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Abstract

We obtain the bosonic D-brane description of toroidally compactified non-trivial M2-branes with the 
unique property of having a purely discrete supersymmetric regularized spectrum with finite multiplicity. As 
a byproduct, we generalize the previous Hamiltonian formulation to describe a M2-brane on a completely 
general constant quantized background C3 denoted by us as CM2-brane. We show that under this condition, 
the theory is equivalent to a more restricted one, denoted as an M2-brane with C± fluxes, which has been 
shown to have good quantum behavior. As a result, the spectral properties of both sectors must be the same. 
We then obtain its bosonic D-brane description and discover new symmetries. We find that it contains a new 
symplectic gauge field in addition to the expected U(1) Dirac-Born-Infeld gauge symmetry and a nontrivial 
U(1) associated with the presence of 2-form fluxes. Its bundle description takes on a new structure in the 
form of a twisted torus bundle. By turning off some of the fields, the D-brane description of other toroidally 
nontrivial M2-brane sectors can be obtained from this one. The possibility of reinterpreting these sectors 
in terms of Dp-brane bound states is discussed. These D-brane descriptions constitute String theory sectors 
with a quantum consistent uplift to M-theory.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Supermembrane theory was originally expected to describe the microscopic degrees of 
freedom of M-theory, however when formulated on 11D Minkowski background it has a continu-

* Corresponding author.
E-mail address: maria.garciadelmoral@uantof.cl (M.P. Garcia del Moral).

1 These authors have contributed equally to this work.
https://doi.org/10.1016/j.nuclphysb.2021.115636
0550-3213/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2021.115636&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2021.115636
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:maria.garciadelmoral@uantof.cl
https://doi.org/10.1016/j.nuclphysb.2021.115636
http://creativecommons.org/licenses/by/4.0/


M.P. Garcia del Moral and C. Las Heras Nuclear Physics B 974 (2022) 115636
ous spectrum from [0, +∞) [1,2]. This behavior does not change just by circle compactifications 
[3]. The continuity of the spectrum represents an obstruction to interpreting the M2-brane as a 
fundamental object. Indeed, it led to the formulation of the matrix theory conjecture [4] where 
the supermembrane was interpreted as a second quantized theory. In [5], a new topological con-
dition was found associated to the presence of a non trivial U(1) bundle on the worldvolume 
of the supermembrane induced by an irreducible wrapping. In [6], its Hamiltonian formulation 
was found. The spectrum of the regularized supersymmetric theory was rigorously shown to be 
purely discrete, with finite multiplicity [7] in distinction to the general case. This sector was 
denoted as Supermembrane (i.e. M2-brane) with central charges, since the topological term as-
sociated to an irreducible wrapping induces the presence of a non-vanishing central charge in the 
supersymmetric algebra. It has been formulated for different target spaces [8–10].

Other sectors of the M2-brane with good quantum properties have also been identified: the 
M2-brane on a pp-wave background [11,12] whose regularization is described by the BMN 
matrix model [13] and its spectral properties proved in [14], as well as a toroidally compact-
ified M2-brane in the presence of a quantized constant three-form that induces worldvolume 
2-form fluxes [15]. Recently, a new sector associated to the compactification of the M2-brane on 
a particular 10D spacetime with punctures has also been obtained. It can describe other type of 
non-trivial M2-branes [16] once a suitable regularization is provided. The regularization of these 
non trivial M2-brane sectors satisfy the sufficiency condition for discreteness found in [7]. These 
M2-brane sectors describe part of the fundamental M-theory degrees of freedom and therefore 
they may represent a restriction on the String sectors with a quantum consistent uplift to M-
theory. The need to obtain other non-trivial sectors of the M2-brane theory formulated on more 
general backgrounds becomes increasingly clear, but also its String counterparts.

In this paper we concentrate on the String description of the nontrivial M2-brane bosonic 
sector associated with the presence of a central charge condition or subject to a quantized constant 
three-form background that induces a 2-form flux condition on its worldvolume. The relation 
between the M2-branes compactified on target spaces with isometries and the D2-branes under 
scalar/vector dualization is well-known [6,17–25]. In this sense, sometimes these two theories 
have also been referred as duals. We will also use the word ‘duality’ in the aforementioned 
sense when we will refer to it in sections 5 and 6. Some of the distinctive properties of these 
nontrivial M2-brane sectors will be inherited by their String duals, as we will see. In particular, 
the M2-brane with central charges and the M2-brane with C± 2-form fluxes have a nontrivial 
U(1) monopole connection and a symplectic gauge field which can be properly combined to 
produce a topologically nontrivial dynamical gauge field as recently proved in [26]. This extra 
field is not present in an ordinary supermembrane theory and it is therefore natural to expect that 
new fields may arise on the associated D-brane theory. Because this extra field does not exist in 
a standard supermembrane theory, it is natural to expect new fields to emerge on the associated 
D-brane theory. When Dp-branes contain worldvolume fluxes they can be expressed in terms of 
Dp-brane bound states [27–29]. We will discuss this point briefly at the end of the paper.

The paper is organized as follows: In section 2, we review recent results about the main 
properties of two nontrivial M2-brane sectors: the M2-brane with central charges and the M2-
brane with C± fluxes. We discuss their equivalence relation, which can be interpreted as a duality 
connecting those two M2-brane sectors, a priori inequivalents. In section 3, we obtain the M2-
brane with a C± flux Hamiltonian where the transverse components of the supergravity three-
form become explicit. We denote it as CM2-brane and characterize its properties. In section 4, 
we obtain its D-brane description. It contains RR and NSNS quantized charges that generate 
the presence of 2-form fluxes and a new dynamical field. In section 5, we discuss the physical 
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properties of the new symmetries and their global description. In section 6, we show that it is 
possible to obtain the same result by departing from a D2-brane in 10D toroidally compactified 
when some specific fluxes are turned on and they generate an extra constraint that modifies 
the original Hamiltonian. We discuss its differences with respect to a D2-brane with RR and 
NSNS background fields with generic fluxes. In section 7, we present a brief discussion and our 
conclusions.

2. Toroidally compactified nontrivial M2-branes

In this section, we will briefly review former results concerning the local [6,24,30] and global 
aspects of nontrivial M2-branes associated with the presence of central charges [31], those of 
the M2-brane formulated in the presence of 2-form fluxes C± [15,26] and their relationship. The 
Light Cone Gauge (LCG) D = 11 bosonic Hamiltonian formulation of a M2-brane on a general 
background was found in [32]. Its supersymmetric extension on a flat superspace coupled with a 
non vanishing constant supergravity three-form is given by [15]

H =
[

1

(P− − C−)

(
1

2
(Pa − Ca)

2 + 1

4
(εuv∂uX

a∂vX
b)2
)

− θ̄�−�a

{
Xa, θ

}
− C+− − C+

]
(1)

subject to

Pa∂uX
a + P−∂uX

− + S̄∂uθ ≈ 0 (2)

S − (P− − C−)�−θ ≈ 0 (3)

where Xa, X− denote the embedding maps from the worldvolume �, assumed to be a Riemann 
surface of genus one onto the target space. The indices a, b = 1, . . . , 9 denote the target space 
transverse components and u, v = 1, 2 the spatial directions of �. θ represents a Majorana spinor 
of 32 components that acts as a scalar on the worldvolume and � are the Gamma matrices in 11D. 
The canonical conjugate momenta related to Xa , X−, θ , are given by Pa , P− and S, respectively. 
The LCG supergravity three-form components [32] correspond to

Ca = −εuv∂uX−∂vXbC−ab + 1

2
εuv∂uXb∂vXcCabc

C± = 1

2
εuv∂uXa∂vXbC±ab , C+− = εuv∂uX−∂vXaC+−a

(4)

The gauge invariance of the three-form allows us to fix C+−a = 0 and C−ab = 0. In [15] the 
authors restrict themselves to considering backgrounds with C±ab and Cabc the only nonzero 
and constant components. The Hamiltonian and the constraints contain nonphysical degrees of 
freedom associated to X− that must be eliminated [32]. A way to solve this problem without in-
troducing non-localities was proposed in [15], eliminating this dependence through the following 
canonical transformations of the phase space variables.

P̂a = Pa − Ca , P̂− = P− − C− (5)

Indeed, it can be seen that these transformations preserve the kinetic terms and all the Poisson 
brackets. Furthermore, it can be set P̂− = P 0−

√
W , with 

√
W a regular density on the worldvol-

ume � corresponding to the determinant of the spatial part of the worldvolume metric. If the 
target space is now toroidally compactified to MLCG × T 2 the embedding maps Xa(σ 1, σ 2, τ)
9
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become decomposed in terms of the maps Xm with m = 3, . . . , 9 from the base � to MLCG
9 and 

the maps Xr with r = 1, 2 from � to T 2. The winding condition on the compact sector,∮
Cs

dXr = Mr
s (6)

such that mr
s are the elements of the winding matrix. In complex coordinates M1

s + iM2
s =

2πR(ls + msτ) with R, τ the moduli of the T 2 and ls , ms the winding numbers, allows us to 
define dXr

h = Mr
s dX̂s in terms of the orthonormalized harmonic basis dX̂r ,∮

Cs

dX̂r = δr
s

with Cs the homological basis if the torus T 2. Since the components of the three-form are 
constants, they can always expressed as C±rs = c±εrs with c± ∈ Z/{0}. It can be defined 

F̃± = 1

2
C±rsM

r
pMs

qdX̃p ∧ dX̃q with X̃p , p = 1, 2, the T 2 coordinates. When a quantization 

condition is imposed on the three-form components C±rs , then, the 2-form flux condition is 
defined [15],∫

T 2

C± =
∫
T 2

F̃± = k± ∈ Z, k± �= 0. (7)

The target space flux condition indices a worldvolume flux condition through its pullback. The 
minimal embedding maps X̂r are identified with the T 2 torus coordinates X̃s , and the worldvol-
ume and target-space fluxes are in one-to-one correspondence [26],∫

T 2

F̃± = c±
∫
�

F̂ , (8)

with F̂ = 1

2
εrsdXr

h ∧ dXs
h defined in terms of the harmonic one-forms. The flux units are 

k± = nc± with n first Chern class associated to F̂ . Once the flux condition is imposed and apply-
ing the Hodge decomposition the closed one-forms can be decomposed as, dXr = Mr

s dX̂s +dAs

where dAs are components of an exact one-form that transform as a symplectic connection un-
der symplectomorphisms transformations. The flux condition acts as a new constraint on the 
Hamiltonian that changes it. Then, the Hamiltonian of the M2-brane on a C± flux background 
becomes

HC± =
∫
�

d2σ
√

W

[
1

2

( P̂m√
W

)2 + 1

2

( P̂r√
W

)2 + 1

4

{
Xm,Xn

}2 + 1

2
(DrX

m)2

+ 1

4
(F rs)2 + 1

4
(F̂ rs)2 − θ̄�−�rDr θ − θ̄�−�m

{
Xm,θ

}+ C+
]

(9)

where

{A,B} = εuv

√ ∂uA∂vB (10)

W
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is the Lie Bracket as defined in [33] and F̂ rs = {Xr
h,X

s
h

} = 1
2εrs εuv√

W
F̂uv with F̂uv the compo-

nents of the worldvolume two-form F̂ .
The action of the worldvolume flux constraint induces the appearance of a monopole contribu-

tion in the Hamiltonian and a dynamical symplectic gauge field Ar [6]. The degrees of freedom 
of the theory are Xm, Ar , θ . It also contains a symplectic covariant derivative and a symplectic 
curvature that were both formerly identified in [24] given by

DrX
m = DrX

m + {Ar ,X
m
}
, Frs = DrAs − DsAr + {Ar ,As} (11)

with Dr a covariant derivative such that D1 + iD2 = 2πR(ls + msτ)�s
r

εuv√
W

∂uX̂
r∂v . It is de-

fined in terms of the torus moduli (R, τ), the windings ls, ms and � is a matrix associated with 
the monodromy induced on the base manifold which is contained in the conjugacy classes of 
SL(2, Z) [34]. Its presence is due to the invariance of the theory under the full symplectomor-
phisms group, in particular with those that are not connected with the identity on � that changes 
the homology basis on � and the corresponding basis of one-forms dX̂ [26].

This Hamiltonian is subject to the local and global constraints associated to the Area Preserv-
ing Diffeomorphisms (APD) as a residual symmetry,{

(
√

W)−1P̂m,Xm
}

+Dr

(
(
√

W)−1P̂r

)
+
{
(
√

W)−1S̄, θ
}

≈ 0 (12)∮
CS

[
P̂mdXm

√
W

+ P̂rdXr

√
W

+ S̄dθ√
W

]
≈ 0. (13)

The worldvolume flux condition acts as a new constraint on the Hamiltonian. The regularized 
supersymmetric Hamiltonian [15] satisfies the sufficiency criteria for discreteness found in [7]. 
The theory is N = 1 since it preserves 1/2 of the supersymmetry [15].

2.1. The M2-brane with C± fluxes dual to the M2-brane with central charge

The so-called M2-brane with central charges [24] corresponds to an irreducibly wrapped 
toroidal M2-brane that contains an extra topological constraint [5] associated to an irreducible 
wrapping∫

�

dXr ∧ dXs = εrsnAT 2 (14)

with the integer n = det (W ) �= 0 defined in terms of W the wrapping matrix and AT 2 the 2-torus 
area. As it was shown in [35], the irreducible wrapping condition represents a generalization 
of the Dirac monopole condition over Riemann surfaces of arbitrary genus g ≥ 1. Classically, 
the dynamics of its associated Hamiltonian does not contain string-like spikes with zero cost 
energy [36], which would render at quantum level, the supersymmetric spectrum of the theory 
continuous. The discreteness of its supersymmetric spectrum was rigorously proved in [7] and 
in [14]. The central charge (CC) condition (14) corresponds to the quantization condition of F̂
and hence establishes a one-to -one relation with the quantization condition (C± over the 2-torus 
target space. In fact, dXr ∧ dXs = εrsF̂ with F̂ defined in the previous section in such way that 
satisfies (14).

As shown in [15] it establishes a relation between the two associated Hamiltonian densities as 
follows:
5
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HC± = HCC + C+ (15)

For C+ = 0, the Hamiltonian with central charges and the one with C− �= 0 fluxes, exactly co-
incide. Hence the discreteness property of the former automatically implies the discreteness of 
the second one. For the case of C+ �= 0, since it is also quantized, the spectrum is discrete and 
shifted by a constant value proportional to k+. Globally, the M2-branes considered are described 
in terms of symplectic torus bundles over a torus with a monodromy contained in SL(2, Z) and 
with a topologically non trivial U(1) connection [37]. In [26] it was proved that these structures 
generate a twisted torus bundle, where the base manifold is given by the worldvolume Riemann 
surface �, the fiber is a twisted torus T 3 and the structure group are the 2-torus symplectomor-
phisms, Symp(T 2). The consistence of the global description and all of the details are discussed 
in [26].

3. CM2-brane on twisted torus bundle

We now obtain a Hamiltonian formulation of the M2-brane on a quantized constant three-form 
on the same target space M9 ×T 2, in which the transverse components of the three-form become 
explicit. To distinguish it from the previous case, we will refer to it as CM2. Let us note that we 
can also decompose Ca (4) to avoid the nonphysical degrees of freedom as Ca = C

(1)
a + C

(2)
a

with

C(1)
a = −εuv∂uX

−∂vX
bC−ab , C(2)

a = 1

2
εuv∂uX

a∂vX
bCabc (16)

Therefore, instead of the previous canonical transformation (5), it is enough to assume

P̂a = Pa − C(1)
a , P̂− = P− − C− (17)

to obtain the Hamiltonian in terms of its physical degrees of freedom. In fact, it can be veri-
fied that it also constitutes a consistent canonical transformation of the phase space variables, 
preserving the kinetic term and the Poisson brackets of the theory. The associated 11D LCG 
Hamiltonian becomes

HCAN =
[

1

2

(P̂a − C
(2)
a )2

√
W

+ 1

4

√
W
{
Xa,Xb

}2 − √
Wθ̄�−�a

{
Xa, θ

}− C+

]
(18)

where in distinction to the case previously analyzed (9) the component C(2)
a is present carrying 

the information of the Cabc components of the three-form, with a = 1, . . . , 9 denoting the trans-
verse components. The trivial dynamics of P̂− allow us to set P̂− = P̂ 0−

√
W . If now we perform 

a toroidal compactification and impose the flux condition (7) that acts as an extra constraint, then 
the LCG CM2-brane Hamiltonian with C± fluxes becomes

HCM2 =
∫

d2σ
√

W

⎧⎨⎩1

2

(
P̂m − C

(2)
m√

W

)2

+ 1

2

(
P̂r − C

(2)
r√

W

)2

+ 1

4

{
Xm,Xn

}2 + 1

4
(F̂ rs)2

+ 1

2

(
DrX

m
)2 + 1

4
(F rs)2 − θ̄�−�rDr θ − θ̄�−�m

{
Xm,θ

}− C+
}

(19)

where
6
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C(2)
m = εuv

2

[
∂uX

n̄∂vX
nCmn̄n + 2∂uX

n∂vX
rCmnr + ∂uX

r∂vX
sCmrs

]
(20)

C(2)
r = εuv

2

[
∂uX

m∂vX
nCrmn + 2∂uX

m∂vX
sCrms

]
(21)

subject to the same APD constraints (12) and (13). The only nontrivial contribution on the C+
term is due to C+rs components. On the Hamiltonian (19) appears explicitly the contribution of 
the transverse components of the supergravity three-form Cabc with a = (m, r), in distinction 
with the Hamiltonian of an M2-brane with C± fluxes (9). However, a redefinition of the phase 
space variables based on the following canonical transformation reveals that both Hamiltonians, 
i.e. the CM2-brane and the M2-brane with C± fluxes, are equivalent.

P̃m = P̂m − C(2)
m , P̃r = P̂r − C(2)

r . (22)

Consequently, the two theories previously obtained, and this last new one must share the same 
qualitative spectral properties of discreteness of the supersymmetric spectrum. This result is not 
obvious from a direct examination of (19) at the regularized level. This is due to the coupling 
of the scalar field’s pullback and the canonical momenta. Indeed, the sufficiency criteria for 
the discreteness of the supersymmetric spectrum [7] can not be directly applicable. Because the 
sector of the M2-brane with central charges and the one with a quantized constant three form 
represented by the CM2-brane can also be connected by canonical transformations, this can be 
interpreted as additional evidence of a duality between both previously unconnected sectors, real-
ized at the Hamiltonian and mass operator levels. Globally, the CM2-brane can also be described 
in terms of a Twisted Torus Bundle with monodromy contained in SL(2, Z).

4. D-branes from nontrivial M2-branes

In this section, we obtain the D-brane description from the CM2-brane Hamiltonian formula-
tion. To this end, we use the scalar/vector duality and we will refer to these sectors as duals in 
the aforementioned sense. In this paper we choose the simplest possible background where the 
nontriviality of the M2-brane becomes manifest. Their formulation is done in the LCG since the 
toroidally nontrivial M2-branes have been formulated in this context in order to establish their 
spectral properties. The LCG fixing commutes with the dualization procedure. Previous formu-
lations of the LCG D2-brane Hamiltonian in ten dimensions in the absence of RR and NSNS 
background fields were done in [21,38,39]. For the case of toroidally compactified target spaces, 
the Hamiltonian was obtained in [24,30]. The virtue of working with the CM2-brane formulation 
is that the presence of the Cabc transverse components, under dualization, generates the B-field 
coupling inside the Born Infeld action, explicitly. From the CM2-brane dual formulation, the 
duals of the other nontrivial M2-branes cases previously discussed, can be obtained. The 11D 
flux condition is dualized to produce 10D RR and NSNS flux conditions. When the D2-brane 
theories contain fluxes associated with the presence of RR and/or NSNS charges, they have been 
conjectured to admit a description in terms of D-brane bound states.

4.1. D-brane description of CM2-brane

The action corresponding to the CM2-brane with C± fluxes subject to APD (12) and (13), 
can be obtained from (19) by a Legendre transformation. Following [18], let us consider a com-
pactification on an extra circle, Xm = (Xα, X9) with α = 3, . . . , 8 and isolate the contribution of 
7
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X9 on the action. If we promote L = dX9 to an independent one-form on the worldvolume by 
adding a topological term AdL, such that dL = 0 we have

S = S0 +
∫

d3ξ

[
1

2

√
W

(
L0 + εuv

√
W

∂u�Lv

)2

− 1

2

√
W

(
εuv

√
W

∂uX
αLv

)2

− 1

2

√
W

(
L0 + εuv

√
W

∂u�Lv

)
F̂ rsBrs − 1

2

√
W

(
εuv

√
W

∂uX
rLv

)2

− √
W

(
L0 + εuv

√
W

∂u�Lv

)
(F rsBrs) − 1

2

√
W

(
εuv

√
W

∂uX
sLvBrs

)2

− √
W

(
εuv

√
W

LuX
rB+r

)]
− 1

2

∫
d3ξ

{
εuvL0Fuv + 2εuvLuFv0

}
(23)

where L0 = Ẋ9, Lu = ∂uX
9, F = dA, � is the Lagrange multiplier and Brs = C9sr are the 

components of the NSNS background field on the compact sector. The term denoted as S0 cor-
responds to

S0 =
∫

d3σ

{
1

2

P̂αP̂ α

√
W

+ 1

2

P̂r P̂
r

√
W

− 1

4

{
Xα,Xβ

}2 − 1

4
(F̂ rs)2

− 1

2

(
DrX

α
)2 − 1

4
(F rs)2 + C+

}
(24)

For simplicity we have considered that C(10)
±rs , B±r and Brs are the only nontrivial but constant 

components of the background fields in 10D. However, is easy to verify that B−r and C−rs , do 
not appear explicitly in the Hamiltonian.
From the equations of motion we get

L0 =
[
εuvFuv

2
√

W
−
{
�,X9

}
+ 1

2
F̂ rsBrs + 1

2
F rsBrs

]
(25)

Lω = √
W

γ̃ωv

γ̃

[
1

2

ερσ Fρσ√
W

εvv̄∂v̄� − εvv̄F0v̄ − εvv̄∂v̄X
rB+r

]
(26)

By inserting these expressions in the previous action and performing a Lagrange transformation 
the corresponding Hamiltonian in M8 × T 2, it becomes

Hdual = 1

2

P̂αP̂ α

√
W

+ 1

2

(P̂r − Br)
2

√
W

+ 1

2

�u�vγ̃uv√
W

+ G

2
√

W
+ √

W
1

4
(F̂ rs)2

+ 1

4

√
W(F rs)2 + 1

2

√
W(DrX

α)2 − C
(10)
+ − B+ (27)

where2 G = γ + FDBI , Br = �u∂uX
sBrs , B+ = �u∂uX

sB+s , �u = εuvLv , and FDBI =
det (Fuv + Buv) being

FDBI = F + b2(
√

W)2
[

1

2
b2
(
F̂ rsεrs +F rsεrs

)2 + (∗F)
(
F̂ rs +F rs

)
εrs

]
(28)

2 By γ we denote γ = det (γuv) = det (∂uXα∂vXα) and ̃γuv = γuv + ∂uXr∂vXr .
8
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with Buv = 1
2∂uX

r∂vX
sBrs , Brs = b2εrs and where the RR ten dimensional C(10)

+ has the same 
form of its 11D dual counterpart C+ (4). The LGG Hamiltonian (27) is subject to Gauss law and 
local and global APD constraints,

∂u�
u ≈ 0. (29){

(
√

W)−1P̂α,Xα
}

+Dr

(
(
√

W)−1P̂r

)
+ εuv∂u

[
�ωFvω√

W

]
≈ 0 (30)∮

CS

[
P̂α∂uX

α

√
W

+ P̂r∂uX
r

√
W

+ �ωFuω√
W

]
duσ ≈ 0. (31)

The M2-brane flux conditions are used to derive the D-brane flux conditions. As [18] originally 
observed in the covariant formulation, if one performs in the LCG, the dualization to the WZ term 
in eleven dimensions, the background fields become C± = C

(10)
± + B±, and Ca = C

(10)
a − Ba . 

with B− = �u∂uX
sB−s . Gauge invariance of the two-form allows us to fix B−s = 0. Hence, it 

can be seen that the C± quantization condition in D = 11, implies in the dual action,∫
�̃

C
(10)
± = k

(10)
± ,

∫
�̃

B+ = b+,

∫
�̃

B2 = b2

∫
�̃

F̂ = b2n (32)

where the components C(10)
±rs = c

(10)
± εrs and Brs = b2εrs with k(10)

± = nc
(10)
± such that they sat-

isfy k± = k
(10)
± + b+. The components of the 10D RR three-form are constant and they generate 

2-form fluxes whose pull-back on the worldvolume of the D2-brane, in analogy with the M2-
brane analysis, are associated with a topologically nontrivial U(1) curvature. There is an extra 
contribution to the B-field that appears in the DBI term, associated with the pull-back of the Kalb-
Ramond field B2 = 1

2BrsdXr ∧ dXs . This contribution -since the coefficient is also constant -
also generates a two form flux condition on the worldvolume. At first sight, it could seem that 
there is not a flux quantization condition acting on it. However, due to the fact that the coefficient 
is constant, the worldvolume flux condition is automatically guaranteed by the central charge 
condition induced by the C± quantization of the M2-brane. This U(1) worldvolume monopole 
condition found in [5] associated with a first nontrivial Chern class given by k± + b2 contributes 
to the Hamiltonian with a nontrivial curvature F̂ associated with a nontrivial U(1) connection 
Â under symplectomorphisms transformations. As a consequence, the dual Hamiltonian of the 
CM2-brane on MLCG

9 × T 2 can be understood as a D2-brane with 2-form fluxes given by (32). 
See that in the same way that the flux constraint for the nontrivial M2-brane generates a symplec-
tic gauge field with an associated symplectic field strength (F ), it also happens in the D2-brane 
associated to the CM2-brane with C± fluxes.

As previously stated, because the D2-brane has RR three-forms and NSNS two-forms, both 
of which generate 2-form fluxes, an open question is whether it can be described in terms of 
Dp bound states. This ‘dual’ D-brane theory inherits from the nontrivial M2-brane, the same 
type of U(1) topologically nontrivial gauge field. In fact, this condition was discovered in [5]
an it represents a generalization of the Dirac monopole condition to Riemann surfaces of genus 
g ≥ 1 [35]. This quantization condition acts as an extra constraint on the Hamiltonian, generating 
new dynamical fields, as we will see in more detail in section 5. In [14] the spectral properties 
of the SU(N) regularized M2-brane with central charge and the 0 + 1 dimensionally reduced 
D2-D0 bound state were compared. Though at first sight both models seem quite similar and 
carry a RR charge, they are associated with different monopole conditions and their spectra 
9
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are completely different. In [14] it was rigorously shown that the regularized M2-brane theory 
with central charges has a purely discrete supersymmetric spectrum, while the dimensionally 
reduced D2-D0 has a continuous spectrum bounded by below by the U(N) monopole energy 
contribution to infinity, as originally conjectured by [40]. On the D-brane side, the CM2 dual 
(27) has a DBI curvature F that is not quantized in contrast to D2-D0 bound states. This analysis, 
however, does not rule out the possibility of expressing it in terms of more complicated bound 
state constructions, such as in [41].

5. D-brane description: new features

In this section, we are going to emphasize the physical implications of the nontrivial D2-
branes. On one hand, we have seen that the quantization condition on the M2-branes implies 
the existence of nontrivial quantization conditions on the constant RR and NSNS background 
fields of the D2-brane. These particular quantization conditions generate worldvolume 2-form 
flux fields. According to [35] this automatically implies that the associated D2-brane -which we 
will refer to as nontrivial D2-branes in the following - must have a monopole charge given by 
the units of fluxes turned on the worldvolume. Secondly, in the cases when Brs is quantized, 
the FU(1) appearing in the Dirac Born-Infeld action is not topologically trivial. We will see that 
the nontrivial D2-brane posses different degrees of freedom, hence dynamical fields, than those 
associated to a usual toroidally compactified D2-brane. On top of the embedding scalar fields 
Xm and the standard U(1) DBI gauge field Au, it appears a new singlevalued symplectic gauge 
field Ar and new nontrivial symmetries on the worldvolume.

5.1. New gauge symmetries

The dual description of a D2-brane contains two characteristic symmetries related to the 
worldvolume �̃: DBI U(1) symmetry related to the Gauss constraint and the symplectomor-
phisms. It is easy to see that Au on �̃ transforms under the Gauss constraint as a U(1) gauge 
field

δAu = ∂u�, (33)

where � = −� is the parameter of the transformation. The dynamical variables (Xm, Ar , Au)

also transform under the APD constraint. In fact, concerning to the symplectomorphisms con-
nected to the identity, any functional O of the canonical variables transform locally under 
Symp0(T

2) as [5,42]

δO = {O,< ξφ >}PB (34)

where φ is the local constraint (30) and for example, for the first term in (30) we have that <>

denotes

< dξ ∧ Pm√
w

dXm >≡
∫
�̃

d2σ
√

w

(
dξ ∧ Pm√

w
dXm

)
(35)

with ξ = ξ(σ, τ) the continuous parameter that contains both, the local and global parameters, 
associated to the Symp0(�) transformations [43]. Therefore, under symplectomorphisms con-
nected to the identity we have that
10
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δξX
m = {ξ,Xm

}
(36)

δξAu = ξvFvu = {ξ,Au} + ξv∂uAv, (37)

where m runs over the compact and non-compact indices, m = (r, α) with r = 1, 2 and α =
3, . . . , 8.

If we now examine the maps of the compact sector under symplectomorphism transforma-
tions, taking into account the worldvolume flux condition and the Hodge decomposition, we can 
split them in the following manner, which is similar to the study performed in [26]

δξX
r = {ξ,Xr

} = δXr
h + δAr . (38)

Let us remark that the single-valued function of the embedding map Ar defines an associated 
one form dA -with r = 1, 2 the index running over the directions of the T 2- which transforms 
as a symplectic connection in contrast to the DBI U(1) connection Au with u = 1, 2 defined over 
�̃.

5.1.1. Symplectic gauge symmetry
Similarly to the nontrivial M2-branes considered, we define a class of maps whose associ-

ated one-forms dXh are expressed in terms of the harmonic basis such that under infinitesi-
mal transformations of the type δXr

h = {ν, Xr
h} with ν an infinitesimal parameter, a curvature 

F̂ = εrsdXr
h ∧ dXs

h with r, s, = 1, 2 is preserved. When the symplectomorphisms transforma-
tions (38) are realized as follows,

δ[Xr
h] = 0 and δAr = Dr ξ , (39)

the multivalued Xr
h becomes inert under the transformation and all of the transformation is re-

alized by the Ar scalar field. The transformation law for dAr , corresponds to a symplectic 
one-form connection over �̃. The associated one-form transforms as a symplectic gauge field. Its 
associated symplectic curvature is F = DA +{A, A} is equivalent to (11), which is topologically 
trivial

It defines a symplectic covariant derivative D• = D • +{A, •} whose transformation, pre-
serves the transformation law of its argument under symplectomorphisms.

In the context of toroidally nontrivial M2-branes, a similar symplectic gauge field, its asso-
ciated covariant derivative, and its curvature had previously been identified. There and here, its 
origin is found in the action of the specific constant 2-form fluxes acting over the worldvolume, 
which act as an extra constraint on the Hamiltonian imposing a restriction on the embedding 
maps.

5.1.2. U(1) gauge symmetries
Any D-brane worldvolume action contains a characteristic DBI U(1) connection A = Audσu, 

where the transformation of Au under the Gauss constraint is given by (33). 2-form fluxes, on the 
other hand, naturally induce a topologically nontrivial U(1) over their worldvolume, though the 
precise effect on the Hamiltonian depends on the type of flux and its origin. Let us notice that the 
flux conditions on C± and B2 given by (32) imply the existence of a non trivial U(1) one-form 
Â = 1

2εrsX
r
hdXs

h, with an associated curvature F̂ = dÂ defined as in [26]. In the case of constant 
2-form fluxes, the associated U(1) dynamical gauge symmetry is related to the one-form defined 
in terms of scalar fields via a nontrivial transformation via symplectomorphisms. We recall that 
this symmetry is generated by the APD constraint (38) over the D2-brane worldvolume �̃ by the 
following transformation consistent with (38)
11
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δ[Xr
h] = {ξ, [Xr

h]
}

and δAr = {ξ,Ar
}

. (40)

In fact, we also may define A± = k±Â and AB = b2Â, the non trivial U(1) connections remi-
niscent of the quantization conditions over the RR constant three-form and the NSNS constant 
2-form, with F (wv) = k±F̂ and B2 = b2F̂ , respectively. They contribute to the total amount of 
2-form flux defined on the D2-worldvolume. In fact, it can be checked that Â does transform as 
a U(1) connection under symplectomorphisms

δÂ = dη , with a parameter η = − εuv

√
w

∂vξ
(
Âu

)− ξ
(
�F̂
)
, (41)

where
1

2π

∫
�

F̂ = n. (42)

As a result, the nontrivial one-form connection on the worldvolume is A± +AB = (b2 + k±)Â =
kÂ. Due to the constant nature of the NSNS background field B2, its pullback to the worldvolume 
corresponds to the field strength of a one-form -which also transforms as a non trivial U(1) 
connection under symplectomorphisms-. Closely following [26] it is possible to define a new 
dynamical topologically trivial U(1) one-form AG defined in terms of scalar embedding maps 
as follows,

AG = 1

2
εrs(ArdXs

h −AsdXr
h +ArdAs). (43)

It transforms as a U(1) connection under the symplectomorphisms specified by (40)

δAG = dη̃ , η̃ ≡
(

− εuv

√
ω

∂vξ(
1

2
εrsAr∂uX

s
h) − ξ

(∗F̂
))

(44)

with an associated curvature labeled FG = dA topologically trivial. A particular property of 
this curvature FG = dAG is that it coincides with the symplectic curvature (28). In fact, it was 
shown in the context of the M2-brane in [26]. Furthermore, both structures are consistent with 
the irreducible wrapping condition. Here, the same analysis remains valid. Hence, it is possible 
to define a more general U(1) connection Ã in terms of Â and AG

Ã = Â + βAG (45)

with β a real scalar.
The connection is defined on the same nontrivial principal bundle characterized by the first 

Chern class n. It has an associated curvature F = dA that satisfies,

1

2π

∫
�

F = n �= 0 (46)

with

F = F̂ + βF (47)

As a result, the D-brane description of the non trivial M2-brane duals, discussed here, has two 
U(1) gauge symmetries, whose curvatures are respectively F , F in distinction with the usual case. 
Indeed, the FDBI can be re-expressed in terms of this new dynamical topologically nontrivial 
U(1) as,
12
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FDBI = F + 1

2
b2(

√
W)2

[
b2
(
F rsεrs

)2 + 2(∗F)F rsεrs

]
(48)

This naturally reinforces the idea that Hdual could be better described by a bound state of D-
branes.

5.2. Twisted torus bundle description

The characteristics of the aforementioned nontrivial D2-branes introduce new aspects into the 
bundle description that we characterize. The topologically non trivial part of a standard toroidal 
D2-brane is characterized by two independent fibers: a principal torus bundle defined over its 
worldvolume �̃ and a U(1) fiber associated with the DBI contribution. In the presence of a two-
form fluxes that are not associated with the DBI gauge field, a nontrivial U(1) fiber is added. 
As we will see, in the case we are considering, there is an extra relationship between the fibers 
which changes the overall construction.

In order to introduce the global description of the non trivial M2-brane duals, let us recall that 
the D2-branes are formulated on M8 × T 2 with a foliation on the worldvolume, such that �̃ is a 
Riemann surface of genus one related to the spatial directions of the worldvolume. It contains a 
topologically trivial U(1) principle bundle defined on it associated to the DBI contribution. Flux 
condition induced by the constant quantized background condition implies, through the Weyl 
theorem, the existence of a U(1) principal bundle over �̃

U(1) → E′ → �̃. (49)

Now, because the D2-branes are toroidally compactified but the flux acts as an extra constraint, 
in close analogy with [37], it admits a symplectic torus bundle description with monodromy in 
SL(2, Z) defined as

T 2 → E → �̃ , G = Symp(T 2) (50)

with T 2 is the compact part of the fiber, �̃ is the base, E is the total space and G is the structure 
group of the fiber bundle. It is possible to define a Maurer-Cartan structure between the flux 
condition and the torus of the fiber, such that they defined a twisted three-torus. In fact, we may 
define three global one-forms

e1 = dX̃1, (51)

e2 = dX̃2, (52)

e3 = dy + kX̃1dX̃2 (53)

where (X̃1, ̃X2) ∈ T 2 and y is a coordinate on the S1 associated with the nontrivial U(1) fiber, 
such that the global one-forms e1, e2 y e3 satisfies the structure equation

de3 = f 3
12e

1 ∧ e2 (54)

with f 3
12 = k known as Maurer-Cartan.

In consequence, as in [26] the two fibers form terms of a Twisted Torus Bundle

(T 2)U(1) → E → �, G = Symp(T 2) (55)

where (T 2)U(1) denotes a 2-torus with a U(1) monopole connection over it, equivalent to a 
twisted 3-torus.
13
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Nontrivial D2-branes with worldvolume and background fluxes on M8 × T 2 can thus be de-
scribed geometrically as twisted torus bundles with monodromy in SL(2, Z) and an extra U(1)

trivial principal bundle associated with the DBI gauge symmetry. They are duals of nontrivial 
M2-branes on M9 × T 2 formulated on a twisted torus bundle with monodromy in SL(2, Z).

6. D2-branes on a RR and NSNS background with fluxes

In this section, we will show how, when certain 2-form fluxes are included, the LCG Hamilto-
nian of (27) can be also obtained directly from the D2-brane. It is important to note, however, that 
this formulation differs from a usual D2-brane with RR and NSNS background fields. To demon-
strate it, we illustrate its direct construction, emphasizing its key points. We will investigate the 
LCG D2-brane in the presence of constant RR and NSNS background subject to quantization 
conditions, because it will be compared to the LCG formulation of the M2-brane on a general 
quantized constant supergravity three-form C3, which is relevant for M2-brane spectral charac-
terization. By means of the dimensional reduction and the scalar/vector duality we have obtained 
the D-brane related to the nontrivial CM2-brane.

The covariant formulation of the Dp-brane action in the presence of RR and NSNS back-
ground was originally found in [44]. The LCG D2-brane Hamiltonian on a flat background was 
obtained in [21,39]. However, in these works, the coupling with the RR and NSNS background 
fields was not considered. As previously mentioned in relation to the M2-brane [15], the diffi-
culty of its formulation relies on the proper handling of the non-physical degrees of freedom. It 
requires the obtention of proper canonical transformations for the D2-brane theory that allow us 
to eliminate the X− dependence without introducing nonlocalities.

Consider the Lagrangian density of a D2-brane on a 10D Minkowski spacetime, coupled to 
the RR 3-form and NSNS 2-form background fields,

LD2 = −
√

−Ḡ − 1

3!ε
ijk∂iX

μ∂jX
ν∂kX

ρC(10)
μνρ , (56)

with Xμ(σ 1, σ 2, τ) the D2-brane embedding maps from the worldvolume �̃ in the 10D target-
space M10 labeled by μ, ν, ρ = 0, . . . , 9 and i, j, k = 0, 1, 2 denoting the worldvolume indices. 
Let us begin by defining the generalized metric,

Ḡ = det (γij +FDBI
ij ), (57)

in terms of the worldvolume induced metric γij = ∂iX
μ∂jXμ and on the curvature

FDBI
ij = Fij + Bij . (58)

It is defined in terms of the U(1) Born-Infeld field strength Fij = ∂iAj − ∂jAi and a B-
field which is the pullback of the NS-NS two-form background to the worldvolume Bij =
∂iX

μ∂jX
νBμν . It is straightforward to see that the LCG Lagrangian density is given by

L = −√G + C
(10)
+− + C

(10)
+ + C

(10)
M ∂0X

M + C
(10)
− ∂0X

−, (59)

where Ḡ = −G with  = −G00 + G0uG
uvGv0, G = detGuv and u, v = 1, 2 being the spatial 

worldvolume indices. Following the notation of [32] the pullback of the three-form components 
are,

C
(10)
M = 1

εuv∂uX
N∂vX

LC
(10)
MNL − εuv∂uX

−∂vX
NC

(10)
−MN, (60)
2
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C
(10)
± = 1

2
εuv∂uX

M∂vX
NC

(10)
±MN, (61)

C
(10)
+− = εuv∂uX

−∂vX
NC

(10)
+−N. (62)

By performing a Legendre transformation we obtain the canonical Hamiltonian

HCAN = 1

2(P− − C
(10)
− − B−)

[
(PM − C

(10)
M − BM)2 + �u�vγuv + G

]
,

− B+ + �u∂uA0 − C
(10)
+− − C

(10)
+ , (63)

subject to the primary constraints

ϕ = �0 ≈ 0, (64)

φu = PM∂uX
M + P−∂uX

− + �vFuv ≈ 0, (65)

with

BM = �u(∂uX
−BM− + ∂uX

NBMN), (66)

B+ = �u(∂uX
−B+− + ∂uX

NB+N). (67)

From the preservation in time of ϕ the Gauss constraint is obtained (29) as a time independent 
secondary constraint. Moreover, φu is also time independent and the three constraints are first 
class.

By fixing the residual gauge symmetries related to the RR three-form transformation as well 
as the two form NSNS, it can be set up B+− = B−M = C

(10)
+−M = 0. C(10)

−MN = 0 can be fixed 
to zero. If we choose a background where C−MN is not zero but constant, once a quantization 
condition is imposed on C(10)

− , it is no longer possible to take continuously this value to zero. 
Analogously to the methodology discussed in section 3, it is possible to find a suitable canonical 
transformation in which the D2-brane Hamiltonian may be re-expressed in terms of the physical 
variables,

P̂M = PM − C
(10)
M , (68)

P̂− = P− − C
(10)
− . (69)

This is a consistent canonical transformation that preserves all the Poisson brackets of the theory 
and the kinematical contribution. In order to obtain the physical Hamiltonian, the gauge invari-
ance of the theory has been fixed according to

�0 ≈ 0 → ψ1 = A0 ≈ 0, (70)

φω ≈ 0 → ψ2 = �u = γ0u + (∂0Av + B0v)γ
vwFuw ≈ 0. (71)

While the first condition leaves no residual symmetry the second one leaves the expected APD 
constraint. Let us remark that we have left unfixed the gauge symmetry related with the Gauss 
constraint. Finally, the LCG D2-brane DBI physical Hamiltonian coupled to RR and NSNS back-
ground fields is given by

H =
∫

d2σ

[
1

2

(P̂M − BM)2

√
W

+ 1

2

�u�vγuv√
W

+ 1

2

G√
W

− C
(10)
+ − B+

]
, (72)

subject to the Gauss Law and the APD constraint respectively
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∂u�
u ≈ 0, (73)

εuv∂u

[
PM√
W

∂vX
M + �w

√
W

Fvw

]
≈ 0, (74)

where C(10)
+ is given by (61) and BM , B+ are given by (66), (67), respectively (with B−M =

B+− = 0). Therefore, the two resultant symmetries of the theory are the expected Gauss con-
straint (73), associated to the gauge U(1) and the Area Preserving Diffeomorphisms symmetries 
(74), both related to the worldvolume of the D2-brane. By using the equations of motion it can 
be seen that the gauge �u = 0 fixes the Lagrange multiplier cw = 0 and, in consequence P̂− can 
be written as a scalar density

P̂− = P̂ 0−
√

W, (75)

where, as in the case of the nontrivial M2-brane, P 0− is a constant and 
√

W is the regular density 
on �̃. It is straightforward to see that turning off all the background fields, one recovers the LCG 
Hamiltonian of the D2-brane studied in [21].

In order to reproduce the LCG Hamiltonian (27) found in Section 3, we consider a toroidal 
compactification of (72) and impose particular independent quantization conditions. The trans-
verse index M = (α, r) can be decomposed in α = 3, . . . , 8 non compact directions and r, s = 1, 2
compact directions. The topology of the compact D2-brane worldvolume from now on, will be 
assumed to be also a 2-torus. In analogy with the M2-brane, the winding condition on the map 
on the compact sector is∮

C̃s

dX = 2πR̃(l′s + m′
s τ̃ ) = M̃1

s + iM̃2
s (76)

where R̃, ̃τ are moduli of T 2 and l′s , m′
s with s = 1, 2 are winding numbers. Therefore, the 

harmonic sector of the map can be written in terms of a normalized basis dX̂s as dXh = dX1
h +

idX2
h = (M̃1

s + iM̃2
s )dX̂s .

Since FDBI
uv contains the pullback of the NSNS background field B , F becomes,

FDBI = 1

2
εuūεvv̄FU(1)

v̄ū FDBI
vu = F̃DBI + εūuεv̄vFv̄ūAvu + εūuεv̄vAv̄ūvu, (77)

with

Avu = 2∂vX
α∂uX

rBαr + ∂vX
r∂uX

sBrs, (78)

Av̄ūvu = 2∂v̄X
α∂ūX

βBαβ∂vX
ᾱ∂uX

rBᾱr + ∂v̄X
α∂ūX

βBαβ∂vX
r∂uX

sBrs,

+ 2∂v̄X
α∂ūX

rBαr∂vX
ᾱ∂uX

rBᾱr + 2∂v̄X
α∂ūX

rBαr∂vX
r∂uX

rBrs,

+ ∂v̄X
r∂ūX

sBrs∂vX
r̄∂uX

s̄Br̄s̄ , (79)

and F̃U(1) represents the determinant of the U(1) DBI curvature associated to the contribution 
related to the non-compact sector.

We find that the LCG Hamiltonian on M8 × T 2 is given by

H =
∫

d2σ

[
1

2

(P̂α − Bα)2

√
W

+ 1

2

(P̂r − Br)
2

√
W

+ 1

2

�u�vγuv√
W

+ 1

2

G̃√
W

,

+ 1 εuūεvv̄Fv̄ūAvu√ + 1 εuūεvv̄Av̄ūvu√ + 1√
W
{
Xα,Xr

}2 + 1√
W
{
Xr,Xs

}2
,

2 W 2 W 2 4
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− 1

2
εuv∂uX

r∂vX
sC

(10)
+rs − �u∂uX

αB+α − �u∂uX
rB+r

]
, (80)

subject to

∂u�
u ≈ 0, (81)

εuv∂u

[
Pα∂vX

α

√
W

+ Pr∂vX
r

√
W

+ �wFvw√
W

]
≈ 0, (82)∮

CS

[
Pα∂vX

α

√
W

+ Pr∂vX
r

√
W

+ �wFvw√
W

]
dvσ ≈ 0, (83)

where G̃ = det (γ̃uv + F̃U(1)
uv ) represents the generalized metric associated to the noncompact 

dimensions and with

F̃U(1)
uv = Fuv + ∂uX

α∂vX
βBαβ, (84)

γ̃uv = ∂uX
α∂vXα. (85)

In order to make contact with (27) it is required to assume the RR three-form background to 
be constant C(10)

±rs = εrsc± an quantized. It implies the existence of a well-defined closed two 

form F̃± = 1

2
C

(10)
±rs M̃r

pM̃s
qdX̃p ∧ dX̃q with M̃r

p defined as in (76) and with X̃p , p = 1, 2, the T 2

coordinates. If a quantization condition on T 2 is imposed, this implies the presence of a nontrivial 
2-form flux on the D2-brane worldvolume,∫

T 2

F̃± = k± ∈Z �= 0 → c±
∫
�̃

F̂ = k± �= 0 (86)

where k± = nc± and F̂ = 1

2
εrsdXr

h ∧dXs
h. We can also impose a quantization condition the pull-

back of the NS-NS background two-form B̃2 on T 2. Since the B-field is also assumed constant 
its pullback can also be interpreted as a flux condition over the worldvolume,∫

T 2

B̃2 = kB �= 0 →
∫
�̃

B2 = b2

∫
�̃

F̂ = kB �= 0, kB ∈ Z, (87)

with B̃2 = 1
2BrsM̃

r
pM̃s

qdX̃p ∧ dX̃q , Brs = b2εrs and kB = nb2. Both quantization conditions 
(86) and (87) imply the existence of an irreducible wrapping condition on the compact sector. In 
this context, the imposition of the quantization conditions over the B2 and C(10)

± are completely 
independent. However, from the CM2-brane dual description, we have shown that they are asso-
ciated to different components of the 11d three-form C3, hence both of them must hold in order 
to describe its M2-brane dual origin.

The background can be fixed such that the only nontrivial components of the constant back-
ground fields be Brs, C

(10)
±rs , B+r . Then, it can be seen from (78) and (79) that

εūuεv̄vFv̄ūAvu = (
√

W)2(�F )
[
F̂ rs +F rs

]
Brs,

εūuεv̄vAv̄ūvu = (
√

W)2 1 (
F̂ rsBrs +F rsBrs

)2
, (88)
2
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with F = dA. Finally, if the moduli, winding numbers and units of fluxes are those considered 
in Section 4, the LCG Hamiltonian of a D2-brane on M8 × T 2 subject to the 2-form fluxes 
conditions (86) and (87) exactly becomes

Hdual = 1

2

P̂αP̂ α

√
W

+ 1

2

(P̂r − Br)
2

√
W

+ 1

2

�u�vγ̃uv√
W

+ G

2
√

W
+ √

W
1

4
(F̂ rs)2

+ 1

4

√
W(F rs)2 + 1

2

√
W(DrX

α)2 − C
(10)
+ − B+ (89)

where G, F rs and Dr coincides with the definitions used in (27). The Hamiltonian is also subject 
to the Gauss constraint (29) and to worldvolume symplectomorphisms (30) and (31).

There are several differences between this formulation and a general D2-brane with RR and 
NSNS fluxes: First, the background fields are considered constant and when the quantization 
condition is imposed. They are responsible for generating specific 2-form fluxes whereas this 
statement is not necessarily true in more general backgrounds. These fluxes imply the existence 
of a monopole contribution over the D2-brane worldvolume in analogy with [5] that acts as an 
extra constraint on the D2-brane embedding maps in distinction with any other case considered 
so far. It implies, on top of the flux contribution, the presence of an extra symplectic gauge field 
that couples to the scalar fields via a symplectic covariant derivative defined DrX

α and a sym-
plectic curvature Frs . There are also cubic and quadratic interactions between the different field 
strengths here defined, which are not present in any of the previous cases studied in the literature, 
up to our knowledge. As a result, the Hamiltonian (27) obtained through a scalar/vector dualiza-
tion of the CM2-brane, corresponds to a specific D2-brane with constant quantized background 
fields that induce 2-form flux acting on the worldvolume as an extra constraint which generate 
new fields and couplings in the Hamiltonian.

7. Discussion and conclusions

We have obtained the LCG Hamiltonian from a toroidally compactified M2-brane with 2-form 
C± fluxes, with an explicit contribution of the transverse components of supergravity three-
form, Cabc denoted by us as CM2-brane. The direct analysis of its spectral properties is rather 
cumbersome due to the mixing terms between the scalar fields with their canonical conjugate 
momenta that appear in the kinetic term. In fact, the sufficiency criteria for discreteness of the 
supersymmetric spectra found in [7] is not directly applicable. However, we obtain a canonical 
transformation of the phase space variables that establishes an equivalence with the M2-brane 
with C± fluxes formerly identified in [15]. Hence, they must share the same spectral discreteness 
properties and consequently, the CM2-brane also constitutes a nontrivial M2-brane. The M2-
brane with central charge is obtained by performing the canonical transformation (22) and turning 
off the C+ components. The toroidally nontrivial M2-branes here analyzed are shown to contain 
the same type of U(1) monopole quantization condition.

We now obtain the D-brane description of the CM2-brane Hamiltonian. We find that it corre-
sponds to a D2-brane in the presence of two-form fluxes associated to the quantization of constant 
RR and NSNS background fields. They appear in the dualization of the quantization condition 
of the 11D C±. Due to the new terms in the CM2-brane formulation, the DBI B-field contribu-
tion becomes explicit in the D-brane counterpart. The compactified momentum has a nontrivial 
coupling to the worldvolume B-field. By using the relation (32), the C(10)

± flux condition and 
the NSNS quantized B+ are straightforwardly obtained. Gauge invariance allows to set B− = 0. 
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The NSNS constant B2 field becomes quantized without imposing an extra quantization condi-
tion since it is proportional to the central charge condition. This dual3 D-brane theory inherits 
from the nontrivial M2-brane, the same type of U(1) monopole quantization condition. Since 
it acts as an extra constraint on the Hamiltonian, it also implies the appearance of a dynamical 
symplectic gauge field associated to dAr components with a topologically trivial curvature in 
analogy with the M2-brane with central charges. The D-brane theory is subject to the Gauss and 
APD constraints. The theory contains new symmetries. It is possible to define an extra U(1)

gauge symmetry under symplectomorphism transformations in terms of the components of the 
embedding maps AG. A and AG define respectively a symplectic curvature F and a U(1) cur-
vature FG. As happens with the CM2-brane, when expressed in terms of the embedding map 
components, they have the unique property of being equal.

The AG together with the topologically nontrivial U(1) gauge symmetry associated with the 
fluxes, Â, defines a dynamical U(1) gauge symmetry A on a nontrivial U(1) fiber bundle with 
the same Chern class as the flux condition. These two fibers are linked together to form a twisted 
torus. The D2-brane bundle is defined by a twisted torus bundle with monodromy in SL(2, Z) -
inherited from the toroidally nontrivial M2-brane- and an independent DBI U(1) trivial principal 
bundle over its worldvolume.

The quantization condition of a constant B̃2 was formerly discussed [45] in the context of 
the noncommutative formulation of the matrix model on a torus and its M-theory origin was 
qualitatively discussed in terms of the coupling of the supermembrane to a constant C− in [32]. 
The supermembrane on a C− background was already discussed in [15]. The B2 contribution 
does not come from the dualization of the C− but from the Cabc. Hence the non commutative 
formulation of matrix model on a torus has an M-theory origin associated to a CM2 for a re-
stricted background where B+ and C+ vanishes. Both formulations can generate a monopole 
contributions.

Because the D2-brane carries 2-form fluxes, an open question is whether it admits a descrip-
tion in terms of Dp bound states. The D2-D0 bound state would have been a natural candidate. In 
[14] the spectral properties of the SU(N) regularized M2-brane with central charge and the 0 +1
dimensionally reduced D2-D0 bound state were compared. Though both models seem quite sim-
ilar and carry a RR charge, they are associated to different monopole conditions and their spectra 
are completely different. Furthermore in the CM2 dual (27) the DBI curvature F does not get 
quantized in distinction with the D2-D0 bound state. Hence, the M2-brane dual considered in 
this work can not be described as a D2-D0 bound state. This analysis however does not exclude 
the possibility of more complicated constructions, as for example in [41]. A deeper analysis of 
this aspect is left for a future work.
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