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Abstract: In waste recycling plants, measuring the waste volume and weight at the beginning

of the treatment process is key for a better management of resources. This task can be conducted

by using orthophoto images, but it is necessary to remove from those images the objects that are

not involved in the measurement process such as containers or trucks. This work proposes the

application of deep learning for the semantic segmentation of those irrelevant objects. Several deep

architectures are trained and compared, while three semi-supervised learning methods (PseudoLa-

beling, Distillation and Ensemble Distillation) are proposed to take advantage of non-annotated
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images. In these experiments, the U-net++ architecture with an EfficientNetB3 backbone, trained

with the set of labelled images, achieves the best overall multi Dice score of 91.48%. The appli-

cation of semi-supervised learning methods further boosts the segmentation accuracy in a range

between 1.82% and 3.92%, on average.

Keywords: Waste management, Deep Learning, Semi-Supervised Learning, Semantic Segmen-
tation, Orthophoto
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1 Introduction

As nations and cities become more populated and prosperous, offer more products and
services to citizens, and participate in global trade and exchange, they face corresponding
amounts of waste to manage through treatment and disposal. By 2050, the world is ex-
pected to generate 3.40 billion tons of waste annually, increasing drastically from today’s
2.01 billion tons [Kaza et al., 2018]. Therefore, efficient recycling strategies are critical
to reduce the devastating environmental effects of rising waste production [Bashkirova
et al., 2021]. In this context, waste recycling plants are central since, in these plants, the
collected recyclable waste is sorted into separate bales of plastic, paper, metal and glass.

In order to achieve a better management of resources in waste recycling plants, a key
indicator is the waste volume and weight at the beginning of the treatment process. This
measurement can be performed by using orthophoto images (that is, aerial images that
have been geometrically corrected such that their scale is uniform and true distances can
be measured) [Ortenzi et al., 2021]; however, it is necessary to process those images to
identify and discard objects (like containers or trucks) that might appear in the image,
but should not be taken into account in the measurement process — this task is known
as object removal, and plays a key role as a pre-processing step to measure properties
of objects in images [Pally and Samadi, 2022]. This issue can be faced by means of
semantic segmentation algorithms that serve to classify every pixel of an image among
target classes of interest [Gonzalez et al., 2002]. Currently, semantic segmentation tasks
are mainly tackled by using deep learning methods [LeCun et al., 2015].

Deep learning has many applications in waste management including waste classifi-
cation [Huang et al., 2020, Meng and Chu, 2020], waste object localisation in outdoor
scenarios [Sousa et al., 2019, Proença and Simões, 2020], waste detection and segmenta-
tion in materials recovery facilities [Bashkirova et al., 2021], or recognising composition
of construction waste mixtures [Lu et al., 2022]. Deep learning methods have been
recently used for classifying and detecting objects in waste recycling facilities. For in-
stance, in [Yang et al., 2022], the YOLO object detection algorithm was used to detect
electrical and electronic equipment that contain lithium batteries since they have to be
processed differently on waste disposal plants; and, two classifiers were combined to
classify recyclables and distinguish types of plastics in [Vogiatzis et al., 2021]. There are
also a few works that deal with semantic segmentation tasks in waste recycling facilities.
Namely, [Bchir et al., 2021] employed a DeepLabv3+ model to segment Polyethylene
Terephthalate objects automatically; and, [Sievert, 2021] conducted a comparison of in-
stance segmentation models to guide unmanned vehicles for autonomous litter collection.
Finally, the Visual Domain Adaptation 2022 Challenge was recently released with the
aim of developing models for automatically industrial waste sorting [Bashkirova et al.,
2022].
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However, and up to the best of our knowledge, deep learning methods have not been
used for segmenting objects in actual waste recycling plants. One of the main challenges
for successfully applying deep learning methods is the necessity of a great amount of
images that must be manually annotated. Such an annotation process is a tedious and
time-consuming task that can take several hours or even days [Lin et al., 2014, Li et al.,
2020]. In order to reduce such a burden, close-transfer learning [Razavian et al., 2014]
and semi-supervised methods [Zhu and Goldberg, 2009] can be applied. The former
methods use the knowledge learned on a close task where acquiring images in easier
than in the final task; whereas, the latter methods take advantage of both labelled and
unlabelled data. These two approaches have been studied in this work. Namely, we are
focused on combining close-transfer techniques and semi-supervised learning methods
with deep learning models to produce the exact segmentation of objects that appear in
orthophotos of recycling plants, but that should be removed to precisely measure waste
volumes. The original contribution of this paper is threefold:

– The analysis of a close-domain transfer learning approach and three semi-supervised
learning models to deal with the small size of the annotated dataset by taking advan-
tage of raw images and unlabelled orthophoto images.

– A detailed comparison of several state-of-the-art deep neural networks for semantic
segmentation (both architectures and backbones) for processing orthophoto images.

– A statistical analysis to identify whether there are significant differences among the
studied deep learning models and the semi-supervised learning methods.

As a result, this paper demonstrates that using a semi-supervised learning technique
allows us to successfully train segmentation models, substantially reducing the effort
required to annotate many images. Then, the comparison of the networks shows that the
U-net++ architecture with the EfficientNetB3 backbone achieves the best performance in
segmentation accuracy. In this case, the multi Dice score is equal to 91.65%. This result
confirms that orthophoto images can be effectively processed to segment the environment
of recycling plants and find objects of interest. This step will enable the use of orthophoto
images for measuring waste volume with a higher precision.

The rest of the paper is organised as follows: the first section onMaterials andMethods
describes the input datasets, the semantic segmentation models, the semi-supervised
learning methods and the way results are evaluated and compared; the Experimental
Result section presents the outcomes of the tests; and, the last section ends the manuscript
with final comments and remarks on future activities.

2 Materials and methods

2.1 Input dataset

This paper tackles the problem of image segmentation from orthophoto images captured
in a recycling plant. Within these lines, the automatic segmentation of orthophoto images
is achieved by representing them in more descriptive and discriminative feature spaces,
learned from actual images, where pixels having similar semantic attributes can be
grouped and labelled in different classes. A set of annotated images is thus required
to allow the training of the models. At the same time, additional annotated images are
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Figure 1: Sample orthophoto image and corresponding annotated image. black pixels

belong to the class person, yellow to the container class, red to the forklift class, green

to the truck class, and black to background

needed to evaluate the classification results on a ground truth. These two sets of images
(training and test sets) form the annotated dataset.

The annotated dataset is made of 49 manually-labelled colour images acquired by
a Safire IP 8MPx camera with a focal of 2.8mm in a recycling plant in Spain. In order
to construct the orthophotos, 10 images of resolution 2560 × 1440 pixels were taken
and combined using the ODM technology through the PyODM library [OpenDroneMap
project, 2021]. The orthophoto images have a resolution of 1526×1468 pixels, and were
manually annotated using the Labelme tool [Wada et al., 2021] as shown in Figure 1. The
annotation aims to separate five classes of interest: person (black segments), container
(yellow segments), forklift (red segments), truck (green segments), and background (black
segments). All the images were taken from the same facility, but there is a considerable
variability in the images since they are taken on different days and with different amounts
of waste. Namely, the number and position of containers in the images varies from image
to image; besides, the amount of waste in them changes from image to image. Similarly,
the number of people and their position changes from image to image. Finally, the two
classes of objects with most variability are forklift and truck since the generation of the
orthophotos deforms those objects in the images.

The manual annotation of images is a time-demanding and tedious task. Although the
acquisitions provide many images, the annotation has been limited to the representative
subset of 49 images described previously. However, there are 322 further orthophoto
images, not-labelled but acquired under the same experimental conditions. These or-
thophoto images will tune the training of the networks through the implementation of
three semi-supervised approaches. The network architectures and the semi-supervised
algorithms will be detailed in the following subsection.

2.2 Semantic segmentation models

As stated in the previous section, the 49 labelled orthophoto images, randomly splitted into
training sets (39 images) and test sets (10 images) using a 5-fold cross-validation approach,
were used to set up and evaluate the deep segmentation architectures (see Table 1 for
the number of objects in each dataset). From the training set, several deep-learning
segmentation algorithms were fine-tuned [Razavian et al., 2014]. Namely, 7 architectures
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Person Container Forklift Truck

Training set 1 34 296 38 10

Test set 1 8 75 9 2

Training set 2 32 297 38 9

Test set 2 10 74 9 3

Training set 3 32 293 38 11

Test set 3 10 78 9 1

Training set 4 32 292 37 11

Test set 4 10 79 10 1

Training set 5 38 306 37 7

Test set 5 4 65 10 5

Table 1: Number of objects of interest in the training and test sets

were trained, they are summarised in Table 2 — we fixed a seed for reproducibility and
train each model just once. For training, we used the libraries PyTorch [Paszke et al.,
2019] and FastAI [Howard and Gugger, 2020]; and using a GPU Nvidia RTX 2080 Ti.
The procedure presented in [Howard and Gugger, 2020] was employed to set the learning
rate for the different architectures, the learning rate for the first layers of the models
was fixed to 1e-4, and for the last layers of the models to 1e-3. Also, early stopping was
applied in all the architectures to avoid overfitting (validation loss was monitored and
the training process stopped when such a validation loss did not improve after 5 epochs).
As a result of the training process, several models were produced that can be used for
inference by providing them a natural image as input. Then, the models will output the
mask associated with the segmentation.

In addition, we have applied a close transfer-learning approach for training our
models. When applying transfer learning, it is well-known the importance of using a
source task that is as close as possible to the target task [Mensink et al., 2021]. Therefore,
we have used 404 raw images that were used to construct the orthophotos of the training
set (390 images were used to generate the 39 ortophoto images of the training dataset,
and the other 14 raw images were introduced to increase the variability of the dataset,
but were not used for generating orthophoto images). These 404 images were manually
annotated, and used to train the models from Table 2 — annotating raw images in easier
than annotating orthophoto images due to the distortions that might appear in the latter
images. Subsequently, those models were used as starting point to train the same models
but using the orthophoto images.

Using a 5-fold cross-validation approach, all the models were then evaluated on the
test set of 10 annotated orthophoto images using the multi-class Dice score [Opitz and
Burst, 2019]. This metric is defined using the precision, Pi, and recall, Ri, values for
each class defined as:

Pi =
mii∑n

x=1 mix
, Ri =

mii∑n
x=1 mxi

where n is the number of classes, andmjk for j = 1, . . . , n and k = 1, . . . , n is the total
number of pixels predicted as classj , whose actual label is classk. From the precision
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Architecture Backbones

Bisenet Resnet18, Resnet34

Deeplabv3+ Resnet50, Resnext50, EfficientNetB3

HRNet w30

Manet Resnet50, Resnext50, EfficientNetB3

PAN Resnet50, Resnext50, EfficientNetB3

U-net Resnet50, Resnest50, EfficientNetB3

U-net++ Resnet50, Resnest50, EfficientNetB3

Table 2: Segmentation architectures and the backbones employed in this work

and recall values, the multi-class Dice score is defined as follows:

MultiDice =
1

n

n∑
i=1

2PiRi

Pi +Ri

2.3 Semi-supervised learning methods

In order to take advantage of the unlabelled images, 3 semi-supervised learning ap-
proaches were employed. Namely, we have employed PseudoLabeling [Lee, 2013],
Distillation [Hinton et al., 2015], and Ensemble Distillation [Bucila et al., 2006] — the
latter method is also known as Model Distillation.

The PseudoLabeling approach consists of two steps; first, we employ a model trained
on a manually labelled dataset to make predictions in an unlabelled dataset; secondly, the
manually and automatically-labelled datasets are combined to train a newmodel using the
same architecture employed in the original model. We have applied the PseudoLabeling
approach to all the architectures presented in the previous section; and, the initial model
was trained with the close-transfer learning approach.

The Distillation approach is similar to the PseudoLabeling approach, but in the
second step, the model might have a different underlying architecture than the model
employed for the first step. In our case, we have trained several models using the training
procedure presented in the previous section, and selected the best model for generating
the automatically-labelled dataset. Furthermore, we have used the combination of the
manually and automatically-labelled datasets to train all the architectures presented in
the previous section.

Finally, Ensemble Distillation differs from the Distillation approach in the way of
producing the automatically labelled dataset; namely, instead of using a single model
for making predictions in an unlabelled dataset, the predictions are generated from an
ensemble of models. In this work, we have employed the 5 models with the highest total
multi Dice score for producing the predictions on the unlabelled dataset; and, as in the
previous approaches, the manually and automatically-labelled datasets were used to train
all the architectures presented in the previous section.

3 Experimental Results

The performance of the trained networks (both by applying and without applying the semi-
supervised learning methods) was evaluated using a 5-fold cross-validation approach
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Model Baseline Close-Transfer Pseudolabel Distillation Ensemble distillation

Bisenet-Resnet18 52.07 (11.82) 87.52 (0.36) 87.48 (0.47) 88.41 (0.4) 88.39 (0.12)

Bisenet-Resnet34 51.74 (13.58) 86.91 (0.33) 86.65 (0.72) 87.68 (0.4) 88.12 (0.34)

Deeplabv3+-Resnet50 72.06 (6.83) 90.05 (0.07) 89.74 (0.23) 90.06 (0.37) 90.0 (0.3)

Deeplabv3+-Resnext50 74.82 (6.9) 89.0 (0.16) 89.73 (0.23) 90.27 (0.16) 89.54 (0.17)

Deeplabv3+-EfficientNetB3 73.15 (5.84) 90.27 (0.2) 90.17 (0.33) 90.47 (0.17) 90.37 (0.46)

HRNet-w30 48.89 (13.68) 85.51 (6.81) 84.23 (7.25) 90.64 (0.54) 90.58 (0.18)

Manet-Resnet50 63.28 (12.59) 66.33 (5.66) 68.81 (1.08) 81.69 (9.52) 81.31 (9.32)

Manet-Resnest50 57.01 (11.27) 80.06 (7.93) 89.58 (0.5) 87.26 (7.68) 90.5 (0.72)

Manet-EfficientNetB3 68.06 (11.35) 56.17 (0.45) 55.48 (16.63) 64.38 (6.32) 59.08 (4.46)

PAN-Resnet50 66.87 (9.38) 72.24 (6.23) 76.0 (7.47) 76.83 (8.53) 64.1 (3.99)

PAN-Resnext50 64.84 (17.86) 48.43 (0.94) 54.33 (4.65) 60.62 (5.78) 62.68 (8.43)

PAN-EfficientNetB3 68.83 (7.14) 68.06 (0.44) 81.13 (0.01) 82.64 (7.18) 85.57 (1.03)

U-net-Resnet50 70.11 (0.59) 89.22 (0.75) 89.85 (0.25) 90.65 (0.16) 90.63 (0.53)

U-net-Resnest50 72.27 (3.83) 86.82 (1.39) 85.31 (1.11) 83.19 (8.67) 89.95 (0.44)

U-net-EfficientNetB3 73.58 (5.62) 90.66 (0.29) 90.68 (0.16) 91.03 (0.18) 91.06 (0.4)

U-net++-Resnet50 73.89 (6.13) 89.8 (0.48) 90.28 (0.18) 90.64 (0.2) 90.73 (0.19)

U-net++-Resnest50 74.15 (6.88) 90.36 (0.14) 90.54 (0.08) 91.11 (0.29) 90.73 (0.21)

U-net++-EfficientNetB3 79.12 (6.87) 90.93 (0.27) 91.2 (0.16) 91.35 (0.15) 91.48 (0.3)

Table 3: Mean (std) multi Dice score from the application of the different learning
procedures. The result in bold is the best

with independent test sets that consist of 10 orthophoto images.
All the models trained only with the manually labelled orthophoto images (from

now on, we will refer to this approach as baseline) achieved a multi Dice score under
80%, and only the model trained with the U-net++ architecture and the EfficientNetB3
backbone obtained a multi Dice score over 75%, see Table 3.

The results can be considerably improved by applying the close-transfer learning
approach, see Table 3. Namely, some models improved more than a 35%, and on av-
erage a 14.09%. If the segmentation networks are compared, there are five networks
(Deeplabv3+-Resnet50, Deeplabv3+-EfficientNetB3, U-net-EfficientNetB3, U-net++-
Resnest50 and U-net++-EfficientNetB3) with a total multi Dice score over 90%. Among
them, the U-net++ architecture together with the EfficientNetB3 backbone showed better
segmentation accuracy than the other networks. Namely, this model achieved a multi
Dice score of 90.93%, and the improvement regarding its baseline counterpart is shown
in Figure 2.

The impact of the different semi-supervised learningmethods for the studied networks
is also shown in Table 3. With more details, the Distillation approach produces a mean
improvement of 3.92% (with a standard deviation of 5.46%). Only one network get worse
results using this training approach while, in some cases, namely for the Manet-Resnet50
model, the improvement is over 15%, see Figure 3. Similarly, the PseudoLabelingmethod
produces a mean improvement of 1.82% (with a standard deviation of 3.93%), with
seven networks having worse results. Finally, the Ensemble Distillation method also
considerably improves the performance of the models (a mean of 3.69% with a standard
deviation of 6.48%).

In our analysis, we can see that there are some architectures that generally perform
better than the others independently of the trainingmethod. The architectures that obtained
worse results were two architectures based on the attention mechanism: PAN [Li et al.,
2018] and Manet [Li et al., 2021]. This kind of network requires more images to be
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(a) (b)

(c) (d)

Figure 2: Example of the segmentation results using the U-net++-EfficientNetB3 model

trained with the baseline and close-transfer approaches. (a) Input image, (b) Ground

truth, (c) Baseline model, (d) Close-transfer model

trained properly [Dosovitskiy et al., 2021], and unfortunately we are working with a
small dataset. The other architectures are based on convolutional neural networks, and
obtained better results; however, we can also notice some differences among them. The
Bisenet models obtained worse results due to the size of their backbones (Resnet18 and
Resnet34) that are smaller than other backbones such as Resnet50 or EfficientNetB3. In
the case of the U-net models, the U-net++ version achieved a higher performance due to
the several improvements introduced in this new version of the U-net architecture [Zhou
et al., 2018]. Finally, the DeepLabv3, HRNet, and U-net++ obtained similar results
independently of the selected backbone.

In addition to searching for the best performing model, we have conducted a statistical
study to determine whether the results obtained with the different training approaches are
statistically significant. To this aim, several null hypothesis tests have been performed us-
ing the methodology presented in [Garcia et al., 2010, Sheskin, 2011]. In order to choose
between a parametric or a non-parametric test to compare the models, we check three
conditions: independence, normality and heteroscedasticity — the use of a parametric
test is only appropriate when the three conditions are satisfied [Garcia et al., 2010].

In this study, the independence condition is fulfilled since each semi-supervised
learning approach is independent of the others. We use the Shapiro-Wilk test [Shapiron
and Wilk, 1965] to check normality — with the null hypothesis being that the data follow
a normal distribution — and, a Levene test [Levene, 1960] to check heteroscedasticity
— with the null hypothesis being that the results are heteroscedastic. Since we compare
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Example of the segmentation results using the semi-supervised learning

approaches with the U-net-Resnet50 model. (a) Input image, (b) Ground truth, (c)

Close-transfer model, (d) Distillation, (e) PseudoLabelling, (f) Ensemble Distillation

more than two training approaches, we will employ an ANOVA test if the parametric
conditions are fulfilled, and a Friedman test otherwise [Sheskin, 2011]. In both cases, the
null hypothesis will be that all the models have the same performance. Once the test for
checking whether a model is statistically better than the others is conducted, a post-hoc
procedure is employed to address the multiple hypothesis testing among the different
models. A Holm post-hoc procedure [Holm, 1979], in the non-parametric case, or a
Bonferroni-Dunn post-hoc procedure [Sheskin, 2011], in the parametric case, is used for
detecting significance of the multiple comparisons [Garcia et al., 2010, Sheskin, 2011]
and the p values should be corrected and adjusted. We have performed our experimental
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analysis with a level of confidence equal to 0.05. In addition, the size effect has been
measured using Cohen’s d [Cohen, 1969] and Eta Squared [Cohen, 1973].

In our study, and since the normality condition was not fulfilled (Shapiro-Wilk’s test
W=0.818257; p < 0.001), a Friedman’s non-parametric test was employed to compare
the training procedures. Friedman’s test performed a ranking of the training procedures
under comparison (see Table 4), assuming as null hypothesis that all the models have the
same performance. In this case, significant differences arise (F = 19.05; p = 1.51e−10)
with a large size effect Eta Squared 0.29. The Distillation method produced the best
models.

Technique Dice score Friedman’s test average ranking

Distillation 84.94 (8.89) 4.28

Ensemble distillation 84.71 (10.48) 4.06

Pseudolabel 82.84 (11.40) 2.72

Close-Transfer 81.02 (12.75) 2.39

Baseline 66.96 (8.68) 1.55

Table 4: Friedman’s test for the Dice score of the segmentation models

In Table 5, we show the results of the application of the Holm post-hoc procedure to
compare the control training procedure (winner, based on distillation) with all the other
training approaches, adjusting the p-value. Results prove significant differences between
the semi-supervised learning procedures and the plain training approaches, while all
the semi-supervised learning methods produce similar outcomes. The size effect is also
taken into account using Cohen’s d, and, as shown in Table 5; and, it is large size when
the winning approach is compared with the plain training approach.

Technique Z value p value adjusted p value Cohen’s d

Baseline 5.16 2.40e-07 9.61e-07 1.99

Close-Transfer 3.58 0.0003 0.0010 0.35

Pseudolabel 2.95 0.0031 0.0063 0.20

Ensemble distillation 0.42 0.6733 0.6733 0.02

Table 5: Adjusted p-values with Holm and Cohen’s d. Control technique: Distillation

4 Conclusion and further work

In this work, we have presented an approach to identify irrelevant objects in a waste
recycling plant from ortophoto images. Our method was based on training several deep
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learning models for segmenting those irrelevant objects — this approach achieved a
multi Dice score of approximatelly 80%. The main limitation of such an approach
was the reduced number of available annotated ortophoto images. This drawback was
tackled using two different approaches: a close transfer learning method, and several
semi-supervised learning techniques. The former used semantic segmentation models
pre-trained on raw images, that are easier to annotate than orthophoto images. Thanks to
that pre-training stage, the performance of our model improved up to a 90.93%. Finally,
the application of semi-supervised learning methods further boosted multi Dice score in
a range between 1.82% and 3.92%, on average. Therefore, we have presented several
methods to improve segmentation accuracy by taking advantage of raw images and
unlabelled orthophoto images, thus avoiding the need for a large dataset of labelled
images, whose annotation can be time-demanding.

For further work, we plan to use the developed models to remove the irrelevant
objects from the images, and then use those images to predict the waste volume and
weight at the beginning of the treatment process in waste recycling plants.
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