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1 Introduction

Classical solutions of membrane theory can be useful to understand better the M-theory
properties of its fundamental elements. Other historical interest in this study has been
focused in the context of a generalization to M-theory of the nonrelativistic strings formu-
lation on AdS spaces, see for example [1].

Rotating membrane solutions are compelling studies for a variety of reasons: they can
be sources of supergravity solutions in eleven dimensions that can describe charged rotating
black holes in lower dimensions, see for example [2, 3], they can provide a preliminary signal
for interpreting membranes as extended spinning particle models for those cases when they
become well-defined at supersymmetric quantum level on a proper background, or they can
even describe spinning solitonic solutions. The existence of membrane solitonic solutions
was discussed in several works. For example in terms of solitary waves in [4], in the context
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of Q-ball matrix model [5], as instantonic solutions [6], or in terms of membranes formulated
on hyperkähler backgrounds [7, 8].

In the literature the study of the classical solutions of the membrane theory firstly
appeared in [9]. It was shown that spherical and toroidal membrane solutions could be
obtained from the membrane when it is embedded on spherical backgrounds. In the context
of matrix models it was discussed in [10]. Spinning solutions for the membrane were
proposed in [11] formulated in the Light Cone Gauge (LCG). Other spinning solutions for
the 11D membrane matrix model on a pp-wave, i.e. in the context of BMN matrix model,
were found in [12, 13]. Rotating membrane solutions with the conserved charges in M-
theory were studied in a series of papers [14] in the context of G2 or AdS manifolds [15–18]
also in the presence of global U(1) symmetry [19]. The formulation of spinning membranes
toroidally compactified on M9 × T 2 appeared in [11, 20]. This last one is the set-up that
we will analyze in this paper for a background with fluxes C±.

Recently it has been observed that the supermembrane theory toroidally compactified
M9 × T 2 on a background with a particular choice of quantized constant three-form com-
ponents C± [21]. It induces a two-form flux on the target torus whose pullback generates
a two-form flux over the worldvolume of the supermembrane. This condition implies the
existence of a central charge condition on the worldvolume. Furthermore this theory is
equivalent modulo a constant shift, or ‘dual’ to a toroidally compactified supermembrane
with central charges. The supermembrane with central charges was studied in [22, 23] and
it is responsible for the generation of new terms in the Hamiltonian that render the su-
persymmetric spectrum purely discrete with finite multiplicity from [0,+∞) as rigorously
proved in [24]. Consequently, it can represent part of the microscopical degrees of freedom
of the M-theory. It is a well-known fact that the supermembrane on M11 has a continuous
spectrum [25] and this behaviour does not change simply by compactifying the manifold.

The discreteness property of the supermembrane in the presence of fluxes C± that we
refer is -up to now- a condition particular to the cases considered. The spectra of both
theories (the one with a central charge condition and the one with fluxes C±) only differ
on a constant shift. We believe that the understanding of the dynamics of the bosonic
sector of these well-behaved supermembranes, is an important step towards its full-fledged
characterization. A characteristic of these membranes, different from the usual ones is that
classically they do not contain string-like spikes with zero cost energy [26], hence classically
they admit an interpretation as extended objects with preserved topology that do not split
into pieces.

In this work we obtain some solutions to the equations of motion (E.O.M) associated
to the bosonic sector of the supermembrane (also denoted along the paper as membrane or
M2-brane) toroidally compactified onM9×T 2 formulated on the LCG on a C± background.
This simple target space still captures all of these new features. The membrane with fluxes
has a symplectic gauge field and a nontrivial U(1) gauge over its worldvolume.

We compare our results for a vanishing symplectic gauge connection with those of [20]
adding the topological flux condition. This condition is equivalent to impose the so-called
central charge restriction [27]. The central charge condition is a geometrical condition
imposed on the wrapping of the membrane around the compactified target-space that
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induces the presence of monopoles over the worldvolume and generates a central charge in
the supersymmetric algebra.

The dynamical equations for the M2-brane with fluxes are a system of nine non-linear
coupled partial equations highly nontrivial plus three constraints. Moreover, it is known
that those equations may admit soliton solutions when they are formulated on certain
backgrounds. In our analysis we also consider other solutions, that we denote as ‘Q-ball
like’, which admit U(1) Noether charges and for the approximations considered they exhibit
a discrete spectrum. These results open a window for a future study -outside of the scope
of this paper- to characterize further these solutions in order to determine whether they
can truly model Q-ball solitons.

The paper is structured as follows: in section 2. we review the formulation of the
supermembrane toroidally wrapped on M9×T 2 subject to a C± flux condition. We explain
its relation with the formulation of the supermembrane compactified on the same target
space with a central charge condition associated to an irreducible wrapping. From section 3.
to section 7. we present our results. In section 3. we obtain the E.O.M. of the (bosonic)
membrane on a background C± and we discuss the type of ansätze that we will explore.
In section 4. we obtain explicit spinning solutions for the M2-brane with fluxes when
formulated in a particular embedding in the absence of a symplectic gauge field. We also
obtained the mass operator of the M2-brane with fluxes C± formulated in this background
and we show that it contains the energy operator found in [20]. In section 5. we characterize
new solutions for the toroidal membrane that we denote as ‘Q-ball like’, for zero symplectic
gauge field. We perform a numerical analysis and we obtain the first eigenvalues and
eigenfunctions of its discrete spectrum for different boundary conditions. We discuss the
discrete landscape and structure of the solutions with and without central charge. In
section 6. we obtain new solutions to the approximate equations that also include a non-
vanishing gauge field. We discuss several cases: a first one, more restrictive, in which the
approximation is imposed on both of the dynamical degrees of freedom, i.e. the complex
scalar fields and the functions associated to the components of the gauge symplectic field, a
second case in which the approximation is only imposed on one of the complex scalar fields,
allowing to have a mixed dynamical system, and a third one in which the approximation
is only imposed on the functions associated to the functions associated to the symplectic
gauge field. We discuss the solutions on each case. In section 7. we consider the full-
fledged system of nonlinear PDE equations. We obtain mathematical exact solutions for
the case with Za with a = 1, 2, 3 constant, and Za a spinning ansatz. In section 7.3 we
discuss why these solutions in spite of solving exactly a complex nonlinear seven coupled
equation system they are non-physical since their associated one-form does not fulfill the
physical requirement of exactness required to describe the symplectic gauge field. We
provide approximate admissible physical solutions allowing a symplectic gauge field for the
Za ansätze considered. In section 8 we present our discussion and conclusions.

2 The toroidally compactified M2-brane with C± fluxes

We review recent results obtained in [21] and [28] in the supermembrane theory in the
L.C.G. formulated on a M9×T 2 background with two-form fluxes induced by the presence
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of a quantized constant bosonic 3-form gauge fields Cµνλ.
This is a consistent background of the supergravity equations of motion. The M2-brane

is considered as a probe. When restricted to this background, the action of a supermem-
brane becomes greatly simplified [21]

S = − T
∫
d3ξ

{√
−g + εuvwθ̄Γµν∂wθ

[1
2∂uX

µ(∂vXν + θ̄Γν∂vθ)

+ 1
6 θ̄Γ

µ∂uθθ̄Γν∂vθ
]

+ 1
6ε

uvw∂uX
µ∂vX

ν∂wX
ρCρνµ

}
.

(2.1)

where the (Xµ(ξ) represents the embedding coordinates and ξu the worldvolume coordi-
nates. θα(ξ) represents a Majorana spinor of 32 components that transforms as an scalar
under reparametrizations in the worldvolume. µ, ν, λ denote the bosonic target space in-
dices awhile u, v, w denote the worldvolume ones.

This supergravity background is an asymptotic limit of a supergravity background
originally discovered by [29, 30] generated by a M2-brane acting as a source. The metric
is given by

ds2 =
(

1 + k

r6

)− 2
3
dxµ̄dxν̄ηµ̄ν̄ +

(
1 + k

r6

)− 1
3
dym̄dyn̄δm̄n̄ , (2.2)

for µ̄ = 0, 1, 2, m̄ = 3, . . . , 10 and r =
√
ym̄ym̄ the radial isotropic coordinate in the

transverse space. The 3-form in this background takes the form,

Cµ̄ν̄σ̄ = εµ̄ν̄σ̄(1 + k

r6 )−1 , (2.3)

When r →∞, the metric (2.2) goes to Minkowski metric and (2.3) is constant. This is the
background that we will consider from now on.

We now consider the supermembrane action in the Light Cone Gauge (LCG) on a M11
target space with constant gauge field Cµνλ closely following the definitions in [31]. The
supersymmetric action is [21],

S = T

∫
d3ξ{−

√
ḡ∆− εuv∂uXaθ̄Γ−Γa∂vθ + C+ + ∂τX

−C− + ∂τX
aCa + C+−} (2.4)

with1

Ca = −εuv∂uX−∂vXbC−ab + 1
2ε

uv∂uX
b∂vX

cCabc ,

C± = 1
2ε

uv∂uX
a∂vX

bC±ab , C+− = εuv∂uX
−∂vX

aC+−a ,
(2.5)

where a, b, c = 1, . . . , 9 label the target space transverse coordinates indices, and u, v = 1, 2
label the space-like worldvolume coordinates (σ1, σ2). It is possible to fix the variation
of some components of the 3-form by gauge invariance. In particular it is possible to
fix C+−a = 0 and C−ab = 0. We choose a background with C−ab = constant different
from zero.

1In order to be self-contained we include the definitions of [32]: ∆ = −g00 + ur ḡ
rsus being ḡrsgst = δr

t

and g ≡ detg = −∆ḡ (with ε0rs = εrs). ḡrs ≡ grs = ∂rX
a∂sX

bδab; ur ≡ g0r = ∂rX
− + ∂0X

a∂rX
bδab +

θ̄Γ−∂rθ; ḡ00 = 2∂0X
− + ∂0X

a∂0X
bδab + 2θ̄Γ−∂0θ.
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By performing a Legendre transformation the following Hamiltonian is obtained

H = T

∫
d2σ

{ 1
(P− − C−)

[1
2(Pa − Ca)2 + 1

4
(
εrs∂rX

a∂sX
b
)2
]

+εrsθ̄Γ−Γa∂sθ∂rXa−C+

}
(2.6)

subject to the primary constraints

Pa∂rX
a + P−∂rX

− + S̄∂rθ ≈ 0 , S + (P− − C−)Γ−θ ≈ 0 . (2.7)

In order to define the physical Hamiltonian X− must be eliminated. In [21] the dependence
on X− was eliminated by performing a canonical transformation on the configuration
variables without introducing non-localities. On the new variables the Hamiltonian of the
compactified theory on M9 × T 2 target space is the following one:

H̃ =T

∫
Σ
d2σ

{√
w

P̂ 0
−

[1
2

(
Pm√
w

)2
+ 1

2

(
Pi√
w

)2
+ 1

4
{
Xi, Xj

}2
+ 1

2
{
Xi, Xm

}2

+ 1
4 {X

m, Xn}2
]

+
√
w
[
θ̄Γ−Γm {Xm, θ}+ θ̄Γ−Γi

{
Xi, θ

}]
− C+

}
,

(2.8)

where the Xm,m = 3, . . . , 9 denote the transverse maps from the foliated worldvolume
Σ to M9 and Xi, i, j = 1, 2 the maps from Σ to T 2 and the Lie bracket is defined as
{A,B} = εuv√

w
∂uA∂vB. In the compactified case, in contrast to the noncompact one, the

last term in (2.8) for constant bosonic 3-form is a total derivative of a multivalued function,
therefore its integral is not necessarily zero. This Hamiltonian (2.8) is subject to the local
and global constraints associated to the area preserving diffeomorphisms (APD) connected
to the identity

d(PidX i + PmdX
m + θΓ−dθ) = 0 ,

∮
Cs

(PidX i + PmdX
m + θΓ−dθ) = 0 . (2.9)

In [21] it was found the Hamiltonian formulation of a supermembrane in the LCG com-
pactified on M9 × T 2 with a nontrivial two-form flux background induced by the presence
of constant quantized components of the target space three-form, C±, where

C± = 1
2ε

uv∂uX
r∂vX

sC±rs , (2.10)

and C±rs = εrsc± with c± 6= 0 is a constant coefficient, such that it has an associated
2-form flux background FBack2∫

T 2
C± =

∫
T 2
FBack2 = k ∈ Z, k 6= 0. (2.11)

Upon toroidal compactification the background still corresponds to the asymptotic limit of
a supergravity solution. The quantization condition on the three-form implies the existence
of a topological condition on the background associated to the presence of a two-form flux
condition over the torus whose pullback on the worldvolume acts as an extra constraint on
the Hamiltonian. Due to the flux condition, it is no longer possible to perform changes of
the three-form that could violate it, providing stability to the classical solutions.
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In [22, 23] the supermembrane with central charges associated with an irreducible
wrapping was obtained. It corresponds to a M2-brane formulated on M9 × T 2 subject
to a topological condition associated to an irreducible wrapping. It has the distinctive
property of having a purely discrete spectrum with eigenvalues of finite multiplicity as
rigorously shown in [24]. In the following we will shorten it by MIM2 since it represents a
supermembrane minimally immersed in the background. The embedding maps Xm(τ, σ, ρ)
on the non-compact space are defined as Xm(τ, σ, ρ) : Σ → M9 with m = 2, . . . , 8 and
respectively the Xr(τ, σ, ρ) : Σ → T 2, where r = 9, 10, describe the embedding on the
compactified 2-torus. The coordinates of the supermembrane worldvolume are denoted
by (τ, σ, ρ) parametrizing Σ × R with Σ denoting a Riemann surface of genus one and R
parametrizing the time. The maps Xr satisfy the standard winding condition∮

Cs

dXr = Rrms
r , (2.12)

where ms
r are the winding numbers and Rr the torus radii. The MIM2 is subject to an

irreducible wrapping condition∫
Σ
dXr ∧ dXs = εrsnAT 2 , n ∈ Z/{0} , (2.13)

where AT 2 represents the 2-torus target space area. The above condition is responsible
for the appearance of a non-vanishing central charge in the supersymmetric algebra. This
condition implies that the one-forms associated with the embedding map of the compact
sector, can be globally decomposed by a Hodge decomposition as follows dXr(σ, ρ, τ) =
dXrh(σ, ρ) + dAr(σ, ρ, τ), with dXrh = Rrms

rdX̂s(σ, ρ) a closed one-form defined in terms
of the harmonic forms dX̂s and dAr an exact one-form. In [27] It was shown that the
integer n associated with the central charge condition is n = detW where W is the winding
matrix. The central charge condition corresponds to a monopole condition given by the
curvature F̂ = εrsdX

r
h ∧ dXs

h associated to a nontrivial U(1) gauge field F̂ = dÂ defined
on the membrane worldvolume. The bosonic LCG Hamiltonian of the theory corresponds
to [22, 23]

HMIM2 = T−2/3
∫

Σ
d2σ
√
W

[1
2

(
Pm√
W

)2
+ 1

2

(
Pr√
W

)2]
+ T−2/3

∫
Σ
d2σ
√
W

[
T 2

4 {X
m, Xn}2 + T 2

2 (DrXm)2 + T 2

4 (Frs)2
]
,

(2.14)

where T is the tension of the membrane and W is the determinant of the induced spatial
part of the foliated metric on the membrane, {A,B} = 1√

W
εab∂aA∂bB; is the symplectic

bracket with a, b = 1, 2 and ∂a = ∂σ, ∂ρ and
√
W = 1

2ε
abεrs∂aX̂∂bX̂ defined in terms of

the harmonic one-forms dX̂ of the Riemann surface. The canonical momentum associated
to the scalar fields Xm, Ar respectively are Pm y Pr. Due to the imposition of the central
charge condition, there exists a new dynamical degree of freedom Ar whose one-form A =
dA transforms as a symplectic connection under symplectomorphisms. This gauge field is
not present on a toroidal M2-brane formulation without this condition. The symplectic
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derivative is defined as Dr• = Dr • +{Ar, •} with Dr• = 2πmu
r θuvRr

εab
√
W
∂aX̂

v∂b • . The
derivative Dr is defined in terms of the moduli of the 2-torus, the harmonic one-forms dX̂r,
and one matrix θuv with u, v = 9, 10, related to the monodromy associated to its global
description in terms of a torus bundle [33]. Therefore, the Hamiltonian contains new terms
associated to the symplectic covariant derivative of the scalar embedding maps DrXm and
a symplectic curvature F defined by

Frs = DrAs −DsAr + {Ar, As} . (2.15)

The constraints of the theory associated to the local Area Preserving Diffeomorphism
(APD) are:

DrPr + {Xm, Pm} ≈ 0 , (2.16)

and to the APD global constraints,∮
Cs

((
Pr√
W

)
∂aX

r +
(
Pm√
W

)
∂aX

m
)
dσa ≈ 0 . (2.17)

In [21] it was proved that supermembrane with C± fluxes is in one-to one correspondence
with the so-called supermembrane with a central charge condition associated to an irre-
ducible wrapping modulo a constant shift. Indeed, it was shown that∫

T 2
FBack2 =

∫
Σ
F̂ . (2.18)

Hence in the following we will refer indistinctly to this condition as the flux quantization
condition or the central charge condition.2 The Hamiltonian formulation of a supermem-
brane on this nontrivial quantized C± background corresponds to

Hfluxes
C± = HMIM2 +

∫
Σ
C+ . (2.19)

Hence, both Hamiltonians differ on a constant given by the value on
∫

ΣC+ and they
have equal equations of motion. This relation between these a priori unconnected two
sectors can be interpreted as a kind of M2-brane ‘duality’.

Furthermore, a third equivalence was found in [21]. It was shown that the supermem-
brane with fluxes C± compactified on M9×T 2 can be expressed as a U(1) supermembrane
on a twisted torus [28] whose connection is defined in terms of the monopole connection
associated to the central charge and a new dynamical U(1) gauge field. It is constructed
in terms of the a multivalued Xhr and a single-valued Ar embedding maps,

A = 1
2εrs(A

rdXs
h −AsdXr

h +ArdAs) . (2.20)

Understanding the dynamics of those scalar fields as well as Xm is important also in
the characterization of the U(1) gauge field and its associated U(1) curvature, FU(1) = dA.

2Strictly speaking the induced C± worldvolume flux is proportional to the central charge condition as
c±n, for c± = 1 the equality holds. One can always redefine the wrapping numbers to absorb this factor
without altering the results.
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The symplectic curvature and the U(1) curvature satisfy the very nontrivial property that
FU(1) = F when expressed in terms of the embedding maps Xhr, Ar. In this paper, for
simplicity, we will adopt the point of view of the characterization of the curvature in terms
of the symplectic gauge field A without further reference to the U(1) gauge connection.

3 General system of equations of motion

In this section we analyze the system of equations that represents the dynamics of the
supermembrane on a quantized constant background field C±. In the following we will
consider for simplicity the tension of the membrane T = 1. The Lagrangian density of the
theory can be obtained by performing a usual Legendre transformation of the Hamiltonian
density defined as

HT =
√
WHc + Λφ, (3.1)

where Λ represents a Lagrange multiplier and φ = −φAPD represents the APD constraint
given by equation (2.16). It contains the Lagrangian of MIM2, formerly obtained in [34],
plus a constant term associated to the flux contribution. Putting together the central
charge and the C+ flux contribution in a single term K = 1

8n
2 + nc+, the action is then,

S =
∫
dτdσ2LT = −

∫
dτdσ2√W

[1
2(DiXm)2 + 1

4 {Xm, Xn}2 + 1
4F

2
ij

]
+K. (3.2)

Since the C+ contribution gives a constant term, that is added to the central charge con-
tribution, its equations of motion are equal to those of the M2-brane with central charges.
The symplectic field strength is defined as Fij = DiAj − DjAi + {Ai, Aj} and it now
runs over the indices i, j = 0, r with A0 = Λ and D0 = ∂τ . The symplectic covariant
derivative gets also generalized DiXm = DiX

m + {Ai, Xm}. As explained in [35, 36] the
gauge freedom of the system allows to fix Λ = 0 and then the Lagrangian density function
L = LT −K reduces to

√
W
−1
L = 1

2[(Ẋm)2 + (Ȧr)2]− 1
4 {Xm, Xn}2 −

1
2 (DrXm)2 − 1

4F
2
rs (3.3)

The nonlinear system of equations that one has to solve is the following: From (3.3)
we derive the equations of motion for the dynamical fields Xm(τ, σ, ρ) and Ar(τ, σ, ρ)

Ẍm(σ, ρ, τ) = {Xn, {Xn, Xm}}+ {Xr,DrXm} , (3.4)
Är(σ, ρ, τ) = {DrXm, Xm}+ {Frs, Xs} , (3.5)

subject to satisfy the APD constraint of the theory

Dr
(
Ȧr
)

+
{
Xm, Ẋm

}
= 0 for r = 1, 2, (3.6)

and the topological central charge condition that restricts the winding numbers allowed for
the harmonic contributions associated to the multivalued maps, Xrh = Rrm

s
rX̂s(σ, ρ),

n = det(ms
r). (3.7)
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In order to find the admissible M2-brane solutions, the system of equa-
tions, (3.4), (3.5), (3.6) and (3.7) must be solved. For simplicity we will also assume
one of the scalar fields constant and we will fix the harmonic sector as in [20], as follows

X2 = constant, Xhr = Rr(nrσ +mrρ), r = 1, 2. (3.8)

For this ansatz
√
W = 1. There are some differences with the case analyzed in [20].

The main one is associated to the topological restriction imposed called ‘central charge
condition’. Consequence of it is that appears a different degree of freedom, Ar. This
field must be single-valued to define a physically admissible symplectic gauge connection
A = dAr in the theory. The E.O.M. for X2 constant, can be expressed in terms of complex
variables Za with a = 1, 2, 3 where Za(τ, σ, ρ) = X2a+1 + iX2a+2. They are,

Z̈c = 1
2

3∑
a=1

({
{Zc, Za} , Za

}
+
{{
Zc, Za

}
, Za

})
+

10∑
r=9
{Xr,DrZc} , (3.9)

Är = 1
2

3∑
a=1

({
DrZa, Za

}
+
{
DrZa, Za

})
+

10∑
s=9
{Frs, Xs} , (3.10)

subject to the APD constraint of the theory:

1
2

3∑
c=1

({
Żc, Z̄c

}
+
{ ˙̄Zc, Zc

})
−DrȦr = 0 . (3.11)

Due to the complexity of the equations we will assume a separation of the temporal and
spatial dependence for the scalar field that represents the embedding into the noncompact
sector.

We will assume
Za = fa(σ, ρ)eiωaτ . (3.12)

The E.O.M. for Za become

ω2
cfc = −∂2

σfc

[ 10∑
r=9

[Rrmr + ∂ρAr]2 +
3∑

a=1
(∂ρfa∂ρf̄a)

]
(3.13)

+∂2
σρfc

[ 10∑
r=9

2 (Rrnr + ∂σAr) (Rrmr + ∂ρAr) +
3∑

a=1

[
∂σfa∂ρf̄a + h.c.

]]

−∂2
ρfc

[ 10∑
r=9

(Rrnr + ∂σAr)2 +
3∑

a=1

(
∂σfa∂σf̄a

)]

−∂σfc
∑
r,a

[
∂2
σρAr (∂ρAr +Rrmr)− ∂2

ρA
r (∂σAr +Rrnr)

+1
2
[
(∂2
σρfa∂ρf̄a − ∂2

ρfa∂σf̄a) + h.c.
] ]

−∂ρfc
∑
r,a

[
∂2
σρAr (∂σAr +Rrnr)− ∂2

σA
r (∂ρAr +Rrmr)

+1
2
[
(∂2
σρfa∂σf̄a − ∂2

σfa∂ρf̄a) + h.c.
] ]

.
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The E.O.M. for Ar are:

Är = 1
2Rr

3∑
a=1

[ (
nr∂

2
σρfa −mr∂

2
σfa

)
∂ρf̄a −

(
nr∂

2
ρfa −mr∂

2
σρfa

)
∂σf̄a

]
+ h.c. (3.14)

+1
2

3∑
a=1

[
∂σ (∂σAr∂ρfa − ∂ρAr∂σfa) ∂ρf̄a − ∂ρ (∂σAr∂ρfa − ∂ρAr∂σfa) ∂σf̄a

]
+ h.c.

+
10∑
s=9

∂σ
[
Rr (nr∂ρAs −mr∂σAs)−Rs (ns∂ρAr −ms∂σAr)

]
(∂ρAs +Rsms)

−
10∑
s=9

∂ρ
[
Rr (nr∂ρAs −mr∂σAs)−Rs (ns∂ρAr −ms∂σAr)

]
(∂σAs +Rsns)

+
10∑
s=9

∂σ (∂σAr∂ρAs − ∂ρAr∂σAs) (∂ρAs +Rsms)

−
10∑
s=9

∂ρ (∂σAr∂ρAs − ∂ρAr∂σAs) (∂σAs +Rsns) ,

and the APD constraint in components is

0 = iω
3∑
c=1

(∂σfc∂ρf̄c − ∂ρfc∂σf̄c) +
10∑
r=9

Rr(∂σȦrmr − ∂ρȦrnr) (3.15)

+
10∑
r=9

(∂σȦr∂ρAr − ∂ρȦr∂σAr).

The system of equations is subject to the topological restriction given by the non-
vanishing central charge condition

n9m10 − n10m9 = n 6= 0 n ∈ Z, (3.16)

where mixed partial derivatives independent have been assumed to be independent of the
derivation order ∂2

σρ = ∂2
ρσ. One can realize that the system of equations is highly nonlinear.

We will assume in the following different types of ansatz for the complex scalar fields Za and
for Ar. We analyze different cases for the complex scalar field: i) Za constant, ii) a Za with
fa = rae

i(kaσ+laρa) and constant ra. We will denote it indistinctly as rotating or spinning.
This ansatz was originally proposed by [11, 20]. iii) Za with fa(σ, ρ) an arbitrary real
function. We will denote this last ansatz as ‘Q-ball like’ in spite of the toroidal symmetry
associated to the membrane worldvolume. The reason for this name is that this type of
ansatz has been used in the context of Q-balls, and the fact that there is an associated
U(1) Noether charge defined as

Qa = i

∫
Σ
dρdσ(ZaŻa − ŻaZa), (3.17)

which for the ansatz proposed corresponds to

Qa = ωa

∫
d2σf2

a (σ, ρ). (3.18)

In any case, its solitonic nature, if it exists requires a more profound study outside of the
scope of this paper. Here, it represents just a name classifying the type of ansatz. In the
following we will shorten it as QBL ansatz.
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On the gauge field side, we will consider six types of different embeddings associated
to Ar: a constant one, two types of polynomial ansätze that we denote as linear and
‘separable’, a periodic regular sinusoidal solution, a rotating ansatz, and a QBL ansatz.
We will see that the APD constraint as well as the central charge condition eliminates most
of the possible embeddings.

4 Spinning membrane solutions of the M2-brane with fluxes C±

In this section we show that spinning embeddings are solutions to the M2-brane with fluxes
C±. We will also show that the mass operator of the M2-brane with fluxes C± contains
the energy contribution obtained in [20] and hence the subset of the spinning solutions
found in the aforementioned paper that also preserve the worldvolume flux condition, i.e.
the central charge condition as also solutions of the M2-brane with C± fluxes. In order
to obtain spinning solutions of the M2-brane we fix the background component of the
three-form C+ = 0 imposing a non-vanishing flux condition over C− and we assume the
following embedding:

Ar(τ, σ, ρ) = constant, X2(τ, σ, ρ) = constant , (4.1a)
Za(τ, σ, ρ) = rae

i(kaσ+laρ)eiωaτ , with a = 1, 2, 3; (4.1b)
Xr(τ, σ, ρ) = Rr (nrσ +mrρ) + qrτ +Ar(τ, σ, ρ), r = 9, 10 , (4.1c)

where here it is assumed ra to be constant, ωa a rotation frequency, ka, la integers associated
to the Fourier modes and qr integers parametrizing the KK modes. The E.O.M. system
particularized to Ar = constant is the following one. For Zc:

ω2
cfc =

10∑
r=9

3∑
a=1

[
− ∂2

σfc
[
(Rrmr)2 + (∂ρfa∂ρf̄a)

]
− 1

2∂σfc
[
(∂2
σρfa∂ρf̄a − ∂2

ρfa∂σf̄a) + h.c.
]

+∂2
σρfc

[
2
(
R2
rnrmr

)
+ (∂σfa∂ρf̄a + h.c.)

]
(4.2)

−∂2
ρfc

[
(Rrnr)2 +

(
∂σfa∂σf̄a

)]
− 1

2∂ρfc
[
(∂2
σρfa∂σf̄a − ∂2

σfa∂ρf̄a) + h.c.
] ]

.

The E.O.M. for Ar, (3.14) are:

0 =
3∑

a=1

[
[
(
nr∂

2
σρfa −mr∂

2
σfa

)
∂ρf̄a −

(
nr∂

2
ρfa −mr∂

2
σρfa

)
∂σf̄a] + h.c.

]
(4.3)

See that even for Ar constant, the above equation is not trivial. The APD constraint
in components becomes

0 =
3∑
c=1

[
(∂σfc∂ρf̄c − ∂ρfc∂σf̄c)

]
. (4.4)

The central charge condition (3.16) must also be satisfied. If now the ansatz (4.1) is
substituted, it is possible to solve all of the equations and constraints and one obtains a
spinning Za solution with a frequency explicitly given by

ω2
c =

3∑
a=1

r2
a (kalc − lakc)2 +

∑
r=9,10

R2
r (nrlc −mrkc)2 , (4.5)
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for lc, kc arbitrary and ms, ns satisfying the central charge condition. These results are in
complete agreement with the results obtained in [20] restricted to satisfy in addition the
central charge condition.

In the following, we will show that the mass operator of the M2-brane with fluxes C±
formulated on M9 × T 2 target space contains the energy expression obtained in [20] and
hence, it is natural to explain that all of their spinning solutions, that we denote succinctly
by BRR solutions, that also satisfy the central charge condition are also solutions of the
M2-brane with C± fluxes, as we have previously shown by direct computation. By using
the mass operator of MIM2 [33], and the duality reviewed in section 2., it is straightforward
to obtain the mass operator for the M2-brane with fluxes,

M2 = T 2[(2πR)2n (Imτ̃)]2 +
(
m|qτ̃ − p|
R[Imτ̃ ]

)2
+ T 2/3HMIM2 +

∫
Σ
C+ , (4.6)

where T denotes the membrane tension, n the worldvolume flux units or equivalently the
central charge, m is a relative prime integer number, q, p are integers denoting the KK
charges, R the radius and τ̃ = τ̃1 + iτ̃2 the Teichmuller parameter of the target space
2-torus.

The first two terms in the mass operator correspond respectively to the central charge
and the Kaluza Klein (KK) momentum contribution. In order to reproduce the BRR
energy expression MBRR from the M2-brane with fluxes theory in the LCG, we fix the
background component of the three-form C+ = 0 imposing a non-vanishing flux condition
over C− and we assume Ar to be constant with Za and Xr satisfying the embedding ansatz
given by (4.1). If we assume a rectangular 2-torus, i.e. τ1 = 0, and we define new KK
integers as ñ10 = mp, ñ9 = mq, the KK momentum contribution for this ansatz can be
re-expressed as(

m|qτ̃ − p|
R11[Imτ̃ ]

)
= ñ2

9
R2

9
+ ñ2

10
R2

10
= (P kk9 )2 + (P kk10 )2, ñ10 = mp, ñ9 = mq , (4.7)

being R9 = R11, and R10 = R11Imτ̃ . The central charge contribution, particularized to
this background becomes

T 2[(2πR11)2n (Imτ̃)]2 = T 24π2R2
9R

2
10 (n9m10 −m10m9) , (4.8)

where we have used the central charge expression (3.16) corresponding to the determinant
of the wrapping numbers.

Finally, in [20] the angular momentum defined was defined in terms of the frequency
modes as

Ja =
∫
dσρ

δS

δβ̇a
= 4π2Tr2

aωa . (4.9)

Substituting it in the Hamiltonian and using the equation of motion associated to the
complexified embedding maps Za and the value for the frequency ωc whose expression
is (4.2), it is then possible to formulate the mass operator on this background,

E = 2(4π2T )2/3Jaωa + (4π2T )2R2
9R

2
10(n9m10 − n10m9)2 + ñ2

9
R2

9
+ ñ2

10
R2

9
. (4.10)
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It corresponds to the energy operator of a spinning membrane obtained in [20]. Since the
M2-brane with fluxes is formulated in the LCG, one plane less is observed. We should recall
that there is an extra topological condition imposed on the M2-brane with fluxes that is not
present in the aforementioned formulation. It restricts the set of allowed spinning solutions
of [20] to the subset that also satisfy it. In summary, we have shown that the BRR results
can be obtained from the M2-brane with fluxes once the background is fixed, i.e. C+ = 0
and we have frozen the dynamical degree of freedom associated to the gauge symplectic
connection Ar and the ansatz (4.1) is assumed. This background has also restricted the
APD constraint expression to the one used by [20]. Hence BRR spinning solutions that
also satisfy the C− flux condition (2.13) are naturally contained in the allowed spinning
solutions of the M2-brane with C± fluxes.

5 New solutions with constant gauge field

In this section we obtain approximate solutions to the E.O.M. using a QBL ansatz on Za.
These type of solutions had not been considered previously on this target space, and they
are interesting since in principle they could model non-topological solitons. However at this
level, we do not analyze any solitonic behaviour but we just focus on the admissible solutions
that model the dynamics of the M2-brane with fluxes. The QBL ansatz corresponds to
Za = fa(σ, ρ)eiωaτ , a = 1, 2, 3 with fa(σ, ρ) a real function. The set of equations of motion
with Ar = constant simplifies to

−ω2
cfc =

3∑
a=1

[
(∂2
σfc∂ρfa − 2∂2

σρfc∂σfa + ∂σfc∂
2
σρfa − ∂ρfc∂2

σfa ) ∂ρfa (5.1)

+
(
∂2
ρfc∂σfa − ∂σfc∂2

ρfa + ∂ρfc∂
2
ρσfa

)
∂σfa

]
+

∑
r=9,10

R2
r

(
m2
r∂

2
σ + n2

r∂
2
ρ − 2nrmr∂

2
ρσ

)
fc

The E.O.M. for Ar are nontrivial in spite that Ar is constant, indeed they represent a
restriction to the solutions to (5.1):

0 =
3∑

a=1

[(
mr∂

2
σfa − nr∂2

σρfa
)
∂ρfa −

(
mr∂

2
ρσfa − nr∂2

ρfa
)
∂σfa

]
. (5.2)

The wrapping numbers must also satisfy to the central charge condition (3.16). The
APD constraint associated to the complex scalar field Za verifies identically leaving only a
residual constraint over the Ar maps that is trivially satisfied for Ar constant.

Since the system of equations is highly non-linear in order to simplify it further we
perform an approximation that we denote as ‘small Q-ball’. The approximate Za will be
parametrized by an arbitrary constant λ that we will assume to be small with

Za = λfa(σ, ρ) eiωτ . (5.3)

We neglect the terms of order O(λ2). See that this approximation acts on the terms that are
products of fa but it does not affect to the order of derivatives appearing in the equation.
By doing it the equation (5.2) is not considered and (5.1) gets simplified.
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We obtain an infinite set of solutions with a discrete set value of frequencies allowed.
Indeed the membrane eigenfunctions can be determined numerically and they have an asso-
ciated ‘breathing mode’ determined by the frequency eigenvalue. This is a very interesting
result associated to the fact that we obtain an elliptic operator,3 that it admits an infinite
discrete set of solutions.

Now we consider the excitations of the M2-brane in the three complex noncompact
planes equal, i.e. that Za = Z, ∀a. The motion of each plane disentangles and hence many of
the terms in the equation (5.1) disappear. Indeed the approximation only acts eliminating
the restriction imposed by the Ar E.O.M. in (5.2) and it leaves untouched the Za E.O.M.

In this isotropic regime, the Za E.O.M. for each a reduce to

− C1
(
∂2
σf
)

+ C2
(
∂2
σρf

)
− C3∂

2
ρf = ω2f , (5.4)

with

C1 =
∑
r

R2
rm

2
r , C2 = 2

∑
r

R2
rmrnr, C3 =

∑
r

R2
rn

2
r . (5.5)

The APD constraint is trivially verified and the central charge condition (3.16) must
be satisfied.

5.1 Numerical approach to the solution

A numerical approximation to the solution of the equation (5.4), can start by representing
this equation as an eigenvalue problem,

Lpfα(σ, ρ) = ω2 fα(σ, ρ), (5.6)

using the corresponding eigenfunctions and eigenvalues to represent any particular solution.
With this in mind we have defined Lp, as the differential operator in the left side of the

equation (5.4), p = {C1, C2, C3} the parameters associated to these operator and ω the set
of eigenvalues associated to eigenfunctions. For simplicity, we will focus on a single plane.

In order to estimate the numerical solutions, it is necessary to establish boundary
conditions on the boundary (Γ) of the domain of f . In this case we will present three types
of these conditions: i) Periodic conditions, ii) Periodic conditions with restrictions and iii)
Dirichlet conditions.

In all cases, the parameters C1, C2, and C3 were chosen in order to satisfy the central
charge condition (3.16) with nk,mk, Rk ∈ [1, 102] and k = 9, 10. In this case, there are 1012

3-tuples {C1, C2, C3}.
The figure 1 shows an interesting structure in the distribution of the first 56 of these 3-

tuples (gray dots) and how the 3-tuples that do not meet the central charge condition (3.16)
(big red dots) are inserted into that structure. Although in this case we use a small
subset of the possible values of the parameters, our numerical experiments show that the

3For 1
4C

2
2 − C1C3 < 0 the equation is elliptic. More precisely, the previous condition is always satisfied

since −R2
9R

2
10(m9n10 − m10n9)2 < 0 for n 6= 0 and any arbitrary value of the constants Rs,ms, ns. For

vanishing central charge, n = 0 and 1
4C

2
2 − C1C3 = 0, then the operator is parabolic.
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Figure 1. Distribution of the parameters of the differential operator. Grey points parametrize
the 3-tuples associated to the central charge condition and red points those with vanishing cen-
tral charge.

structure of their distributions is maintained in larger sets of the order of 106 data points.
The distribution of the allowed discrete solutions in the set of parameters for the elliptic
operator, i.e. its landscape, clearly dominates over those with zero central charge.

It is interesting to realize that the set solutions associated to the parabolic operator
describing the solutions of the bosonic rotating membranes trivially wrapped follows a
radial structure.

5.1.1 Periodic boundary conditions

These are the natural boundary conditions for the toroidal bosonic membrane. Here we set:

f(0, ρ) = f(2π, ρ), f(σ, 0) = f(σ, 2π) , (5.7)

with n9 = 62, n10 = 28, m9 = 70, m10 = 73, R9 = 4 and R10 = 3. In this case the first 9
eigenvalues (ω/C ′1s) are: 5.74486× 10−16, 0.152354, 0.152354, 0.39028, 0.390286, 0.54258,
0.54258, 0.547774, 0.547774.

The eigenvalues are degenerated for the set chosen except the first one. The degen-
eration seems to be removed for larger values of the set of parameters. Although this is
not the case for the particular example considered, see that the central charge can be kept
small for arbitrarily large wrapping numbers.

5.1.2 Periodic boundary conditions with restrictions

The periodic boundary conditions for the toroidal bosonic membrane can admit restrictions
still satisfying the equations. In this case one of the points satisfies Dirichlet conditions. It
is assumed to be fixed to zero. Here we set:

f(0, ρ) = f(2π, ρ), f(σ, 0) = f(σ, 2π), f(0, 0) = 0, (5.8)

with n9 = 62, n10 = 28, m9 = 70, m10 = 73, R9 = 4 and R10 = 3. In this case the first
9 eigenvalues (ω/C ′1s) are: 0.012460, 0.152354, 0.180237, 0.390285, 0.413282, 0.542579,
0.545055, 0.547773, 0.581044. In this case the degeneration of the eigenvalues is removed.
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Figure 2. First nine eigenfunctions of the differential operator for periodic boundary conditions.

5.1.3 Dirichlet conditions

This last case corresponds to well-known boundary conditions. It can be naturally imposed
on open membranes. The closed membrane would not admit this type of boundary condi-
tions to produce nontrivial solutions. Here we only use it for illustrative purposes. We can
see the change in the allowed eigenfunctions with respect to the previous cases analyzed
due to the effect of the boundary conditions. In particular we can observe the effect in the
behaviour comparing with respect to the restricted case. Here we set:

f(0, ρ) = 0, f(σ, 0) = 0, f(2π, ρ) = 0, f(σ, 2π) = 0, (5.9)

with n9 = 62, n10 = 28, m9 = 70, m10 = 73, R9 = 4 and R10 = 3. In this case the first
9 eigenvalues (ω/C ′1s) are: 0.289021, 0.390560, 0.516266, 0.643088, 0.781355, 0.931779,
1.061183, 1.090063, 1.229781. In this case the eigenvalues are not degenerate.

Summarizing, the bosonic M2-brane with fluxes C± admits an approximate QBL solu-
tion propagating on the target space. The background fluxes and hence the central charge
condition impose an important restriction on the equations such that even in the case
considered here, with no propagating symplectic gauge field, one must take into account
the multivalued constant maps Xhr contributions. However, these results does not exclude
in any way the possibility to obtain an exact QBL solution for the complete system of
equations of the M2-brane with C± fluxes can exist, but its study is out of the scope of the
present work.
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Figure 3. First nine eigenfunctions of the differential operator for periodic boundary conditions
with restrictions.

6 Approximate solutions with a dynamical gauge field

The M2-brane with fluxes possesses a symplectic gauge field, an aspect that had not been
analyzed in the preceding sections. In this section we will discuss approximate solutions
to the problem. Firstly we search for solutions when an approximation is imposed on both
dynamical fields Za, Ar, secondly we study the case in which the approximation is only
imposed to the Za and thirdly the case in which the approximation is only imposed on the
Ar. We assume approximate QBL and approximate spinning embeddings on Za and we
analyze the allowed field configurations for Ar.

6.1 First order approximation on Za and Ar

We are interested in characterize further the QBL solutions for a bosonic M2-brane with C±
fluxes when a nontrivial Ar dependence is included. As previously considered in section
5. we perform an approximation that simplifies the E.O.M.. In this opportunity the
approximation will be done on the complex scalar field Za and on the Ar. We impose the
same approximation to the one performed in section 5. In particular, if Za = λZ̃a and
Ar = αÃr such that O(α) ∼ O(λ), we will neglect O(λ2), O(α2) and O(α.λ). One can
impose the same approximation on both dynamical fields, the complex scalar field and the
Ar global functions associated to the symplectic gauge field. The equations of motion for
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Figure 4. First nine eigenfunctions of the differential operator for Dirichlet boundary conditions.

Za = λfa(σ, ρ) eiωτ (3.13) in the approximation become

ω2
cfc = −D1 ∂

2
σfc +D2 ∂

2
σρfc −D3 ∂

2
ρfc. (6.1)

In the approximation the E.O.M. for the Ar become simplified

Är = −
10∑
s=9

[
2R2

smsns∂
2
σρAr − (Rsms)2 ∂2

σAr − (Rsns)2 ∂2
ρAr

]
(6.2)

−
10∑
s=9

RrRs
[
msmr∂

2
σAs + nsnr∂

2
ρAs − (msnr + nsmr) ∂2

σρAs
]
.

With respect to the APD first class constraint of the theory, the part of the APD
constraint associated to Za is automatically satisfied and there is a residual condition over
the Ar contribution that still has to be satisfied,

10∑
r=9

Rr(∂σȦrmr − ∂ρȦrnr) = 0 . (6.3)

Considering the above system of equations (6.1) (6.2) and (6.3) and assuming an admissible
periodic regular solution for Ar given by,

Ar = ar sin σ + br sin ρ+ crτ . (6.4)
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The equations (6.2) and (6.3) are satisfied for

m10 = R9
R10

(
a10
a9

)
m9 ; n10 = R9

R10

(
b10
b9

)
n9 . (6.5)

This implies that (R9a10
R10a9

) and (R9b10
R10b9

) must be an integer. The central charge is given by
the following expression

n =
(
a10
a9
− b10

b9

)
R9
R10

n9m9 , (6.6)

subject to a10
a9
6= b10

b9
to ensure being different from zero. The Ar function coefficients

become restricted to satisfy the equations. Indeed ar and br become proportional to each
other but with a proportionality constant different form one and such that its product with
the radii ratio gives an integer. The equation (6.1) now becomes expressed in terms with
the coefficients given by

D1 = R2
9m

2
9

[
1 +

(
a9
a10

)2
]
,

D2 = 2R2
9m9n9

[
1 +

(
a9
a10

)(
b9
b10

)]
,

D3 = R2
9n

2
9

[
1 +

(
b9
b10

)2]
. (6.7)

In principle these equations allow general embeddings with fa complex or real that
include spinning solutions, QBL solutions or spinning QBL solutions. In the following we
analyze two different cases: in the first one we consider Za being described by a QBL
ansatz on the three complex planes. This implies taking the fa real. In the second one
Za is describes by a spinning M2-brane on those three planes. For that case, the fa are
complex functions.

Approximate QBL solutions. The equation (6.1) for the Za approximate QBL em-
bedding Za = fa(σ, ρ)eiωaτ , a = 1, 2, 3 with fa(σ, ρ) a real function. As before it is also
described by an elliptic operator and it is completely analogous to the one solved numer-
ically in section 5. with modified coefficients Di for i = 1, 2, 3. It is possible to obtain an
infinite set of discrete eigenvalues of the frequency ωc.

Approximate spinning solutions. A second case that we analyze corresponds to a
spinning M2-brane with fc = rce

i(kcσ+lcρ) with rc constant and Ar is given by (6.4), in the
approximation considered. The system is also satisfied and for this case the frequency in
terms of the coefficients Di previously defined as

ω2
c = D1 k

2
c −D2 kclc +D3 l

2
c . (6.8)

This ansatz has an associated well-defined symplectic gauge field with a nonvanishing
curvature that contributes to the energy of the system.

In summary, under a first order approximation in both dynamical variables Za and
Ar it is possible to obtain an approximate QBL solutions and spinning solutions for the
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M2-brane with fluxes C± propagating on the three complex planes in the presence of a
well-defined nonvanishing small symplectic gauge field dA field on its worldvolume with a
curvature F 6= 0.

6.2 First order approximation on Z

Now we impose an approximation only to the Za scalar fields. We will analyze an interesting
case that corresponds to a membrane with different behaviour in the three complex planes
for non-vanishing Ar. We denote this case by ‘mixed case’. In one complex plane, i.e.
Z1, we impose a QBL ansatz where the approximation has been imposed. On the second
complex plane Z2 we assume a rotating ansatz and Z3 and X2 are assumed to be constant.
On Z2 and Ar in distinction with the previous subsection, no approximation is imposed.
Before the approximation we assume the following embedding,

Z1 = f(σ, ρ)eiΩτ ,
Z2 = reiβ = rei(kσ+lρ+ωτ) ,

Ar = arσ + brρ+ crτ ,

(6.9)

where Ω, the frequency for the ‘breathing’ mode of the membrane and ω the rotation
frequency in principle are assumed to be different.

The E.O.M. reduce to

(Z1) : Ω2f =− E1
(
∂2
σf
)

+ E2∂
2
σρf − E3∂

2
ρf, (6.10)

(Z2) : ω2 =
10∑
r=9

[k(Rrmr + br)− l(ar +Rrnr)]2 + [k(∂ρf)− l(∂σf)]2 (6.11)

− i
[
k(∂ρf)(∂2

σρf)− l(∂2
σf)(∂ρf)− k(∂2

ρf)(∂σf) + l(∂2
σρf)(∂σf)

]
,

(Ar) : 0 =Pr∂ρf∂2
σf +Qr∂σf∂

2
ρf − [Qr∂σf + Pr∂ρf ] ∂2

σρf , (6.12)

with

E1 = r2l2 +
10∑
s=9

(msRs + bs)2, (6.13)

E2 = 2
(
r2kl +

10∑
s=9

(as +Rsns)(bs +Rsms),
)

(6.14)

E3 = r2k2 +
10∑
s=9

(nsRs + as)2 , (6.15)

and Pr = mrRr + br, Qr = nrRr + ar. Under the above ansatz, the APD constraint (3.15)
verifies directly, and central charge will restrict the wrapping numbers.

Approximation ‘small’ QBL. As before, we assume Z1 = λf1(σ, ρ)eiΩτ and neglect
the terms of order O(λ2). Since the fa functions modelling the QBL ansatz are coupled to
the Ar, one can consider (6.12) a restriction on the equation (6.10). The equation (6.12)
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for Ar the linear ansatz trivially verifies without imposing any further condition. The Z1
equation (6.10) for the approximate QBL ansatz has an analogous expression to the (5.4)
with modified coefficients Ei that now also depend on Ar through the ar, br coefficients.
The Z2 equation, (6.11) with the rotating ansatz can be explicitly solved for a constant
modified rotation frequency determined by the values of the winding numbers, the moduli,
the Fourier modes k, l and the Ar coefficients.

Ω2f = −E1
(
∂2
σf
)

+ E2∂
2
σρf − E3∂

2
ρf, (6.16)

ω2 =
10∑
r=9

[k(Rrmr + br)− l(ar +Rrnr)]2 . (6.17)

See that due to the approximation performed Z1 and Z2 E.O.M. become disentangled.
There is a rotating mode on the Z2 complex plane and a ‘breathing’ mode on the Z1 plane.
This solution also holds for Ar = constant particularizing the frequency to the values of
Ei with ar = br = 0. The Ar field generically constrains the function f allowed to model
the QBL ansatz, but the constraint disappears when we assume the approximation. The
validity of the linear Ar ansatz in terms of an associated symplectic gauge field will be
discussed at in section 7.3.

In summary, the mixed case considered here for the M2-brane with fluxes allows a
behaviour of approximate QBL on one plane and rotating in other for a constant and
linear Ar.

First order approximation on the Ar. We have also explored other possibilities that
involve to impose the approximation uniquely in the gauge field Ar for the case of a rotating
ansatz on Za like (6.11) and a periodic regular function Ar given by the equation (6.4),
and we find that the system obliges to have zero central charge. Therefore, it does not
represent an admissible solution for the M2-brane with fluxes.

7 Analytical nontrivial Ar embeddings of the complete E.O.M. system

In this section we will search for exact analytical solutions of the complete system of
equations admitting a nonvanishing Ar for different ansätze of the Za. In particular we
will analyze the cases where the complex scalar field Za is a constant, a rotating solution
or a QBL solution. In the subsection 7.3 we will discuss the validity of these solutions as
admissible components of the symplectic gauge field.

7.1 Case: constant Za

This configuration corresponds to a supermembrane with central charges completely em-
bedded in the compact sector that propagates as a point-like particle in the noncompact
transverse space. In this case the equations of motions and the APD constraint get ex-
tremely reduced to

Är =
10∑
s=9
{Frs, Xs} , subject to DrȦr = 0. (7.1)
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• For embeddings associated to a linear ansatz Ar = arσ+brρ+crτ with Za = constant,
we obtain that it satisfies the four set of equations and admits an infinite type of
solutions given by the real values of a, b, c, d ∈ R.

• In the case of embeddings associated to a ‘separable’ ansatz Ar(σ.ρ, τ) = (arσ +
brρ)τ+cr, the APD constraint imposes restrictions to the equations and in distinction
with the ansatz previously analyzed, indeed it obliges A9 = A10 with

a =
(
R9n9 +R10n10
R9m9 +R10m10

)
b. (7.2)

The system again allows to satisfy the nontrivial central charge condition since it
constrains the real coefficient appearing in the Ar. In the analysis the stability of
the solutions was guaranteed by imposing the equations to be preserved at each
order of time τ . This stability criteria restricts enormously the possibility of having
polynomial ansätze of higher order in τ .

• One can analyze other solutions associated to the Ar gauge field: in the case of
QBL ansatz or a spinning one on the Za, the first class APD constraint imposes
a vanishing central charge. Modifications of the preceding solution like for example
A9 = r9(σ, ρ)cos(Ωτ), A10 = r10(σ, ρ)cos(Ωτ) with r9 6= r10 impose a zero frequency Ω
and then constitute a subset of the first case analyzed for cr = 0, and with A9 = A10.
It trivially implies a vanishing central charge.

7.2 Case: spinning membrane with nontrivial Ar field

As we have already discussed in section 3. there exists a subset of exact spinning M2 brane
with flux solutions with constant Ar. Now we will generalize this result to include solutions
with nontrivial Ar configurations. Imposing a rotating ansatz on the complex scalar fields
Za with a nontrivial Ar

Za(τ, σ, ρ) = rae
iβa(τ,σ,ρ), with a = 1, 2, 3;

Xr(τ, σ, ρ) = Rr (nrσ +mrρ) + qrτ +Ar(τ, σ, ρ), r = 9, 10 .
(7.3)

The precise equations of motion that one has to solve correspond to those shown in the
appendix, once that fa(σ, ρ) = rae

i(kaσa+laρ). As we have seen the system of PDE is very
complex, and the constraints restrict enormously the possibilities to obtain nontrivial solu-
tions. However we find various interesting cases that solve the system. They correspond to

• The linear embedding case, Ar = arσ+ brρ+ crτ : these embeddings satisfy automat-
ically all the set of equations fixing the frequency of the rotating ansatz ωc to the
following value in terms of the coefficients nr,mr, ka, la

ω2
c =

3∑
a=1

r2
a (kcla − lcka)2 +

10∑
s=9

[Rs(mskc − nslc)+(kcbs − lcas)]2 . (7.4)

• The ‘separable’ embedding case Ar = (arσ + brρ)τ is more subtle. It requires to
impose stability of the solutions such that the time dependence τ is cancelled order
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by order. This fact restricts enormously the equations allowed imposing also relation
between the coefficients.

χ ≡ a9
b9

= a10
b10

= kc
lc
. (7.5)

The APD constraint again imposes restriction when we apply the condition (7.5)

(χm10 − n10) = − R9b9
R10b10

(χm9 − n9) , (7.6)

in such a way that there is a nontrivial relation between the coefficients of the complex
variables Za and those of the gauge field. Imposing (7.5) and (7.6) the frequency
acquires the following value,

ω2
c = l2cR

2
9 (χm9 − n9)2

[(
b9
b10

)2
+ 1

]
, (7.7)

satisfying the central charge condition.

• Other ansätze have been also explored: for example a rotating or QBL ansätze on
the Ar are not allowed since they imply the vanishing of the central charge condition.

7.3 The symplectic gauge field

So far we have analyzed several scenarios in the presence of different ansätze for Ar: a
constant, linear, separable, or regular periodic embedings. We have also commented that
the QBL ansatz and rotating ansatz for the Ar are not allowed since they imply a vanishing
central charge. The symplectic gauge field is defined in terms of these functions Ar(σ, ρ, τ).
Indeed it corresponds to Ar = ∂aArdσ

a. However in order to be well-defined, it must
correspond to an exact one-form, whose symplectic curvature is topologically trivial. This
property that characterize is relevant for the quantization process in the bosonic and the
supersymmetric spectrum analysis. The theory acquires a new single-valued dynamical
degrees of freedom associated to a symplectic gauge field.

Clearly, the constant case and the regular periodic ansatz Ar = ar sin σ+ br sin ρ+ crτ

are single-valued with an exact associated one-form. The regular periodic ansatz implies a
well defined symplectic gauge field A = dA but it only satisfies the system in the approx-
imations for the embeddings discussed in section 6. The constant ansatz of Ar trivially
implies a vanishing symplectic gauge field.

However, the case of the linear and separable Ar ansätze are different. They satisfy
approximate equations of motion like occurs in the mixed case discussed in section 6.2.
They also satisfy exact analytical solutions to the fullfledged system of equations -where
no approximation is imposed- for a constant and rotating Za embedding. Nevertheless,
they have an associated multivalued one-form A and hence it cannot be interpreted as an
admissible symplectic gauge field. In other to correct it, the first thing to do is to impose
periodicity on the Ar function in order to be single-valued. Let us consider the linear case
to illustrate it. We define the function as follows ,

Ar = arσ + brρ+ crτ + dr − 2πars1(σ)− 2πbrs2(ρ), with σ, ρ ∈ [2πi, 2π(i+ 1)] i ∈ Z .

(7.8)
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We have now a piecewise linear function that corresponds to a sawtooth wave where s1(σ)
and s1(σ) represent the step functions. The function now is single-valued and periodic.
However in order to be an admissible component of a symplectic gauge field, its associated
one-form Ar must be exact. That is, it must verify that∮

Cs

Ar =
∮
Cs

dAr = 0, (7.9)

with Cs the homological one-cycle basis of the target space 2-torus. Since the function Ar
is single-valued but not regular, its derivative contains infinite delta functions,

dAr = ∂aArdσ
a = ar(1− 2πm(σ))dσ + br(1− 2πm(ρ))dρ, (7.10)

being m(x) the shah function, also called Dirac comb,

m(σ) =
+∞∑
s=−∞

δ(σ − 2sπ), m(ρ) =
+∞∑
q=−∞

δ(ρ− 2qπ), q, s ∈ N . (7.11)

Clearly, the exactness condition (7.9) cannot be achieved for any value of ar, br. Conse-
quently the symplectic curvature is also topologically nontrivial, something that is excluded
in the present theory. Furthermore, the deltas would also appear in the E.O.M. with no
clear interpretation of its meaning in terms of sources in the context of this theory.

In spite of these illnesses, one could try to define a regular associated field strength F
associated to the linear Ar. Since its generic structure has the following form

F9,10 = f9,10 +Bδ(σ − 2π)− Cδ(2ρ− 2π) +Dδ(σ − 2π)δ(2ρ− 2π), (7.12)

this could be achieved by imposing the coefficients B = C = D = 0. For the case of the
linear ansatz previously discussed, the coefficients can be explicitly computed

f9,10 = R9(n9b2 −m10a2) +R10(n10b1 −m10a1) + (a2b1 − a1b2),
B = 2π[R9m9a2 +R10m10a1 − (a2b1 − a1b2)],
C = 2π[R9n9b2 +R10n10b1 + (a2b1 − a1b2)],
D = 4π2(a2b1 − a1b2) ,

(7.13)

but even in this case the vanishing of the non-regular part of the field strength automatically
implies a vanishing central charge. Anyway, as we have already discussed, the linear Ar
embedding does not represent an admissible degrees of freedom.

The case of the separable ansatz on Ar is even worse because of its time dependence that
makes the associated one-form dAr to have a Dirac comb function for each time. Therefore
although this solution mathematically satisfies the complete system of equations, it does
not represent a physical solution.

Fourier expansion. It is possible to obtain an approximate solution to the complete
system of equations with a well defined associated symplectic gauge field. It corresponds
to approximate the sawtooth function representing the Ar linear solution of (7.8) by a
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Figure 5. Expansion of the approximated function in one variable to order N = 4, M = 4 with
ar = br = 1 and dr = 0, for a fixed time such that crτ = 1. Blue colors represent the lower values
of the function.

truncated Fourier series in the multivalued functions in (σ, ρ), see figure 5. The coefficients
of the expansion depend on ar, br as follows

Ar(σ, ρ, τ) ∼
N∑
n=1

2ar
(−1)n
n

sin (nσ) +
M∑
m=1

2br
(−1)m
m

sin (mρ) + crτ + dr , (7.14)

for N,M arbitrarily large finite numbers. For example see the figure 5. for the expanded
function to N = 4 and M = 4. In this case the function exhibits n × m local minima
on each period. This solution automatically fulfills all of the conditions of periodicity,
single-valued and an associated exact one-form, required to define properly the symplectic
gauge field and consequently its associated curvature. The equations of motion are then
approximately verified, with the approximation being better as the number N of considered
terms becomes higher but finite in the Fourier expansion.

8 Discussion and conclusions

We have obtained solutions to the classical equations of the bosonic sector of the supermem-
brane theory formulated onM9×T 2 in the presence of a quantized constant C± background.
This non-vanishing constant three-form background induces a two-form flux in the target
space that generates a worldvolume flux corresponding to a central charge condition. This
condition has a topological nature, it is associated to the presence of monopoles on its
worldvolume whose first Chern class characterizes the central charge integer. The so-called
central charge condition is also equivalent to impose a nontrivial irreducible wrapping con-
dition. It also exists a symplectic dynamical gauge field Ar defined on the worldvolume
whose components are specified by the derivatives of the global functions Ar discussed
along the paper. The particularity of the associated supermembrane on this background
is that its supersymmetric description exhibit a purely discrete mass spectrum with finite
multiplicity. The dynamics of well-defined quantum sectors of M-theory have not been
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previously studied. Classically, the M2-brane with fluxes does not posses string-like con-
figurations with zero energy cost and it is stable at quantum level. Hence the dynamics
of the solutions describe an stable extended object. The solutions to the equations of
motion of the M2-brane with fluxes are highly constrained because of the area preserving
diffeomorphims and the flux condition. In spite of this, the mass operator of the bosonic
M2-brane with fluxes for the particular spinning ansatz considered in section 4., when Ar is
assumed to be constant, contains the energy operator obtained in [20], hence the rotating
membrane solutions found by the authors that also satisfy the central charge condition,
are all M2-brane with fluxes solutions. We ave also obtained directly these solutions at the
level of equations of motion of the M2-brane with C± fluxes.

For Ar constant we also explore ‘Q-ball like’ (QBL) ansatz modelling the scalar complex
variables. We obtain that in the absence of a worldvolume gauge field and approximating
the QBL equations to first order, the E.O.M. describing the membrane admit an infinite
set of solutions parametrized by a discrete frequency. We numerically obtain the first nine
eigenvalues and eigenvectors, for different boundary conditions. The first two boundary
conditions corresponding to a periodic, and restricted ones are admissible for the toroidal
membrane considered. The last one although it is an admissible solution of the PDE is not
natural on the compact membrane. It is analyzed with illustrative purposes to compare
the difference in the breathing dependence of the membrane with the boundary conditions.

We also find that is possible to obtain a QBL solution and a spinning solution with
non-vanishing gauge field when the analysis is performed by imposing approximations to
second order in the parameter on the dynamical scalar fields Za and Ar. Under these
approximations we obtain solutions for a regular periodic trigonometric embedding Ar
that has a well-defined associated symplectic gauge field. We also consider less restrictive
cases when the approximation is imposed in one of the two dynamical fields: we consider a
mixed case in which all Za behave differently, one is assumed constant, other rotating, and
the third one that behaves with an approximated QBL ansatz, in the presence of a non-
vanishing linear Ar. On this mixed case the system of equations is satisfied. The motion
in the different planes decouples in the presence of the linear Ar. In the second case, the
approximation is imposed only on Ar. We consider a regular trigonometric embedding for
the Ar with Za a rotating ansatz and the system only admits zero central charge and hence
it does not represent an admissible solution to the M2-brane with fluxes.

In the cases in which no approximation is considered and the full-fledged equations
are analyzed we obtain analytical solutions for the constant and rotating scalar complex
field with simple polynomial embeddings Ar: linear or ‘separable’. The APD and the
topological constraints restrict enormously the embeddings allowed. An stability criteria
on the solutions was imposed to guarantee that solutions are preserved at any time. This
criteria is automatically fulfilled in the case of the linear ansatz on Ar, but for the separable
case it is only achieved when the coefficients of Ar are restricted by a relation given by the
wrapping numbers and the radii of the 2-torus.

These linear Ar solutions are redefined in terms of a sawtooth function to guarantee
the single-valuedness, but its derivative contains infinite number of deltas that renders the
associated symplectic gauge field multivalued, an aspect that excludes them as suitable
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solutions. This solution to the complete system of E.O.M. can be approximated by their
associated Fourier series truncated to a finite order. The approximation becomes increas-
ingly better as more terms are included with N restricted to be finite. The ‘separable’
solution in spite of solving mathematically the system of equations does not admit an
approximation to provide a sensible physical symplectic gauge field.

The results that we find do not exclude the possibility of obtaining exact and stable
QBL membrane solutions with and without gauge field for the M2-brane with fluxes but
its analysis out of the scope of the present paper. The existence of exact spinning solutions
with a nontrivial symplectic gauge field seems strongly disfavoured as an exact analytical
solution. It could be that an underlying topological obstruction is behind this result, or
that the assumption of rotation independence on the three complex planes is too restrictive,
even the number and topology of the compact space dimensions may also play a role. In
this paper we were interested in characterizing the spinning membrane solutions in the
presence of flux C± onM9×T 2, other ansätze for the Za complex scalar functions, different
to the ones analyzed in more general backgrounds, may admit exact symplectic gauge field
configurations. These type of solutions deserve further study beyond the approximations.
We plan to extend these results and analyze them in more interesting backgrounds.

One last comment is in order: it is well-known that accelerated point-like charges
always radiate even in the absence of any external field, but this is not necessarily the case
for accelerated extended charges, [37, 38], or for stationary spinning solitons [39]. Hence,
it is important to establish to what scenario our analysis corresponds. The solutions we
find are stationary, in the sense that they do not generate any kind of bremsstrahlung or
radiation effect. One type of solutions is spinning and the other non-rotating Q-ball-like
type. This nontrivial fact can be understood in the following way: as previously stated
in section 2, we characterize the dynamics of an 11D Supermembrane’s bosonic sector
in a probe approximation described in three different but equivalent ways: a) when it is
irreducibly wrapped around the compact sector and propagates in a flat target space, M9×
T 2. b) when it has a topological monopole charge in the compact sector and propagates in
a flat target space M9×T 2 and c) when the M2-brane propagates on a background with a
constant and quantized supergravity three-form on M9 × T 2. All of them share the same
Hamiltonian and mass operator modulo a constant and the same equations of motion.

In the first scenario, it is clear that a single spinning M2-brane that wraps irreducibly
the compact sector, does not emit any kind of radiation nor presents any energy loss.
Its center of mass, described by the zero modes, decouples from the nonzero ones and
propagates as a free particle with a constant speed on M9 × T 2. Its momenta, angular
momentum, and energy are conserved. Their spinning solutions -in the absence of gauge
fields- were characterized by [20], and we reproduce the subset associated with the central
charge condition. Since in this case, there is no energy lost, the same holds for the other
descriptions, since all of them are equivalent.

Lets try to explain better why this is the case: in the case of a M2-brane with a
monopole charge, this monopole is associated to the compact sector and furthermore the
monopole does not rotate. The spinning solutions that we find are described by the complex
embedding maps associated with the non-compact sector. The topological U(1) monopole
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present in the M2-brane that we discuss has no dependence on time and it is characterized
by its first Chern class. It is associated to a U(1) connection Â constructed in terms of the
harmonic pieces of the compact sector embedding maps which do not depend on time, only
on the spatial worldvolume coordinates and with Â0 = 0 by gauge fixing. Hence, there is
no radiation associated with the monopole charge. The monopole condition we consider is
completely equivalent to the central charge condition associated with the irreducibility of
the wrapping of the M2-brane on the compact sector [27].

The third description is for spinning solutions associated with an M2-brane on a con-
stant and quantized supergravity three-form C3 on M9 × T 2, which induces 2-form fluxes
C±. This background is the asymptotic limit of the supergravity background found by [29]
generated by an M2-brane source. The probe M2-brane that we consider is not charged
under the C3 potential since the charge associated with the background [29] vanishes in the
asymptotic limit and any probe must be consistent with the background. Hence, the pic-
ture we analyze corresponds to an uncharged spinning membrane propagating on a constant
quantized three-form (vanishing 4-form flux) on M9×T 2 which do not generate any kind of
backreaction. The theory is exactly equivalent to the previous two descriptions discussed,
since it is connected to them through a canonical transformation modulo a constant shift.

When a gauge field is present, which is the most general case, in any of the thee
previous descriptions, we have found some approximate spinning solutions, see for example
6.1, and 6.2. The symplectic gauge field is described by A = dA with Ar, for r = 1, 2 the
single-valued compact piece of the embedding map components. See that in this case, the
symplectic gauge field has no time dependence either for the solutions found, since Ar are
linear in time. The remaining component in the covariant description A0 = Λ with Λ the
lagrange multiplier, is zero by gauge fixing as explained in section 2. Since Ar(σ, ρ) do not
depend on time either, then the associated F0r = 0 and consequently, it cannot lead to any
fluctuation in the symplectic gauge field. Since the symplectic gauge field strength F is
equal to a topological trivial U(1) gauge field FU(1) = F , the same argument holds. Hence,
there is not any kind of energy loss in agreement with the equivalence with the previous
discussion in the absence of a dynamical gauge field.

Interestingly, our analysis show certain resemblances with the results found in [39] in
the context of a non-abelian gauge field describing stationary spinning soliton solutions.
These are obtained when some conditions apply that also hold for the solutions that we find:
the presence of several complex scalars parametrizing the rotation with their dependence
on time entering through a phase, constant in time gauge fields, and axially symmetric
solutions with a finite energy. For those cases they find several admissible solutions. An
extension of this work in which we are interested is the search for 4D stationary soliton
solutions of the M2-brane. It would be interesting to see if for more general cases, there
exists any connection with the type of solutions found at effective energy level in [39].
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A Explicit E.O.M. for the rotating ansatz

The E.O.M. for Ar with r, s = 1, 2 and r 6= s are,

−Är +
( 3∑
a=1

k2
ar

2
a + n2

sR
2
s

)
∂2
ρAr + (−nrnsRrRs)∂2

ρAs

+2
(
−msnsR

2
s −

3∑
a=1

kalar
2
a

)
∂ρ∂σAr +RrRs(+nrms +mrns)∂σ∂ρAs

+
( 3∑
a=1

l2ar
2
a +m2

sR
2
s

)
∂σ∂σAr − (mrmsRrRs)∂σ∂σAs

+(−nsRs∂σAr − nrRr∂σAs)∂2
ρAs + (2nsRs)(∂σAs)∂2

ρAr

+(−2nsRs∂ρAs − 2msRs∂σAs)∂σ∂ρAr

+(nsRs∂ρAr + nrRr∂ρAs +msRs∂σAr +mrRr∂σAs)∂ρ∂σAs

+2(msRs∂ρAs)∂2
σAr + (−msRs∂ρAr −mrRr∂ρAs)∂σ∂σAs

−(∂σAr)(∂σAs)∂2
ρAs + (∂σAs)2∂2

ρAr − 2(∂ρAs)(∂σAs)∂σ∂ρAr

+(∂ρAs∂σAr + ∂ρAr∂σAs)∂σ∂ρAs + (∂ρAs)2∂2
σAr − (∂ρAr∂ρAs)∂2

σAs = 0 .

For Zc

−ω2
c +

3∑
a=1

r2
a (kalc − lakc)2 +R2

9 (n9lc −m9kc)2 +R2
10 (n10lc −m10kc)2

+k2
c [(∂ρA9)2 + (∂ρA10)2] + l2c [(∂σA9)2 + (∂σA10)2]

−2kclc[(∂ρA9)(∂σA9) + (∂ρA10)(∂σA10)]
+i[kc(∂σA9∂

2
ρA9 + ∂σA10∂

2
ρA10 − ∂ρA9∂σ∂ρA9 − ∂ρA10∂σ∂ρA10)

+l1(−∂σA9∂ρ∂σA9 − ∂σA10∂σ∂ρA10 + ∂ρA9∂
2
σA9 + ∂ρA10∂

2
σA10)]

+2kcR9(kcm9 − n9lc)∂ρA9 + 2kcR10(kcm10 − n10lc)∂ρA10

+(−2kcm9R9lc + 2n9R9l
2
c )∂σA9 + (−2kcm10R10lc + 2n10R10l

2
c )∂σA10

+i[kcn9R9∂ρ∂ρA9 + kcn10R10∂ρ∂ρA10 + (−kcm9R9 − lcn9R9)∂σ∂ρA9

+(−kcm10R10 − lcn10R10)∂σ∂ρA10 + lcm9R9∂σ∂σA9 + lcm10R10∂σ∂σA10] = 0 .

The APD constraint once the rotating ansatz has been substituted becomes reduced to

(∂σȦr∂ρX̂r − ∂ρȦr∂σX̂r) + (∂σȦr∂ρAr − ∂ρȦr∂σAr) = 0. (A.1)
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