions. First, we are going to use a proper transplantation operator to deduce (9)
from the case (¢, B) = (—1/2,—1/2) for k > 1. Finally, we will see how to obtain (9) for
g,i_l/ >~1/2 ith k > 1 from the case k = 1. These reductions in the proof are inspired by the
work in [9].

For f € 2(N) and «, B,v,8 = —1/2 with («, B) # (y, §), we define the transplantation
operator

TV f(n) = Zf(m)K p(n, m)
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where

1
0
Klg(n,m) = / VO PSP (XY d ity 2varsapa(x).

This operator was analysed in [1], where an extension of a classical result from R. Askey [4]
was given. In fact, for «, 8, y,§ > —1/2 with (&, B) # (v, 8) and 1 < p < oo, it was proved
that

T S Flleravw < ClLF e feM)Ner(N, w),

with weights w € A,(N), and the analogous weak inequality from £Y(N, w) into £1°(N, w) for
weights in the A(N) class. It is clear that the transplantation operator can be extended to the
whole space £7(N, w) and, by a result due to Krivine (see [11, Theorem 1.f.14]), it is possible
to give, in an obvious way, a vector-valued extension of it to the space By, denoted by TZ:Z,
satisfying

”T ﬂf”ZB (N,w) = = C”f”gp (N,w)> f € E (N w)

for weights in A,(N), «, B, y,8 = —1/2 with (o, ) # (y,5), and 1 < p < 0.
In this way, for f € (*(N) and o, B > —1/2 with (a, B) # (—1/2, —1/2), we have

a, —1/2,=1/2) p—1/2,~1/2
Gl f =T G T, 21 (12)
Indeed, by a continuity argument we can consider sequences f in cg. Then,
G( 1/2, —1/2)T—1/2 —1/2f( )_ 9" W( 1/2, —1/2)T—1/2—1/2f( ) (13)
= Zf(m)ZG( VTG K TG m)
m=0

and, by using (7) and the identities
GE,—kl/l—l/Z)(j’ n) = (_1)kC§—1/2,—1/2)((1 _ .)ke—t(1—<)p’(1—l/2,—l/2))

and

K-l

P Gem) = T B P ),

we deduce that
o0

—1/2,—-1/2), . —1/2,—-1/2, .
S GG mK T Gom)

i
= (—l)k/ (1 — x)ke =0 pCI2=UD 00 p @By d g o174, 52174 (x).
-1

To justify the use of Fubini’s theorem in (13) we can use the bounds (see, respectively, [1,
Proposition 2.3] and [2, Lemma 4.4])

K—1/2—1/2 )< —
| Gl = T =

and

KDy <
1+1j—n|
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The interchange of summation with derivative is a consequence of the estimate

i
/ (1 —x)fe 0 pCV2=UD ) p P () d g o174, p/2-1/4(x)| < C.
-1

Applying a similar argument to the other composition, the proof of (12) follows.

Now, let us see that it is enough to analyse the g(fl/ *~12_function. In fact, using induction
we can deduce the boundedness of the g,(fl/ 2= functions for k > 1. Let us suppose
that the operator Gﬁfkl/z’*lm is bounded from ¢”(N, w) into Egk(N, w). Taking k = 1 and
applying Krivine’s theorem again, we deduce that the operator Gﬁ]l/ 2= Zfék N, w) —
€, 5, (N, w), given by

{fihszo — 4GP [}z,
is bounded. Moreover, G( 1/2.=172) G( V2=1/2) i a bounded operator from ¢7(N, w) into
ngxBI(N w). Now, from the Kolmogorov—Chapman type identity [2, Remark 3]

o0
KD m, mK &P (n, k) = K5 (m. k),
n=0

we can deduce the relation

9 (we-12-172 A 9 e 9! w1217
9t t 95k f 3 k+1 f

to obtain that
~(—1/2,—1/2) (— 1 2,—1/2)
” GE.I /2.-1/ 0 GC 12,1/ f

oo oo
:/ / 21
0 0
oo o0
= f / t(r — 1)1
0 t
00 +
/o

= 2k + D2k /0
2
__@gWAmUQ
(2k + 1)(2k)

Finally, to complete the proof of Theorem 1.1 we have to prove (9) for (o, ) =
(—1/2,—1/2) and k = 1. This fact will be a consequence of the following propositions.

u=s+t

]BkXBl

ak+

1 2
—1/2,-1/2

u=s-+t
1 2
WW( 172, 71/2)f drdt

2

u=r

/ tr —0* Ydrdr
0

2

k 1
(=1/2,-1/2)
arkJer f

3k+1
8 k+1

o0
2%k+1 W( 1/2.-1/2) ¢

Proposition 2.3. Let n,m € N with n %= m. Then,

1G> m, mlls, < Cln—m| ™" (14)
Moreover
1G>, s, < C. (15)
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Proposition 2.4. Let n, m € N with n # m. Then,
1G22+ 1.m) = G P s, < Cln—m|
and
1G> m,n + 1) — G272 an ), < Cln —m| ™2

The proof of these propositions is the most delicate part of the proof of Theorem 1.1, so it
is postponed to the next section.
Now, using the decomposition

—1/2,—-1/2
g P )

[e9]

< 1> 1G> P )|+ | renG T P
m=0 By
m#n B,

= Tif(n) + T2 (),

we can apply (14) of Propositions 2.3, 2.4, and Lemma 2.1 to deduce from the Calderén—
Zygmund theory the inequality

Ty flleravwy < CIf lleray,w)s

and (15) to obtain that

1T fllerawy < CIf llerayw)s

finishing the proof of Theorem 1.1.

3. Proof of Propositions 2.3 and 2.4

Denoting by 7, the Chebyshev polynomials, we have

2 2
py AT (x) = || S Th(x) = || = cos(nd),
T b g

for n # 0 and where x = cos#é, and p(()fl/z’fl/z)(x) = \/;To(x) = \/; Then, the identity
(see [15, p. 456])
1 [T .
— / e°%% cos(mb) do = 1,,(2), |arg(z)| < 7,
T Jo

where [, denotes the Bessel function of imaginary argument and order m, implies

KI(—I/Z,—I/Z)(Wh n)= e_t(Iern(l) + Li_wm(2)), n,m #0, (16)

KT m, 0) = V2e T 1y (0), and K 27VP0,n) = V2 L), (17)
To simplify notation, we set R,(n) = e~ I,(¢).
The proofs of Propositions 2.3 and 2.4 follow the ideas in [7] and [5]. In particular, being

k+y
%) =

1
/ eft(l+s)(1 _ s)k+a(1 +S)k+ﬂ dS,
-1

10

2k+y
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we will apply the estimate
a I'k+1)
17 “Plls, < C———r,
(k + DF-2v
with C a constant independent of k and where k € N and «, 8, y € R verify the restrictions

k+2y+1>B>y,k+a+1>0,and k4 B+ 1 > 0. This result is [5, Lemma 4.1] in our
context.

(18)

Proof of Proposition 2.3. The identities [10, eq. (5.7.9)]
20(0) = Ly (1) + Lioa(t),  n>1,
and Ij(t) = I,(z) yield

% = %(Rz(n +1) —=2R(n) + Ri(n — 1)), n>1, (19)
and
812,:0) = R,(1) — R,(0). (20

The next identity is known as Schlifli’s integral representation of Poisson type for modified
Bessel functions (see [10, eq. (5.10.22)]):

Fad . 1
I,(z) = “E(1 = 5?2 ds, , S— 21
@ ﬁzvmﬂ/z)/le (1=s"""2ds, Jargzl <, v>—2. @D
Integrating by parts once and twice in (21), we have, respectively, the identities
v—1 1
2z 1
IU — _ —z8 1— 2 1)—3/2d , -, 22
@=-reoiy ), ¢ ) S 22)
and
1 3
L) = < TP, v (23)

20720 (v —3/2) 2’
Then, from (19), using (21), (22), and (23) withv=n—1,v =n, and v = n+ 1, respectively,
we deduce that for n > 1

dR;(n) 1 —1/2 3/2 0,1/2,3/2 0.1/2.1/2
= I t 1 t 1)].
dt 2ﬁr(n—1/z)( ()+2"2 © - 2"2 @
Applying (18) for n > 3 we have
iR (F(n) (=1 I'n— 1)) e o
o g, = Ti—1/2\ w2 T 172

n

where we have used that I'(n +a)/I'(n + b) ~ n%? in the last step.

Now, we prove that
HaRt(O) IR, (1)

at

n H IR(2)
B, B, ot

By Minkowski’s integral inequality, it is clear that

aRz(O) i /ﬂ e—t(l—cos@) do
ot 0

<C. (25)

B

1
_71

By
11
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1

T

T
/ e 11— _ cos0) db
0

By

< l/ (1 —cos®) e =] do < C.
T Jo 1

Similarly, we obtain the bounds for algt(l) and % and the proof of (25) is finished.
Finally, using (16), (17), (24), (25), and the identity

1_,(1) = 1(1), (26)

we conclude the proof of the proposition. [

Proof of Proposition 2.4. By using (16), (17), and (26), the proof will follow from the estimate

0 C
HE(RZ(H +D-RMm)| = for n # 0. (27)
By
Using (19), we have
0 1
E(R’(n D= Rm)=Z(R(n + 2) =3R(n+ 1)+ 3R, (n) — Ri(n — 1)). (28)
Integrating by parts three times in (21) gives
Zv—3
1,(z2) = — 29
&= T 5/ 29)
1 2,2 3 3 5
X / e_ZS S(SLZSZ—F)(I — SZ)V—7/2 ds’ V> 5
~1

Then, using (21), (22), (23), and (29) withv =n—-1,v=n,v=n+1,and v =n + 2,
respectively, for n > 5 (28) becomes

—1
27l (n — 1/2)
% <IO’_11/2’5/2(t)+ IO 1/2 5/2(t) 01/2 3/2(t)

%(Rz(” + 1) —Rin) =

n

3 10-3/2.5/2 10-3/2.3/2
*_4 n—3 () 4 n 3 0) .
In this way, by using (18), we deduce (27) for n > 5. The remainder cases can be analysed as
(25) in the previous proposition to obtain that
d
E(Rz(n +D—-RMm)| =C, n=1273,4,
B

and the proof is finished. O

4. Proof of Corollary 1.2
First, it is easy to check that
PP fny =" fmKP (m, n),

m=0
12
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with

1
ICE“’ﬂ)(m, n) = / eft«/ﬂpfg.ﬂ)(x)pl(la,ﬁ)(x) dite,g(x).

Then, we have the following result for the g(a P _function which is the analogue of Lemma 2.1.

Lemma 4.1. Let o, > —1/2, k€ N, and k > 1. Then,

. Ik
g (o, = ( ) 5 1 2 (30)

This lemma can be proved following step by step the proof of Lemma 2.1, so we omit the
details. Now, using polarization for f, h € £>(N) we deduce the identity

ak
Zf( ) ( )_ F(zk) 2k 1 ( P(Ot ﬂ)f( )) < P(Cl ﬂ)h(n)> dt

ark
From this fact, we obtain the mequahty
1 lerasmy < Clg™ llergim
from the direct inequality

o () leramy < CULS Nleraw) 31)

as we did in the proof of Theorem 1.1. Finally, inequality (31) is an immediate consequence
of the following lemma.

Lemma 4.2. Let o, 8 > —1. Then
[k/2]

(otﬂ)(f) < ZAkjg(Olﬂ)(f)

j=0

where Ay j are some constants and [-] denotes the floor function.
Proof. First, we observe that
(k/2] k—j k—2j
8" 12 d e
B —_—
9k ( Z kj agk—i )S=fT2 (du)k—i
for some constants Bk,_,-. Then, from (4), we have

s | 2 o0 -
P“ B —
3lk f() «/—Z k]f \/_(8](/ s

and, by Minkowski’s integral inequality,

k=2
- du
2 (4u)k—J

[k/2]
g P () <Y B Pin)
j=0
where
Pji(n)

13
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) 12

% gi—4j1 9+ Wweh
& f(n) dt du.

dsk—i s

=7 ), |

Now, by using an appropriate change of variables, we have

_ 2
“du

2 1/2
RO S eI (BRI
Py =—= | ﬁ</0 R R ds) du
|
fif)(f)(n)

and the result follows. [

5. Proof of Theorem 1.3
We need only prove that

g (Tu ) < Cgy"" (), (32)
since by Theorem 1.1 we get that

1 Tas fllera,wy < C||gla ﬁ)(TMf)”(Z!’(N w) < C||8(a ﬂ)(f)HZI’(N,w) < Cll fllerw)-

Moreover, it is enough to prove (32) for sequences f € cop. First, we have

Ty f(n)=— /0 a(s)—~ W‘“ﬂ)f(n)ds

which is an elementary consequence of the relation

1
/ M1 = x)p&P(x)p® P (x) d g, p(x)
-1
= / a(s) / (1 —x)e T p@P ) pl P (x) d g p(x) ds

oo
= _/ a(s)—/ e I peP ) pP(x) dag p(x) ds.
0 as J_
Then, applying the semigroup property of W,(O"’S ) we obtain

WD Ty ) = — /000 a(s)_Wc(if) f(n)ds

and hence,

0 00 .

EW’( ,ﬂ)(TMf)(n) = _/(; a(s) Ws(+rﬂ)f(n)ds

[o.¢]
= _/ a(s) Ws(irﬂ)f(n)ds
0

In this way,

inw,w(TMf)(n) <C /OOS (a B f(n )

at - p 8 2

[ee) 2 1/2
=cr” ([ 952 W(a ﬂ)f(n) ds) .
t

14
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Finally,

* |9
@ (Ty () = / o — W ‘”(TMf)(m dt
2
< Cf / W(“’S)f(n) dsdt

2

S WEPfm)| ds = Cgy™" fm))?

:C/s
0

ds2

and the proof of (32) is completed.
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