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1 Introduction

Type IIB supersymmetric theories have an SL(2, Z) invariance that allows to define bound
states of (p, q)-strings. These can be interpreted as nonperturbative states of p fundamental
strings (F1) with q D1-branes [1, 2]. Bound states of strings and/or D-branes have been
studied in different scenarios, as for example, in terms of black holes [3, 4], or to define
boundary states in the context of AdS/CFT duality [5], see also [6–8]. Bound states of
(p, q)-strings in a background with fluxes were studied in [9]. They showed that (p, q)-
strings on a AdS3 × S3 background with mixed (RR and NSNS) three-form fluxes are
mapped into (p′, q′)-strings on the same background with NSNS three-form fluxes by means
of an SL(2, Z) transformation.

An SL(2, Z) family of type IIB (p, q)-string solutions were obtained in [1, 10], with p
and q coprime representing the NSNS and RR charges, respectively. Its supersymmetric
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extension was obtained from M2-branes toroidally wrapped on general backgrounds in [11].
The well-defined action of T-duality on Dp-branes [12], allows to define bound states of
fundamental strings with Dp-branes [13]. The action of S-duality on bound states of (p, q)-
strings is also well-known to mix the RR and NSNS charges. The T-duality between type
II theories and the identification of type IIA with 11D supergravity on a circle induces the
relation of type IIB on a circle with 11D supergravity on a torus. Because of this relation-
ship, [1] proposed that the KK and winding terms of the mass operator of (p, q)-strings
compactified on a circle are obtained from the mass operator of an M2-brane on a torus [14].

The M2-brane on a flat space, more precisely the regularized SU(N) formulation, has
a continuous spectrum from [0,+∞) [15, 16]. For this reason M2-branes have not been
considered as fundamental objects describing microscopic degrees of freedom of M-theory.
This result led to the matrix theory conjecture [17], see also [18], where M2-branes were
interpreted as second quantized theory. However, in [19] it was noticed that M2-branes
compactified on a torus, have two well defined sectors related to the imposition of a topo-
logical restriction named “central charge condition”. It implies the irreducible wrapping of
the M2-brane on the compact sector, which ensures that the determinant of the winding
matrix is nonzero. It has been rigorously proved that M2-brane with central charges has
a discrete supersymmetric spectrum with finite multiplicity [20]. Therefore, the M2-brane
with central charges describes the microscopical degrees of freedom of a well defined sector
of M-theory. Furthermore, M2-branes with central charges are characterized by a 2-form
flux condition on the worldvolume and they also contain a symplectic structure [21]. The
sector without central charges defined on the same target space, is related to a reducible
wrapping on the compact sector, which corresponds to a winding matrix with a trivial
determinant and a continuous supersymmetric spectrum.

The Hamiltonian formulation for an M2-brane in the light-cone gauge on M9 × T 2,
on a constant supergravity background with a C± flux condition on T 2, has a discrete
supersymmetric spectrum, as shown in [21]. In fact, the 2-form flux condition on the
target space is in one-to-one correspondence with the central charge condition, and the
Hamiltonian is related by a canonical transformation of the phase space variables. The flux
condition implies that the M2-brane is wrapped irreducibly around the compact sector. It
means that the determinant of the wrapping matrix is non zero. Consequently, M2-branes
with C± fluxes are equivalent to M2-branes with central charges. It can be seen from [22]
that the symplectic structure and the flux condition present in both sectors are compatible.
Indeed, the global description is given in terms of twisted torus bundles with monodromy
in SL(2, Z) and it contains nontrivial U(1) gauge symmetries on the worldvolume [22].

In the original paper of Schwarz, the (p, q)-string mass operator on M9 × S1 was
obtained from the mass operator of an “M2-brane wrapped n times on a torus” [1]. The
KK and winding terms were obtained by Schwarz, however the terms corresponding to
the oscillators were not computed. They were proposed as membrane excitations, but
their expressions in terms of the geometric moduli and physical degrees of freedom were
not obtained. Nevertheless, in [14], the bosonic part of this contribution was explicitly
computed and shown that it corresponds to the sector of M-theory named as M2-brane with
central charges, which is characterized by a discrete supersymmetric spectrum. Indeed, the
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central charge condition ensures the appearance of the winding and KK terms on the M2-
brane mass operator, as well as the computation of, at least, the bosonic sector of the
terms corresponding to the oscillators. This is the origin of the oscillators on the type IIB
(p, q)-string in M9 × S1.

The purpose of this paper is to obtain the string description of well-behaved sectors of
the M2-brane on a torus. We obtain the (p, q)-string mass operator onM9×S1 from an M2-
brane with nontrivial fluxes and nontrivial monodromies, not considered in [1] or [14]. It
contains a new term, not obtained in [14], that depends on the flux contribution, the moduli
of theory and the tension. Moreover, we perform a formulation that is completely super-
symmetric in contrast with [14] where only bosonic degrees of freedom were considered.
We obtain a new class of (p, q)-strings from supermembranes with nontrivial monodromies,
in distinction with the analysis done in [1] and [14], where only trivial monodromy was
considered. In fact the formulation in [1, 14] is a particular case of the general one in this
work. The monodromy group is a subgroup of SL(2,Z) (the group of isotopy classes of the
area preserving diffeomorphisms, the latter is the structure group of the M2-brane). For
a given monodromy group, the inequivalent formulations are classified by its coinvariants,
which identify equivalent (p, q)-charges. The orbits generated by the monodromy subgroup
acting on the elements (p, q) of a coinvariant are contained in the same coinvariant. A for-
mulation in terms of the coinvariants induces the appeareance of a new symmetry, that is a
parabolic subgroup of SL(2,Q) for the case of parabolic monodromies. This is the M-theory
origin of the parabolic gauging in type II gauged supergravity. Finally, we are generalizing
the computation of the standard type IIB (p, q)-strings on a circle to the supersymmetric
degrees of freedom. It contains a new term inherited from the flux condition. We are also
emphasizing that it is directly related to the sectors with discrete supersymmetric spectrum
in M9 × T 2 and trivial monodromy. Nevertheless, at least for parabolic monodromies, we
are identifying a particular type of (p, q)-string, which we have named “parabolic”. The
low energy limit of the corresponding theory of parabolic (p, q)-strings is not maximal but
a type II parabolic gauged supergravity.

The paper is organized as follows: in section 2, we briefly introduced the local and
global descriptions of supermembranes with C± fluxes. In section 3, we show that the
full mass operator of a (p, q)-string compactified on a circle is obtained from the M2-brane
with central charge. We show that the irreducible wrapping condition is necessary to obtain
the (p, q)-string. In section 4 we discuss the M2-brane twisted torus bundle inequivalent
theories. We obtain that the mass operator is invariant on an orbit of charges generated
by the monodromy [25]. In section 5, we show that for parabolic monodromies, M2-branes
with fluxes are invariant on the classes of coinvariants. In this case, we also obtain that the
mass operator is invariant under a transformation between the coinvariants that classify the
second cohomology group of the bundle, hence, connecting inequivalent M2-brane bundles.
In section 6, we obtain a new type of (p, q)-strings with restricted discrete symmetry given
by the parabolic monodromy of the M2-brane twisted torus bundle that we denote under
the name of ‘parabolic’ (p, q)-string. In section 7, we present a brief discussion and our
conclusions.
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2 M2-branes on twisted torus bundles

The light cone gauge (LCG) bosonic Hamiltonian for an M2-brane in the presence of a
non-vanishing three-form background was given in [26], where the authors have considered
a general spacetime with metric Gµν written in a convenient form using the gauge G−− =
Ga− = 0. Its supersymmetric extension on a local Minkowski spacetime (M11) was obtained
in [21] (where it was also shown its consistency with Cµνρ constant, not necessarily zero)
and it is given by

H =
[

1
(P̂− − TC−)

(
1
2(P̂a − TCa)2 + T 2

4 (εuv∂uXa∂vX
b)2
)

− T θ̄Γ−Γa {Xa, θ} − TC+− − TC+

]
, (2.1)

subject to the first and second class constraints

P̂a∂uX
a + P̂−∂uX

− + S̄∂uθ ≈ 0, (2.2)
S − (P̂− − TC−)Γ−θ ≈ 0, (2.3)

with T being the M2-brane tension and the unique free parameter of the theory, P̂a the
canonical conjugate to Xa and S, S̄ are the conjugate momenta to θ̄, θ (Majorana spinors
in 11D), respectively [16].

The embedding used in this paper, is the same one used in [15, 16] seminal papers. We
are considering the light cone gauge and hence the space-time indices µ, ν, ρ = 0, . . . , 10
are splitted according to µ = (+,−, a), where a = 1, . . . , 9 are the transverse indices to
the null light coordinates (see for example [16]). The worldvolume indices are i = 0, 1, 2,
with u, v = 1, 2 labeling the spatial coordinates. We are considering an embedding of the
M2-brane on the complete 11D space-time. That is, Xa(σ1, σ2, τ) are maps from Σ, a
Riemann surface of genus 1, to the target space, Xa : Σ→M11.

The LCG three-form components are written according to [26] as

Ca = −εuv∂uX−∂vXbC−ab + 1
2ε

uv∂uX
b∂vX

cCabc ,

C± = 1
2ε

uv∂uX
a∂vX

bC±ab , C+− = εuv∂uX
−∂vX

aC+−a ,
(2.4)

where C+−a = 0 is fixed by gauge invariance of the three-form and C±ab and Cabc are
assumed, in this work, to be nontrivial constants by background fixing. These constant
components of the three-form have nontrivial contributions to the Hamiltonian when the
embedding wrapps on a compactified sector of the target space, for example a flat torus. Let
us also note that X− appears explicitly in the Hamiltonian through Ca [26]. Nevertheless,
one may perform a canonical transformation of the Hamiltonian by performing the following
change of variables [21]

Pa = P̂a − TCa, P− = P̂− − TC−, S = Ŝ, X̂a = Xa, X̂− = X−, θ̂ = θ.
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Indeed, it can be seen it is a canonical transformation of the phase space variables, since it
preserves the kinetic term and the Poisson brackets of the theory [21] (notice that the nota-
tion that we are following here is different to the one used in [21]). We may use the residual
gauge symmetry generated by the constraints to impose the gauge fixing condition P− =
P 0
−
√
w, with

√
w a regular density on the worldvolume. We can then eliminate (X−, P 0

−)
as canonical variables and obtain a formulation solely in terms of (Xa, Pa) and (θ, S̄).

If we consider a compactification of the target space, on a flat torus T 2 characterized
by the Teichmuller parameter τ ∈ C with Im(τ) > 0 and a radius R ∈ R, the embedding
maps are splitted into the noncompact and compact sectors as follows Xa = (Xm, Xr)
with m = 1, . . . , 7 and r = 8, 9, respectively. We may perform a Hodge decomposition
on the closed, but not exact, one-forms dXr = dXr

h + dAr, where dXr
h are the harmonic

one-forms and dAr are the exact ones. dXr
h may be written in terms of a normalized basis

of harmonic one-forms dX̂r as dX1
h + idX2

h = 2πR(lr +mrτ)dX̂r. The wrapping condition
on the compact sector is given by∮

Cr
d
(
X8 + iX9

)
= 2πR (lr +mrτ) ∈ L , (2.5)

where Cr denotes the homology basis on Σ, L is a lattice on the complex plane (C) such
that T 2 = C/L and the winding numbers lr,mr defines the wrapping matrix

W =
(
l8 l9
m8 m9

)
. (2.6)

Once the dependence on X− has been eliminated, a quantization condition on C± can
be imposed. This condition corresponds to a 2-form flux condition on the target space
2-torus, whose pull-back through Xr

h, with r = 8, 9, generates a 2-form flux condition on
the M2-brane worldvolume as follows [22]∫

T 2
C± = 1

2

∫
T 2
C±rsdX̃

r ∧ dX̃s = 1
2

∫
T 2
C±rsdX

r
h ∧ dXs

h = c±

∫
Σ
F̂ = k±AT 2 , (2.7)

where C±rs = c±εrs with c± ∈ Z/{0}, X̃r are local coordinates on T 2, k± = nc± with
n ∈ Z/{0}, AT 2 = (2πR)2Im(τ) is the 2-torus area and F̂ is a closed 2-form defined on Σ
such that it describes a worldvolume flux condition∫

Σ
F̂ = 1

2

∫
Σ
dXr ∧ dXsεrs = nAT 2 , (2.8)

where the integer n = det(W) 6= 0 characterizing the irreducibility of the wrapping, where
W is the winding matrix. Consequently, C± is a closed two-form defined on the target space
torus. Indeed, the flux condition on T 2 implies a flux condition on Σ which is known as
‘central charge condition’. The irreducible wrapping condition ensures that the harmonic
modes are nontrivial and independent.

The Hamiltonian of the M2-brane with C− fluxes becomes

HC− = 1
2P 0
−

∫
Σ
d2σ
√
w

[(
Pm√
w

)2
+
(
Pr√
w

)2
+ T 2

2
(
{Xm, Xn}2 + 2(DrXm)2 (2.9)

+ (Frs)2 + (F̂rs)2
)]
− T

2P 0
−

∫
Σ
d2σ
√
w(θ̄Γ−ΓrDrθ − T θ̄Γ−Γm {Xm, θ}),
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which is equivalent to M2-brane with central charges [19, 21], and

HC+ = HC− − 2P̂ 0
−T

∫
d2σ
√
wC+, (2.10)

only differs in a constant term [21]. Interestingly, the supermembrane on M9 × T 2 with
a central charge condition associated with an irreducible wrapping is equivalent to the
Hamiltonian of a supermembrane on MLCG

9 × T 2 on a quantized C− background, i.e.
HCC = HC− . The degrees of freedom of the theory are Xm, Ar, θ. On the other hand, the
symplectic covariant derivative is defined as [27]

DrXm = DrX
m + {Ar, Xm} , (2.11)

with Dr is a covariant derivative defined as [25, 28] and it satisfies

(D8 + iD9) • = 2πR(lr +mrτ)
{
X̂r, •

}
,

where {•, •} = εuv√
w
∂u • ∂v•. The gauge contribution is given by F̂ the minimal curvature

related to the flux on Σ (2.7) and

Frs = DrAs −DsAr + {Ar, As} , (2.12)

corresponds to a symplectic curvature associated to the one-form connection ArdXr, where
Ar contains the dynamical degrees of freedom related to the exact sector of the map on T 2.

This Hamiltonian is subject to the local and global constraints associated to the area
preserving diffeomorphisms (APD){

Pm√
w
,Xm

}
+Dr

(
Pr√
w

)
+
{
S̄√
w
, θ

}
≈ 0, (2.13)

∮
CS

[
PmdX

m

√
w

+ Pr(dXr
h + dAr)√
w

+ S̄dθ√
w

]
≈ 0, (2.14)

which appears as a residual symmetry on the theory after imposing the LCG in the co-
variant formulation. In fact, we have shown that M2-branes with C± fluxes are invariant
under the full group of simplectomorphisms, which considers the sectors connected and
not connected to the identity. Furthermore, symplectomorphisms on T 2 are in one-to-one
correspondence to symplectomorphisms on Σ [22]. Hence, the discreteness property of
the latter automatically implies the discreteness of the M2-brane with C± fluxes. When
C+ 6= 0, the spectrum is discrete and shifted by a constant value.

On [29] a different canonical transformation of the phase space variables was considered
on the M2-brane formulation, in order to eliminate the nonphysical degrees of freedom. As
a result, an equivalent M2-brane Hamiltonian with discrete supersymmetric spectrum was
obtained with explicit presence of the transverse components of the three-form.

Classically, this Hamiltonian does not contain string-like spikes at zero cost energy that
may produce instabilites [30]. At quantum level the SU(N) regularized theory has a purely
discrete spectrum since it satisfy the sufficiency criteria for discreteness found in [20]. The
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theory preserves 1/2 of the supersymmetry [21]. This theory is equivalent or dual to the
supermembrane with central charges. The M2-branes with C± fluxes can be formulated
on twisted torus bundles with monodromy in SL(2, Z) [22]. In fact, the U(1) principle
bundle associated to the nontrivial quantized fluxes, or to the central charge condition,
is compatible with the formulation of the M2-brane on a symplectic torus bundle, with
structure group the symplectomorphism which preserve the U(1) curvature. There exists
a natural homomorphism

MG : Π1(Σ)→ Π0(Symp(T 2)) = SL(2, Z). (2.15)

The subgroup of SL(2, Z) determined by the homomorphism is called the monodromy of
the formulation. The classification of symplectic torus bundles with monodromy in terms
of H2(Σ,Z2

ρ) was found by [31]. In the aforementioned paper it is shown the existence of
a one-to-one correspondence between the inequivalent classes of symplectic torus bundles
for a given monodromy conjugacy class inducing the module structure Z2

ρ on H1(T 2) and
the elements of H2(Σ, Z2

ρ), the second cohomology group of the bundle with base Σ and
coefficients in Z2

ρ . This homomorphism gives to each homology and coholomogy group on
the bundle the structure of Z [Π1(Σ)]-module. It classifies the symplectic torus bundles
for a given monodromy in terms of the characteristic class. Hence, the symplectic torus
bundles, with base manifold a torus, are classified, for a given monodromy, according to
the inequivalent coinvariants [25, 28].

Therefore, sectors of M2-branes on M9 × T 2 with the irreducible wrapping condition,
contain two compatible gauge structures. The first one is given by the symplectic structure
of the bundle, which ensures the existence of a symplectic connection under symplectomor-
phisms. The second gauge structure is a nontrivial U(1) principal bundle related to the
2-form flux on Σ due to the central charge condition or the 2-form flux condition on the
target-space.

In [22] it was proved that the symplectic structure and the U(1) principal bundle are
related and generate a twisted torus bundle,

T3
W ≡ T 2

U(1) → E′ → Σ , (2.16)

where the base manifold is given by the worldvolume Riemann surface Σ, the fiber is a
twisted torus T3, given by the U(1) principal bundle associated with the nontrivial flux
condition on T 2.

The LCG Hamiltonian of an M2-brane with C± fluxes, can be generalized to make
the presence of the supergravity three-form transverse components, Cabc with a = (m, r),
explicit in the final Hamiltonian [32]. This is relevant to make manifest in its D-brane
description, subject to quantized RR and NSNS forms, the appearance of the transverse
components of the B-field in the associated DBI terms. However, both nontrivial sectors
can be shown to be equivalent due to canonical transformations [33].

3 SL(2, Z) (p, q)-strings from the M2-brane with C± fluxes

In this section, we extend to the supersymmetric M2-brane with nontrivial C± fluxes and
trivial monodromy, [1] and [14]. See [11] for a different approach. In section 4, we will
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consider the case with nontrivial monodromy. We will show, in this section, that the mass
operator of type IIB SL(2, Z) (p, q)-strings compactified on a circle of radius RB coincides
with the mass operator of the M2-branes on a T 2 with central charges, or equivalently with
C− fluxes. The irreducible wrapping condition that characterizes these sectors, ensures the
existence of bound states. The sector without the central charge condition is only able to
reproduce type IIB fundamental strings, (1, 0)-strings on M9 × S1 with null Kaluza Klein
on the compact sector, but with non zero winding. We will show that the results found
in [1] are only valid when the central charge or equivalently the C− flux condition is present.
We extend those results to include the supersymmetric sector and the Hamiltonian terms
of the M2-brane to reproduce the (p, q)-string mass operator. A detailed computation will
be performed to facilitate the understanding of the differences with the new (p, q) string
sector discussed in section 5.

SL(2, Z) symmetries on the supermembrane with C± fluxes. In [34] two inequiv-
alent SL(2, Z) symmetries of the M2-brane with central charges were identified. One is
associated with the target torus and will be denoted as SL(2, Z)T 2 , while the other is as-
sociated with the base manifold and will be denoted as SL(2, Z)Σ. In [22] M2-branes with
C± fluxes were shown to be invariant under the 2-dimensional area preserving diffeomor-
phisms, or equivalently, 2-dimensional symplectomorphisms, connected and not connected
to the identity. The invariance of the Hamiltonian under those connected with the identity
is guaranteed by the first class constraint of the theory. The isotopy classes of symplecto-
morphisms on the base manifold determine a group, which in this case is SL(2, Z)Σ. The
symplectomorphisms not connected to the identity change the homology basis on Σ together
with the corresponding basis of harmonic one-forms and the winding matrix as follows

dX̃r → (S∗1)rsdX̂s, W→W(S∗1)−1, (3.1)

with S∗1 ∈ SL(2, Z)Σ. The symplectomorphisms not connected with the identity on target
T 2 are the ones that change the moduli of the 2-torus by a modular transformation [34] as
follows,

τ → τ ′ = aτ + b

cτ + d
, R→ R′ = R|cτ + d|, A→ A′ = Aeiϕτ ,

W→W′ = S∗2W, Q→ Q′ = S2Q, (3.2)

with S2,S∗2 matrices of SL(2, Z)T 2 given by

S2 =
(
a b

c d

)
, S∗2 =

(
a −b
−c d

)
, cτ + d = |cτ + d|e−iϕτ . (3.3)

The bosonic part of the Hamiltonian is invariant under (3.2), and it corresponds to the
action of SU -duality on M2-branes on a torus [34].

The full supersymmetric Hamiltonian also becomes invariant under (3.2) if the follow-
ing transformation is added

Γ→ Γ′ = Γeiϕτ , (3.4)

– 8 –
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where Γ = Γ8 +iΓ9 is the complex gamma matrix present in the fermionic term and related
to the compact directions.

While the previous SL(2, Z)T 2 is generic for a M2-brane on a 2-torus, the SL(2, Z)Σ
transformation is characteristic of sectors of M2-brane generated by the C± flux condi-
tion. Therefore, the M2-brane with C± fluxes Hamiltonian is invariant under both SL(2, Z)
transformations. It is worth to mention that both transformations are independent. The ir-
reducible wrapping condition ensures a one-to-one correspondence of symplectomorphisms
on T 2 and Σ, also assumed to be a 2-torus.

3.1 Mass operator of the supermembrane with C± fluxes

We will firstly consider the winding and KK sectors of the mass operators [14]. The
embedding map to the compact sector is defined as

dX = (2πR)(ls +msτ)dX̂s + dA. (3.5)

However, as noticed in [14], it is possible to use the independent and arbitrary SL(2, Z)
symmetries on T 2 and Σ to rewrite the winding matrix (2.6) as

W =
(
n 0
0 1

)
, (3.6)

and therefore (3.5) becomes dX = 2πR(ndX̂1 + τdX̂2) + dA, where dA = dA1 + idA2 is a
dynamical exact one-form.

The pure harmonic contribution associated with the wrapping on the M2-brane Hamil-
tonian is given by

T 2

P 0
−

∫
d2σ

[1
4
√
w {Xr

h, X
s
h}

2
]

= 1
2P 0
−

(TnAT 2)2, (3.7)

with n = det(W). Therefore, the winding term on the mass operator of the M2-brane
with C− fluxes is

M2
C± = (TnAT 2)2 + . . . , (3.8)

However, the mass operator of the M2-brane with C+ fluxes contains an extra harmonic
contribution that results in a constant term

M2
C+ = (TnAT 2)2 − 2P 0

−Tk+AT 2 + . . . , (3.9)

with k+ = nc+. As the irreducible wrapping condition guarantee that n 6= 0, then the
winding term is strictly related with these sectors. A reducible wrapping will not generate
those terms.

In order to reproduce the KK term on the mass operator, the zero modes of the
momentum in the compact sector can be expressed, following [14], as

P 0
r =

∫
Σ
prdσ

1 ∧ dσ2, (3.10)
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with r = 8, 9, which can be rewritten in terms of the Hodge dual of two well-defined
associated 2-forms (F )r on Σ. In fact, fixing r, it can be seen that for each r,

Rp = b
√
w (?F ) , (3.11)

with ?F = εuvFuv
2
√
w

and b a proportionality constant with dimensions of (energy)×(length).
If c = ~ = 1, then b = 1. Consequently

RP 0 = b

∫
Σ
F, (3.12)

and then, the following quantization conditions, are imposed for each value of r∫
Σ
Fr = m̂r ∈ Z. (3.13)

In order to guarantee that the maps from the base manifold to the compact target sector
are from circles onto circles, we must consider the left hand member of

1
2πR

∮
CS

M−1
(
dX8

dX9

)
=
∮
CS

W
(
dX̂8

dX̂9

)
, (3.14)

with

M =
(

1 Re(τ)
0 Im(τ)

)
, (3.15)

where W given by (3.6), satisfies det(W) = n 6= 0. Now, by using the corresponding
conjugate momenta,

RP 0
sMs

r = R

∫
Σ
psMs

rdσ
1 ∧ dσ2 = bm̂r. (3.16)

Consequently, the KK modes are given by P 0
r = b(M−1)sr

m̂s

R
. Hence,

P 0
8 = b

m̂8
R
, P 0

9 = b
m̂9 − m̂8Re(τ)

RIm(τ) . (3.17)

The KK contribution to the mass operator is given by

2P 0
−

(
1

2P 0
−
P 0
r P

0r
)

= b2m2 |qτ − p|2

(RIm(τ))2 , (3.18)

with q, p relatively primes, where it has been used that m̂8 = mq and m̂8 = mp, with
m ∈ Z. In fact, it can be checked that the KK term is SL(2, Z)T 2 invariant if p, q transform
according to (3.2). The expression of the KK-term given by (3.18), which is in agreement
with the one obtained in [35], is strictly related to a well-defined compactification on a
2-torus, i.e. it is associated to the irreducible wrapping condition present in well-behaved
sectors of M2-branes. Indeed, when the wrapping of the M2-brane on the compact sector
is reducible, det(W) = 0, the map from Σ to T 2 becomes degenerate and there is no
holomorphic map between them, consequently, there is no map from circles to circles.
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Finally, the M2-brane with C± fluxes mass operator corresponds to [36]

M2
C± = (TnAT 2)2 + b2

m2|qτ − p|2

(RIm(τ))2 + 2P̂ 0
−H

′C± , (3.19)

where

H ′C− = 1
2P 0
−

∫
Σ
d2σ
√
w

[(
P ′m√
w

)2
+
(
P ′r√
w

)2
+ T 2

2
(
{Xm, Xn}2 + 2(DrXm)2 (3.20)

+(Frs)2
)]
− T

2P 0
−

∫
Σ
d2σ
√
w(θ̄Γ−ΓrDrθ − T θ̄Γ−Γm {Xm, θ}),

H ′C+ = H ′C− − 2P̂ 0
−TnAT 2c+, (3.21)

The prime on the fields in the Hamiltonian indicates that the zero modes and the pure
harmonic contributions are excluded. The winding and the general expression for the KK
contribution on this Hamiltonian were obtained in [1]. They are strictly related to the M2-
brane with a central charge condition associated with the irreducibility of the wrapping or
with the presence C± fluxes, on M9×T 2. The irreducible wrapping condition, ensures the
appearance of both terms.

3.2 Mass operator for the type IIB (p, q)-string

Now we will show that the full mass operator of the (p, q) string, is directly related to the
irreducible wrapping condition induced by the C± flux, that determines its characteristic
tension T(p,q). In order to reproduce the stringlike excitations on the M2-brane mass
operator we assume the dynamical variables to depend only on a linear combination of the
two spatial coordinates. Instead of considering the local coordinates (σ1, σ2), we will work
with the minimal maps X̂r given by (3.14), that is σ1, σ2 → X̂8, X̂9. The Jacobian of the
transformation is given by det(J(σ1, σ2)) =

√
w where

√
w = 1

2ε
uv∂uX̂

r∂vX̂
sεrs, (3.22)

is nonsingular over Σ. Therefore
√
wdσ1 ∧ dσ2 = dX̂8 ∧ dX̂9. Let us now define string

configurations such that Φ(cτ, σ1, σ2) = Φ(cτ, ρ) with Φ = (Xm, Ar, θ) fields of the theory
and ρ = q1X̂

8 + q2X̂
9 being q1, q2 relatively primes. In that case, we have that

{Xm, Xn} = {Xm, Ar} = {Ar, As} = {Xm, θ} = {Ar, θ} = 0, (3.23)

and the Hamiltonian H ′C− (3.21), on the string configurations, can be written as

H ′C− |SC = 1
2P 0
−

∫
d2σ
√
w

{
(P ′m)2

w
+ (P ′r)2

w
+ T 2 {Xr

h, X
m}2 (3.24)

+ T 2 {Xr
h, A

s}2 + 2P 0
−T θ̄Γ−Γr {Xr

h, θ}
}
.
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This Hamiltonian is subject to the usual local (2.13) and global (2.14) constraints on the
string configurations, {

P ′r√
w
,Xr

h

}
≈ 0, (3.25)∮

CS

[
PmdX

m

√
w

+ Pr(dXr
h + dAr)√
w

+ S̄dθ√
w

]
≈ 0, (3.26)

where Cs is the homology basis dual to the harmonic maps X̂r. It can be checked using
the Jacobi identity, that the local constraint (3.25) can be solved to obtain

P ′r√
w

= Tεrs

{
Xs
h,

Π√
w

}
. (3.27)

In terms of a new pair of canonical variables (X∗, P∗)

X∗ = Π√
w
, P∗ = T

√
w {Xr

h, A
s} εrs, (3.28)

the kinetic terms associated with the compact sector become

1
2

(
P ′r√
w

)2
= T 2

2 {X
r
h, X

∗}2 , T 2

2 {X
r
h, A

s}2 = 1
2

(
P∗√
w

)2
, (3.29)

Consequently, we have that

HC− |SC = 1
2P 0
−

∫
dX̂8 ∧ dX̂9

{(
P ′M√
w

)2
+ T 2

{
Xr
h, X

M
}2

+ 2P 0
−T
√
wθ̄Γ−Γr {Xr

h, θ}
}
. (3.30)

where XM = (Xm, X∗) andM = 1, . . . , 8. The total time derivatives have been eliminated
from the Hamiltonian formulation. This expression corresponds to a susy harmonic oscil-
lator [37]. The bosonic and fermionic potentials can be expressed in complex notation as

1
2
{
Xr
h, X

M
}2

= 1
2 |
{
Xh, X

M
}
|2, (3.31)

θ̄Γ−Γr {Xr
h, θ} = 1

2 θ̄Γ
−
[
Γ̄ {Xh, θ}+ Γ

{
X̄h, θ

}]
. (3.32)

In order to express as a string theory Hamiltonian, let us perform a change on the canonical
basis of homology, with its corresponding change on the harmonic on the basis of harmonic
one-forms,

dX̃8 = q1dX̂
8 + q2dX̂

9, dX̃9 = nq3dX̂
8 + q4dX̂

9. (3.33)

with q1 prime relative to q2 and n. It can be seen that there always exist q3 and q4 such that(
q1 q2
nq3 q4

)
∈ SL(2, Z), (3.34)
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with dX̃8 ∧ dX̃9 = dX̂8 ∧ dX̃9. We can use the SL(2, Z)T 2 and SL(2, Z)Σ to rewrite the
Hamiltonian in such a way that the winding matrix (3.6) remains invariant. Therefore, the
modulus of the harmonic 1-form remains invariant if1

R′ = R|q4 − q3τ |, τ ′ = q1τ − nq2
q4 − q3τ

, (3.36)

The Hamiltonian written in the new variables becomes,

H ′C− |SC = 1
2P 0
−

∫
dX̃8 ∧ dX̃9

{(
P ′M√
w

)2
+ T 2(2πR′|τ ′|)2∂8X

M∂8XM (3.37)

− 2P 0
−T (2πR′)θ̄Γ−

[
(Γ̃8Re(τ ′) + Γ̃9Im(τ ′))

]
∂8θ

}
,

with

Γ̃8 = 1
|q4 − q3τ |

[Γ8(q4 − q3Re(τ))− Γ9q3Im(τ)] , (3.38)

Γ̃9 = 1
|q4 − q3τ |

[Γ8q3Im(τ) + Γ9(q4 − q3Re(τ))] , (3.39)

such that

(Γ̃8)2 = (Γ̃9)2 = I, (3.40){
Γ̃8,Γm

}
=
{

Γ̃9,Γm
}

=
{

Γ̃8, Γ̃9
}

= 0. (3.41)

where {, } denotes the anticommutator. Using the proposition III.2.3 from [38], it can be
seen that we can rewrite the Hamiltonian as

H ′C− |SC = 1
2P 0
−

∫
dX̃8

{(
P ′M√
w

)2
+ T 2(2πR′|τ ′|)2∂8X

M∂8XM (3.42)

− 2P 0
−T (2πR′)θ̄Γ−

[
(Γ̃8Re(τ ′) + Γ̃9Im(τ ′))

]
∂8θ

}
.

Finally, the global constraint remains to be solved (3.26). It can be checked that the con-
straint related to X̃9 leads to m̂′9 = 0, where the prime indicates the transformation under
SL(2, Z)T 2 . Therefore, q = 1 and p = 0. In order to verify that the global constraint
due to X̃8 reproduce the level matching condition, let us recall that X̃8 is adimensional.
Therefore, we define

ξ = aX̃8 + C, (3.43)

where a = K
√
P 0
−

T̃
, with T̃ = T (2πR′)|τ ′|. On this expression K is a constant with di-

mensions of (energy)1/2, the constant C does not depend on X̃8 and a has dimensions of
1It can be seen that the transformation of the complex harmonic one-form of (3.5) is given by

dXh = (2πR)(ndX̂8 + τdX̂9) = (2πR′)(ndX̃8 + τ ′dX̃9)e−iϕ = dX̃he
−iϕ, (3.35)

with eiϕ = q4 − q3τ

|q4 − q3τ |
.
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(length). Then, dX̃8 = a−1dξ, ∂8 = a∂ξ, and by demanding the kinetic term to remain
invariant the Hamiltonian becomes

H ′C− |SC = K√
P 0
−

∫
dξ

1
2

{
1
T̃

(
P ∗M√
w

)2
+ T̃ ∂ξX

M∂ξXM −
S̄∗√
w

Γ∗∂ξθ
}
, (3.44)

with

Γ∗ = Γ̃8Re(τ ′) + Γ̃9Im(τ ′)
|τ ′|

. (3.45)

It can be seen that (Γ∗)2 = I and {Γ∗,Γm} = 0, therefore (Γ+,Γ−,ΓM ) with ΓM = (Γm,Γ∗)
satisfy the Clifford algebra. The Hamiltonian of the string configurations is invariant under
the supersymmetry transformations inherited from M2-brane theory in the LCG.

By using the SO(8) spinor decomposition shown in the appendix, the fermionic con-
tribution can be re-expressed as

S̄∗√
w

Γ∗∂ξθ = i
√

2P 0
−

[
χ+∂ξχ

− + χ−∂ξχ
+
]
, (3.46)

where χ± are spinors whose 8 components are given by the nontrivial components of the
SO(9) spinors ψ±. Using SO(7) spinors λ1 = χ+ + χ−, λ2 = χ+ − χ−, and re-scaling
them as

λ1 → λ̂1 = 21/4
√
P̂ 0
−λ

1, λ2 → λ̂2 = 21/4
√
P̂ 0
−λ

2, (3.47)

we obtain that the Hamiltonian can now be written as

HC− |SC = 1
2

K√
P 0

−

∫
dξ

{
1
T̃

(
P ∗
M√
w

)2
+ T̃ ∂ξX

M∂ξXM −
i

a
(λ̂1∂ξλ̂

1 − λ̂2∂ξλ̂
2)
}
. (3.48)

The mass operator of the stringlike configurations associated with C± fluxes can now be
written as

M2
C− |SC = (TnAT 2)2 + m2|τ ′|2

(R′Im(τ ′))2 + T8π2R′|τ ′|(NT + N̄T ), (3.49)

and
M2
C+ |SC = M2

C− |SC − 2P̂ 0
−TAT 2k+, (3.50)

where c = ~ = 1, and NT , N̄T are the total number operators defined on the appendix B.
Since τ ′ denotes an arbitrary point on the upper complex plane, in order write the

Hamiltonian in terms of the fundamental domain, a modular transformation is performed
with (

q −p
Q P

)
∈ SL(2, Z), (3.51)

where the minus sign is convention and q, p are relatively primes. The mass operator of the
stringlike configurations associated with the M2-brane with C± fluxes can be written as

M2
C− |SC = (T11nAT 2)2 +

(
m|qτ − p|
RIm(τ)

)2
+ T8π2R|qτ − p|(NT + N̄T ) (3.52)

– 14 –



J
H
E
P
0
3
(
2
0
2
3
)
1
4
3

and as AT 2 remains invariant, we have thatM2
C+
|SC is given by (3.50). We must emphasize

that the winding and KK term on (3.49) are strictly related to sectors of M2-brane in the
light-cone gauge on M9 × T 2 with consistent quantum behaviour. When the irreducible
wrapping condition is not satisfied, we have shown that the winding and KK term are not
reproduced.

The last term on (3.50) is a constant contribution due to the flux condition on C+.
This term does not appear in the M2-brane with central charges, or equivalently in the
M2-brane with C− fluxes. In all cases the mass operator (3.50) is invariant under the full
SL(2, Z)T 2 symmetry.

Using (3.28) and then the expansions (B.5) and (B.7) on the appendix B, with c =
~ = 1 it is possible to obtain from the global constraint the level matching constraint as

N̄T −NT = m̂8n, (3.53)

Recalling that the type IIB mass operator (p, q)-string compactified on a S1 of radius RB,
is obtained from the supermembrane by using M2 = β2M2

(p,q) [1], with

τ = λ0, β2 =
TA

1/2
T 2

Tc
, R2

B = (TA3/2
T 2 Tc)−1, (3.54)

where Tc = T 2/3 is the string tension. Taking into account that the wrapping terms on the
11D formulation side correspond to the KK contribution on the type IIB side and vicecersa,
assuming the C+ = 0 flux contribution, by substitution, one recovers the compactified type
IIB mass operator (p, q)-string

M2
(p,q) =

(
n

RB

)2
+ (2πRBmT(p,q))2 + 4πT(p,q)(NL +NR), (3.55)

where the tension of the (p, q)-string is

T(p,q) = |qλ0 − p|
(Im(λ0))1/2Tc, (3.56)

with Tc the tension of the string, λ = ξ + i expφ the axion-dilaton of the type IIB theory
with φ correspond the dilaton field and λ0 is the scalar corresponding to the asymptotic
value of λ.

For the general case with C+ 6= 0 the only difference with (3.55) will be a constant
shift on the (p, q)-string mass operator given by 2P 0

−T
1/6
c R

−2/3
B k+.

It can be seen that the central charge condition is directly necessary to obtain the KK
contribution but also allowing to define the T(p,q) for p, q 6= 0 since it requires a proper
map on a torus. Bound states of (p, q)-strings are strictly related to sectors of M2-brane
on M9 × T 2 with irreducible wrapping. The sector with n = 0 is only able to reproduce
wrapped type IIB (1, 0)-strings with null KK contribution. The low energy limit is given
by maximal supergravity in 9D for any value of n.
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4 The M2-brane with monodromy

In this section, we obtain the supersymmetric mass operator corresponding to the M2-
branes with fluxes and nontrivial monodromy. We will consider only parabolic mon-
odromies, and analysis for other ,monodromies will be presented elsewhere. Let us empha-
size that the contribution of the monodromy is nontrivial. The mass operator in [1] was
obtained for M2-branes on a torus with trivial monodromy, in this case each pair of charges
(p, q) determines a coinvariant. These coinvariants are related among them by the SL(2, Z)
symmetry. The main point is that when the monodromy is not trivial, the coinvariants
contain a set of (p, q) charges related by a internal symmetry that leaves the coinvariant
invariant. Furthermore, there is also a symmetry relating the different coinvariants among
them. In what follows we will determine both symmetries, the formulation reduces to the
one in previous sections when the monodromy is trivial. Let us notice that for parabolic
monodromies, the coinvariants are defined solely by the charge q from the pair (p, q). That
is, different q’s define different coinvariants. All pairs (p, q) with the same q belong to the
same coinvariant. The mass operator depends also on the moduli and winding number. In
particular we have to give the associated moduli to the corresponding coinvariant. In the
trivial monodromy case one has to provide the moduli for each pair (p, q). In the parabolic
monodromy case, given q, the internal symmetry define an equivalence class of charges p
and moduli parameters which leave invariant the coinvariant together with the mass opera-
tor. In this way the theory is formulated in terms of equivalence classes. This is reminiscent
of what occurs with the gauge theories, which are defined in terms of equivalence classes,
elements on the same class are related by a gauge symmetry. In this sense, we argue that
this internal discrete symmetry is the origin of the gauge symmetry in gauged supergravity.

A symplectic torus bundle is defined by E the total space, F the fiber which is the
torus of the target-space T 2 compact sector and the base space Σ, which is also a torus.
The structure group G corresponds to the group of the symplectomorphism preserving the
canonical symplectic two-form on T 2. On Σ, there exists an induced symplectic two-form,
obtained from the pullback of the two-form on T 2 by the harmonic map from Σ to the fiber
T 2. We notice that the group of symplectomorphisms in T 2 or Σ is isomorphic to the area
preserving diffeomorphisms. The symplectomorphisms in T 2 and in Σ define the isotopic
classes with a group structure Π0(G), in the case under consideration SL(2, Z).

The action of G on the fiber produces an action on the homology and cohomology
classes of T 2. It reduces to an action of Π0(G). Besides, there is an homomorphism (2.15).
Each homomorphism defines a linear representation

ρ : Π1(Σ)→ SL(2, Z), (4.1)

acting on the first homology group in T 2, H1(T 2). Because H1(T 2) is an abelian group,
this homomorphism gives the structure of the Z([Π1(Σ)])-module to each homology and
cohomology group on the bundle. Given a monodromy, [31] established the existence of
a one-to-one correspondence between the equivalent classes of symplectic torus bundles,
induced by the module structure Z2

ρ on H1(T 2), and the elements of H2(Σ, Z2
ρ), the second

cohomology group of Σ with coefficients Z2
ρ . They classify the symplectic torus bundles for
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a given monodromy in terms of the characteristic class. In the case of a symplectic torus
bundle with base a torus Σ, the classification in terms of these characteristic classes is
equivalent to the classification in terms of coinvariant classes of the monodromy subgroup,
acting on (p, q) charges. We denote the coinvariant classes simply as coinvariants.

Therefore, the M2-branes on M9×T 2 with the irreducible wrapping condition, contain
two compatible gauge structures. The first one is given by the symplectic (area preserving)
structure of the bundle, which ensures the existence of a symplectic connection transforming
under symplectomorphisms and it can be extended to a formulation of the M2-brane on
a symplectic torus bundle with monodromy, a nontrivial geometrical construction. The
second gauge structure is the U(1) principal bundle related to the 2-form flux on Σ due to
the central charge condition or equivalently due to a nontrivial flux on the target space.
Both gauge structures are compatible, and consequently, they allow the introduction of a
twisted torus bundle structure.

4.1 Symmetries induced by the monodromy on the M2-brane with fluxes

Let us consider that the monodromy on the fiber is given by

MG =
(
M11 M12
M21 M22

)(α+β)

∈ SL(2, Z), (4.2)

where (α, β) are the integers characterizing the elements of Π1(Σ) and specific values of
Mij , with i, j = 1, 2 will lead to parabolic, elliptic or hyperbolic monodromies according to
it trace. The induced transformation on Σ, also called induced monodromy on Σ, is given by

M∗G = Ω−1MG(α, β)Ω =
(
M11 −M12
−M21 M22

)(α+β)

, (4.3)

with Ω =
(
−1 0
0 1

)
, equivalently to S∗2 in (3.2). Therefore symplectomorphisms not con-

nected with the identity on Σ are realized by

dX̃r → (g̃∗)rsdX̂s, W→W(g̃∗)−1, (4.4)

where g̃∗ ∈M∗G and the action of SU -duality, when the monodromy is nontrivial, is given by

τ → aτ + b

cτ + d
, R→ R|cτ + d|, A→ Aeiϕτ , (4.5)

Γ→ Γeiϕτ , W→ g∗W, Q→ gQ, (4.6)

with g =
(
a b

c d

)
∈ MG and cτ + d = |cτ + d|e−iϕτ . The M2-brane sectors with central

charges are invariant under these SL(2, Z) symmetry transformations on Σ and T 2.
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4.2 Winding and KK terms

In order to obtain the mass operator it can be seen that the purely harmonic contributions
on the Hamiltonian (2.10) are given by the same winding and flux term as in (3.8).

To reproduce the KK term on the mass operator, it can be checked that (3.14) with M
given by (3.15) and the winding matrix W, do not reproduce a map onto circles. However,
if we consider that l̃8 = nk̃8 and m̃8 = nk̃9 with k̃8, k̃9 ∈ Z, the winding matrix can be
written as

W̃ = W(g∗)−1 = S̃

(
n 0
0 1

)
, (4.7)

with S̃ =
(
k̃8 l̃9
k̃9 m̃9

)
∈ SL(2, Z). Therefore, (3.14) can be written as

1
2πR

∮
CS

N−1
(
dX8

dX9

)
=
∮
CS

(
ndX̃8

dX̃9

)
, (4.8)

with N−1 = S̃−1M−1, and from (3.16) we have the KK modes given by P 0
r = b(N−1)sr

m̂s

R
.

Hence
P 0

8 = b
t8
R
, P 0

9 = b
t9 − t8Re(τ)
RIm(τ) , (4.9)

with
t8 = m̃9m̂8 − k̃9m̂9, t9 = k̃8m̂9 − l̃9m̂8. (4.10)

Consequently, the KK term on the mass operator, can be written in this case as

b2
|t8τ − t9|2

(RIm(τ))2 . (4.11)

This term is invariant under (4.5)–(4.6). It can be checked that, for a trivial monodromy,
the winding matrix can be written as (3.6) and we recover the expressions given by (3.17).
Notice that the integers t8, t9 may be written as t8 = mq, t9 = mp with m ∈ Z and p, q

relatively primes.
In order to complete the mass operator, we have also to consider the nonzero modes

of the Hamiltonian of the M2-brane with C± fluxes and nontrivial monodromy.

5 Mass operator of M2-branes on inequivalent coinvariants with parabolic
monodromies

In this section we present an M2-brane Hamiltonian defined on the inequivalent classes of
twisted torus bundles with parabolic monodromies. This is a new result that has not been
previously identified in the literature. It corresponds to a functional on the coinvariants as-
sociated with a given monodromy. This formulation generalizes the construction in section
3, which is associated with the particular case of a trivial monodromy. This formulation
is defined on the module of Mp-coinvariants. We provide an explicit construction of the
model.
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5.1 M2-brane on the module ofMp-coinvariants

Inequivalent torus bundles are classified according to the coinvariant classes, briefly coin-
variants, for a given monodromy [22, 25, 28, 34]. The coinvariants related to the fiber and
the base manifold are given by

CF =
{
Q+MgQ̂− Q̂

}
, (5.1)

CB =
{
W +M∗gŴ − Ŵ

}
, (5.2)

respectively, where Q =
(
p

q

)
with p, q ∈ Z and W =

(
l1
m1

)
with l1,m1 ∈ Z, Q and W

are KK and winding charges, Q̂ and Ŵ correspond to arbitrary charges and Mg is the
monodromy subgroup. Given W as in (2.6), we will consider the class of matrices given by

W =
(
l1 l2
m1 m2

)(
1 λ
m

0 1

)
(5.3)

with λ,m ∈ Z and l1 = ml′1 and m1 = mm′1 with l′1,m′1 relatively primes. These are the
most general matrices with W as first column and det(W) = n. We use the first column of
W in the definition of CB, but we could have used the second column also. The following
reasoning is also valid in both cases.

If the monodromy is trivial, the coinvariants contain only one element, as discussed
in [25], but for a nontrivial monodromy class, the coinvariants associated with the base
and the fiber contain an equivalence class of KK and winding charges, respectively, related
to the same bundle. As shown in [28], it is straightforward to see that the Hamiltonian of
M2-branes with C± fluxes is invariant in an orbit of charges (gQ ⊂ CF ) generated by the
monodromy, with g ∈Mg, restricting the SL(2, Z)T 2 transformation (4.5)–(4.6).

Moreover, we will demonstrate that, for the parabolic monodromy, the Hamiltonian
is invariant not only in the orbit of charges, but also in the complete coinvariant. It is
generated by the abelian parabolic subgroup

Mp =
(

1 1
0 1

)(α+β)

. (5.4)

This parabolic representation contains the infinite inequivalent conjugate classes of
parabolic monodromy

Mp =
(

1 k
0 1

)
. (5.5)

The coinvariants (5.1) and (5.2) are given by

CF =
(
p+ (α+ β)q̂

q

)
, (5.6)

CB =
(
l1 − (α+ β)m̂1

m1

)
, (5.7)
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In this case, CF and CB are characterized by q and m1, respectively. Their different values
define inequivalent classes of twisted torus bundles with parabolic monodromy.

So far, the mass operator of supermembranes with monodromy contained in SL(2, Z)
can be written as

M2
C± = (TnAT 2)2 + b2m2|τTRQ|2 + 2P̂ 0

−H
′C± , (5.8)

with H ′C± the hamiltonian of the M2-brane with C± fluxes and nontrivial monodromy and

τTR = 1
RIm(τ)

(
−1 τ

)
, Q =

(
p

q

)
(5.9)

This mass operator is invariant under the monodromy g ∈ MG. It is consistently defined
on the orbit of KK (winding) charges generated by the monodromy g (g∗).

For parabolic monodromies, the mass operator of the M2-brane with C± fluxes given
by (5.8) is invariant if

Q′ = ΛQ, (5.10)
W′ = Λ∗W, (5.11)

τ ′ = τ + Z
q
, (5.12)

where the Λ matrices given by

Λ =
(

1 Z
q

0 1

)
, (5.13)

Λ∗ = Ω−1ΛΩ =
(

1 −Z
q

0 1

)
, (5.14)

with Ω =
(
−1 0
0 1

)
, define a subgroup of SL(2,R). The transformation (5.10) maps any

element of a given coinvariant onto the same coinvariant

Q
Λ−→ CF =

(
Z̃
q

)
, (5.15)

with Z̃ = p + Z. Furthermore, given two elements of the coinvariant there exists Z such
that they are mapped between each other by the corresponding Λ in (5.13). Together with
the transformation of τ , (5.12), leaves invariant KK term

|q′τ ′ − p′|2

(RIm(τ ′))2 = |qτ − p|2

(RIm(τ))2 , (5.16)

Furthermore, it preserves dXh, the harmonic map on T 2 given by (3.5), and thus is
a symmetry of the Hamiltonian and full mass operator. This set of transformations is
a generalization of the parabolic monodromy-generated invariance on an orbit of charges
(gQ ⊂ CF ).
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It can be seen that the matrix W′ is given by

W′ =
(
l1 − Z

qm1 l2 − Z
qm2

m1 m2

)
(5.17)

with det(W′) = det(W) = n ∈ Z. Although W′ can not be interpreted as a wrapping matrix
(unless m1 and m2 are proportional to q), it produces the same central charge related to
the winding term on the mass operator.

Consequently, the mass operator (5.8) is invariant on the equivalence class of charges
given by the coinvariant for a given parabolic monodromy.

Furthermore, the charges on the same coinvariant define the same symplectic torus
bundle and hence the same physical M2-brane with monodromy. The mass operator of the
M2-brane with parabolic monodromy is then expressed in terms of the coinvariant classes
of KK charges and winding numbers. We interpret this parabolic symmetry as the origin
of the gauge symmetry of the parabolic type II gauge supergravity in 9D.

Let us emphasize that the parabolic coinvariants are characterized by the integer q.
For each value of q we have a coinvariant, and there are equivalence classes of p and τ

which are related to the same coinvariant.
In particular, if mr = λrq, λr ∈ Z for r = 1, 2 we have that

W
Λ∗−→ CB =

(
l1 − Z
m1

)
. (5.18)

with Λ∗ given by (5.14), maps any element of a given (base) coinvariant onto the same
coinvariant. In this particular case, W′ is interpreted as a winding matrix and from (5.17),
det(W′) = n implies n proportional to q. That is, n will, in general, depend on the parabolic
coinvariant.

5.2 Transformations between different coinvariants

We now consider a formulation of the twisted parabolic M2-brane in terms of the module of
Mp-coinvariants. It follows from the explicit expression of the mass operator that, indeed,
it is defined on the coinvariant classes. The M2-brane with trivial monodromy, M0 = I
was analyzed in section 3.

Let us identify the transformations that relate inequivalent classes of M2-brane twisted
torus bundles with parabolic monodromy. This is equivalent to determine the transforma-
tion which relates the different coinvariant classes associated toMp. It turns out that this
transformation is a symmetry of the formulation. If the monodromy is trivial, each pair
of charges (p, q) represents a coinvariant and the symmetry of the formulation is SL(2, Z)
as determined by [1]. For a nontrivial parabolic monodromy, the space of (p, q) points is
distributed in terms of disjoint coinvariants associated toMp and the M2-brane is a theory
on the module ofMp-coinvariants.

Firstly, we introduce some formal definitions that will allow us to determine the precise
bundle coinvariant transformation. Given a group G and a subgroup H ∈ G we define the
following classes

aH = {ah : h ∈ H} , a ∈ G, (5.19)
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There is an equivalence relationship between two elements a, b ∈ G provided that b = ah

for some h ∈ H. This relation can be re-expressed as a = bh−1.
A relevant property is that each element c ∈ G is contained in one and only one

equivalence class. If c = ah = bĥ → a = bĥh−1 ∈ bH and then the classes aH = bH.
Hence G is the disjoint union of the equivalence classes generated by the subgroup H.

Given any pair of charges Q =
(
p

q

)
with p, q ∈ Z andQ0 =

(
1
0

)
, there exists a matrix

V ∈ GL(2, Z), such that Q = V Q0. It is given by V =
(
p r

q s

)
where r, s are not unique.

The most general expression preserving the determinant is(
p r + λp′

q s+ λq′

)
=
(
p r

q s

)(
1 λ
m

0 1

)
, (5.20)

with r and s unique, λ,m ∈ Z such that p = mp′ and q = mq′ with p′, q′ relatively primes.
In fact, if p(s − ŝ) − q(r − r̂) = 0, then (s − ŝ) = q′

p′ (r − r̂) which implies, since the left
hand is an integer and p′, q′ are relatively primes, the existence of λ such that r̂ − r = p′λ

y ŝ− s = q′λ. Consequently, the most general solution corresponds to

r̂ = r + λp′, ŝ = s+ λq′. (5.21)

Transformation between coinvariants. Let us define V as a linear representation of
the discrete subgroup Mg. The quotient Q

gQ̂−Q̂
is the module of Mg-coinvariants [39].

Two classes
{
Q1 + gQ̂− Q̂

}
and

{
Q2 + gQ̂− Q̂

}
are disjoint if and only if Q1 and Q2 are

not in the same coinvariant. In the case of a parabolic representation -associated to the
monodromy of the twisted torus bundle (5.5)-, the coinvariants are given by (5.6) and (5.7),
where Q̂ is an arbitrary element of the space V and g any element of the subgroup Mp.
They are distinguished solely by the value of q.

In order to transform
Cq1 → Cq2 , (5.22)

we perform the following transformation

Cq1

Λ−1
q1−−→ Q1 =

(
p1
q1

)
→ Q0 =

(
1
0

)
→ Q2 =

(
p2
q2

)
Λq2−−→ Cq2 , (5.23)

through SL(2, Q) and GL(2, Z) transformations with q1 6= q2.
Following (5.19), where G = GL(2, Z) and H = Mp, the transformation Q1 → Q0 is

defined by the equivalence class aMp determined by

a =
(
p1 r1
q1 s1

)
, (5.24)

where r1, s1 define a ∈ GL(2, Z). Consequently,

Mpa
−1Q1 = Q0, (5.25)
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and
bMpQ0 = Q2, (5.26)

with b =
(
p2 r2
q2 s2

)
. The total transformation is

Q1
bMpa−1
−−−−−→ Q2, (5.27)

or equivalently
Q1

ba−1
−−−→ Q2. (5.28)

Given p1, q1 (p2, q2), the most general expression for a (b), preserving its determinant

has the general expression (5.20). Notice that
(

1 λ
m

0 1

)
Q0 = Q0. Consequently, a, b are

determined uniquely by p1, q1 and p2, q2 , respectively.

Each coinvariant Cq contain the element
(

1
q1

)
. In this case, we define a =(

1 1
q1 (q1 + 1)

)
, b =

(
1 1
q2 (q2 + 1)

)
, with q2 6= q1, then it is easy to verify that

(
1
q2

)
= ba−1

(
1
q1

)
(5.29)

with
Mβ ≡ ba−1 =

(
1 0
β 1

)
. (5.30)

The elements of Mβ determine a group conjugate to Mp. The transformation between
coinvariants is given by

Cq1

Λ−1
q1−−→

(
1
q1

)
Mβ−−→

(
1
q2

)
Λq2−−→ Cq2 . (5.31)

Let us emphasize that this transformation maps integer charges into integer charges. More-
over, as the SL(2,Q) transformations are within the coinvariant, is the parabolic matrix
Mβ the one that characterize the transformation between coinvariants.

Consequently, there is a transformation

Cq1
Λ̃−→Cq2 , τ→

(
1+ Z2

q2
β
)
τ+

(
−Z1
q1

+ Z2
q2

(
1− Z1

q1
β
))

βτ+1− Z1
q1
β

, W→ Λ̃∗W,

R→R|βτ+1− Z1
q1
β|, A→Aeiϕτ , Γ→Γeiϕτ , (5.32)

with

Λ̃ = Λq2MβΛ−1
q1 =

 1 + Z2
q2
β −Z1

q1
+ Z2

q2

(
1− Z1

q1
β
)

β 1− Z1
q1
β

 , (5.33)

Λ∗ = Ω−1ΛΩ (5.34)

and eϕτ =
βτ+1− Z1

q1
β

|βτ+1− Z1
q1
β|

leaving invariant the M2-brane mass operator.
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This can be interpreted as a duality between inequivalent classes of M2-brane twisted
torus bundles with parabolic monodromies.

One could also use the lower triangular parabolic matrix to describe the parabolic
monodromy, and then an upper triangular parabolic matrix describes the transformation
between the parabolic coinvariants. Since both matrices are in the same conjugacy class,
the M2-brane mass operator also remains invariant in this case.

6 Parabolic (p, q)-strings

The identification of type IIA with 11D supergravity on a circle and T-duality between
type II theories induces the relation of type IIB on a circle with 11D supergravity on a
torus. We have seen in section (3) that M2-branes on M9 × T 2 with irreducible wrapping
yield type IIB-string compactified on a circle.

We will now show that the double-dimensional reduction of M2-branes with C± fluxes
and parabolic monodromy is related to (p, q)-superstrings compactified on a circle, with
the corresponding restriction on the SL(2, Z) symmetry provided by the monodromy.

In [28], the low energy limit of M2-brane with monodromy contained in the conjugacy
classes of SL(2, Z), i.e. parabolic, elliptic and hiperbolic according to it trace,2 were related
to the type IIB gauged supergravity with parabolic, elliptic and hyperbolic monodromy,
respectively. In the conclusion we will discuss the relation of the parabolic string with the
uplift of type IIB parabolic supergravity in 9D.

6.1 Mass operator of the parabolic (p, q)-string

The mass operator of the M2-brane with C± fluxes and nontrivial monodromy (5.8) is de-
fined in the orbit of charges for a given monodromy g ∈Mp (4.5)–(4.6). For parabolic mon-
odromies, we have shown that it can be consistently formulated on the coinvariants (5.10)–
(5.12) which classify inequivalent twisted torus bundles.

In order to obtain the full mass operator and the corresponding (p, q)-strings, we will
consider the Hamiltonian HC± |SC given by (5.8) on the string configurations as in section
3 but with the harmonic map written as

dXh = 2πR(lr +mrτ)dX̂r. (6.1)

It lead us to the Hamiltonian given by (3.30), with the bosonic and fermionic potential
written as (3.31) and (3.32), respectively. The SL(2,Z) symmetry on Σ is given by (4.4).

Let us perform the same change on the canonical basis of homology and the corre-
sponding basis of harmonic one-forms as in (3.33). Nevertheless, instead of using the full
SL(2, Z)T 2 and SL(2, Z)Σ, we will only use the restricted SL(2, Z)Σ symmetry given by the
induced monodromy in (4.4). In this case, the Hamiltonian remains invariant under such
transformation, but the winding matrix transform according to (4.4). It is evident that
this transformation leaves invariant the harmonic one-form.

2In this paper we will not discuss the case in which the monodromy is nonlinearly realized.
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Therefore, following section (3), the Hamiltonian of the M2-brane in the string config-
urations with nontrivial monodromy is given by

HC− |SC =
∫
dX̃8 ∧ dX̃9

{
1

2P 0
−

(
P ′M√
w

)2
+ T 2

2P 0
−

(2πR|l9 +m9τ |)2∂8X
M∂8XM (6.2)

− T (2πR)θ̄Γ− [l9Γ8 +m9(Γ8Re(τ) + Γ9Im(τ))] ∂8θ

}
.

Is easy to see that following the proposition III.2.3 from [38] we can rewrite the Hamiltonian
as

HC− |SC = 1
2P 0
−

∫
dX̃8

{(
P ′M√
w

)2
+ T 2(2πR|l9 +m9τ |)2∂8X

M∂8XM (6.3)

− 2P 0
−T (2πR)θ̄Γ− [l9Γ8 +m9(Γ8Re(τ) + Γ9Im(τ))] ∂8θ

}
.

If we consider the global constraint as in the previous section, we will obtain two constraints
due to X̃r with r = 8, 9. It can be seen that the one corresponding to X̃9 lead us to

0 = t8l9 + t9m9, (6.4)

from which we obtain that m̂9 = 0 as in the previous section and therefore t8 = m9m̂8, t9 =
−l9m̂8. Before analyzing the global constraint for X̃8, let us recall that X̃8 is adimensional.

Therefore, we consider ξ given by (3.43) but with a =
K

√
P̂ 0
−

T̃
with T̃ = T (2πR)|l9 +m9τ |

and K a constant with dimensions of (energy)1/2. Consequently, the Hamiltonian can be
written as

HC− |SC = K√
P 0

−

∫
dξ

{
1

2T̃

(
P ∗
M√
w

)2
+ T̃

2 ∂ξX
M∂ξXM −

S̄∗
√
w

Γ∗∂ξθ

}
, (6.5)

where M = 1, . . . , 8 and

Γ∗ = (l9 +m9Re(τ))Γ8 +m9Im(τ)Γ9
|l9 +m9τ |

, (6.6)

satisfies the corresponding Clifford algebras.
Following the same decomposition as in the previous section, we can write the string

Hamiltonian in terms of the re-scaled SO(7) spinors (3.47) as

HC− |SC =
∫
dξ

{
1

2T̃

(
P ′M√
w

)2
+ T̃

2 ∂ξX
M∂ξXM −

i√
2
P 0
−
a

(λ̂1∂ξλ̂
1 − λ̂2∂ξλ̂

2)
}
, (6.7)

and the same expression in terms of the oscillators is given by

HC− |SC = T8π2R|m9τ + l9|(NT + N̄T ), (6.8)

where we have set c = ~ = 1.
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Consequently, the mass operator corresponding to an M2-brane with C− fluxes and
monodromy, can be written on the strings confiurations as

M2
C− = (TnAT 2)2 + m̂8|(m9τ + l9)|2

(RIm(τ))2 + T8π2R|m9τ + l9|(NT + N̄T ), (6.9)

and it remains invariant under the transformations given by (4.4), (4.5) and (4.6), respec-
tively, restricted by the monodromy g ∈ Mg, instead of the arbitrary matrix of SL(2, Z)
for trivial monodromies.

Finally, from the mass operator (6.9) we notice that

M2
C− = (T11nAT 2)2 +

(
m̂8m1|qτ − p|

RIm(τ)

)2
+ T8π2Rm1|qτ − p|(NT + N̄T ),

= (T11nAT 2)2 + m̂2
8|τTRQ|2 + T8π2R2Im(τ)|τTRQ|(NT + N̄T ), (6.10)

M2
C+ = M2

C− − 2P 0
−TAT 2nk+, (6.11)

with

m1q = m9, m1p = −l9, (6.12)

τTR = m1
RIm(τ)

(
−1 τ

)
, Q =

(
p

q

)
(6.13)

and it is consistently defined on the orbit of KK charges generated by any monodromy
g ∈Mg.

As happens in (5.8) for the M2-brane, the mass operators (6.10) and (6.11), are in-
variant on the coinvariants for a given parabolic monodromy g ∈Mp, hence describing the
same twisted torus bundle with parabolic monodromy description. Inequivalent coinvari-
ants are given by different values of q′ = m1q, while p′ = m1p ∈ Z defines the different
elements within the same class. At string theory level these coinvariant classes defines the
equivalence classes of charges.

If we now follow the same procedure as in section 3, we can obtain the parabolic
(p, q)-string mass operator given by

M2
Cq =

(
n

RB

)2
+ (2πRBm̂8TCq)2 + 4πTCq(NL +NR)−

2P 0
−T

1/6
Cq

R
−2/3
B nk+

|λ̂TCq|1/6
, (6.14)

where

τ = λ0, β2 =
TA

1/2
T 2

Tc
, R2

B = (TA3/2
T 2 Tc)−1, , (6.15)

and
TCq ≡ |λ̂TCq|Tc, λ̂T = m1

(Im(λ0))1/2

(
−1 λ0

)
(6.16)

with Cq as in (5.15), Tc = T 2/3 the string tension as in (3.54) and λ0 = ξ + i expφ0 the
axion-dilaton of the type IIB theory.

The associated pair of (p, q) charges of the parabolic string gets all identified for any
given q from an 11D point of view.
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In fact, from (5.10)–(5.12), we have that the mass operator (6.14) is invariant under
the following SL(2,Q) transformation

Q′ = ΛQ, (6.17)

λ′0 = λ0 + Z
q
, (6.18)

where Λ is given by (5.13). This symmetry relates states of parabolic (p, q)-strings, classified
with q fixed and p any integer number, with the same local and global origin in 11D. The
tension TCq is invariant under this transformation. It means that states with the same q,
and p, λ0 transforming according to (6.17)–(6.18) describe the same string with a unique
tension TCq . This transformation arise from the one obtained in (5.10)–(5.12). It defines
inequivalent classes of parabolic (p, q)-strings compactified on a circle. It can be verified
that (6.17) preserves the quantization of charges.

The transformation that relates different coinvariants is given by Λ̃ according to (5.33)

Cq2 = Λ̃Cq1 . (6.19)

Therefore, it can be checked from (5.32), that

Q′ = Λ̃Q,

λ′0 =

(
1 + Z2

q2
β
)
λ0 +

(
−Z1
q1

+ Z2
q2

(
1− Z1

q1
β
))

βλ0 + 1− Z1
q1
β

(6.20)

leaves invariant the tension TCq and hence the parabolic string mass operator (6.14). This
transformation is analogue to the SL(2, Z) symmetry between (p, q)-strings introduced by
Schwarz corresponding to the case with trivial monodromy.

As a result, we will have parabolic (p, q)-strings on M9×S1 (strictly, q-strings), which
are obtained through a double dimensional reduction from M2-branes with parabolic mon-
odromy. Moreover, the low energy limit of the M2-branes in 9D is related to type IIB
gauged supergravities in 9D. In fact, it was already shown in [28] that the eight inequiv-
alent classes of M2-branes with nontrivial monodromy are in correspondence, in the low
energy limit, with the type II gauged supergravities in 9D. Therefore, we claim that the
corresponding parabolic (p, q)-string must be associated with the type IIB gauged super-
gravity in 9D with a parabolic gauging group.

7 Conclusions

We characterize the string description of the toroidally wrapped M2-branes with KK
charges and a quantized three-form C3, that induces two-form fluxes on the target, formu-
lated on a twisted torus bundle with monodromy. In the case of a trivial monodromy the
formulation reduces exactly to the one considered in [1] and the double dimensional reduc-
tion coincides with the (p, q)-strings with SL(2, Z) symmetry. We analyze the formulation
for nontrivial parabolic monodromies and identify the “gauge” symmetry in the M2-brane
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formulation related to the associated supergravity. We perform explicitly the construction
for a generic parabolic monodromy, we will discuss the other monodromies elsewhere.

We first characterize the role of the central charge in the supermembrane double re-
duction on a Minkowski target space toroidally wrapped. It is well-known that a su-
permembrane on a torus is associated to a wrapped type IIB SL(2, Z) (p, q) string on a
circle [1]. M2-brane with C± fluxes has a purely discrete mass spectrum. It is equivalent,
through a canonical transformation of the phase space variables, to the M2-brane with
central charge [19]. The equivalence is exact when only C− fluxes are present and the
C+ component vanishes [21] and it has a constant shift in the presence of C+ fluxes [21].
We show that the existence of a central charge condition is a necessary prerequisite to
obtain the sectors of the (p, q) string mass operator with p, q 6= 0, which are associated
with string bound states. A central charge condition is necessary to define the embedding
map onto circles and hence, an actual wrapping of the M2-brane on a torus. The type
IIB (p, q)-string KK-term is inherited from the central charge condition. Furthermore the
characteristic tension of the wrapped (p, q) string with p, q 6= 0 cannot be obtained from
vanishing central charge (reducible wrapping) in the M2-brane theory.

When the monodromy is trivial, the symmetries on T 2 and Σ are given by the full
group SL(2, Z) and for C− 6= 0 and C+ = 0 the results coincide with those obtained
by [1]. The coinvariant class contains solely one element, each pair of charges (p, q) define
one coinvariant. Different coinvariants are related by an SL(2, Z) transformations. When
doubled dimensionally reduced, each wrapped (p, q) strings is connected by an SL(2, Z)
transformation.

We have concentrated this study on the case when the M2-brane is formulated on a
twisted torus bundle with monodromy contained in SL(2, Z), the group of isotopy classes of
area preserving diffeomorphisms (symplectomorphisms) [28, 34]. In that case, the discrete
symmetry is restricted to the monodromy subgroups, generated by elliptic, parabolic, and
hyperbolic SL(2, Z) matrices. The inequivalent classes of twisted torus bundles are given
by the coinvariants on the fiber and base manifold, for a given monodromy Mg and C±
fluxes. The Hamiltonian of the M2-brane with C± fluxes is invariant on an orbit of charges
gQ ⊂ CF generated by g ∈ Mg in [28]. Furthermore, we show here that the Hamiltonian
with parabolic monodromies, can be consistently defined on the coinvariant CF . There are
infinite inequivalent coinvariants associated to the parabolic monodromy Mp. They are
determined by one of the KK charges, hence they are classified by the integers. We showed
that the mass operator’s symmetry group is an extension of the subgroup generated by a
parabolic generator in SL(2, Z). Its generator is a parabolic matrix in SL(2,Q), Q being
the rational numbers. This symmetry is not present in [1] where each coinvariant has solely
one element. When the monodromy is nontrivial, we identify the symmetry relating the
elements of the coinvariant as a “gauge symmetry” of the formulation. In fact, not only
the physical content remains invariant but also the geometric formulation is defined on the
same twisted torus bundle. The theory is the formulated on equivalence classes classified
by only one charge q.

We demonstrate that the transformation between M2-brane twisted torus bundles with
parabolic monodromy but different second cohomology class, i.e. different coinvariants, can
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be expressed in terms of a subgroup Mβ conjugated to the Mp. It leaves the M2-brane
mass operator invariant, although they describe formulations of M2-brane on inequivalent
symplectic torus bundles.

These sectors, globally described in terms of twisted torus bundles with nontrivial
monodromy, are described at low energies by the type II gauged supergravities in 9D. The
double dimensional reduction of the M2-brane Hamiltonian yields a Hamiltonian of a class
of (p, q)-string with a parabolic SL(2,Q) symmetry (strictly, q-strings), inherited from the
monodromy of the M2-brane from which it descends. Their low energy should be the same
as that of the correspondind M2-branes, i.e. the type IIB gauged supegravities in 9D. These
parabolic (p, q)-strings (strictly, q-strings) may correspond to the parabolic Scherk-Schwarz
reduction of type IIB superstring, considered in [23] in terms of F-theory compactified on
a twisted torus.
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A SO(8) spinor decomposition

Let us recall thatM = 1, . . . , 8 on the Hamiltonian (3.44). Moreover, as we are considering
string configurations, we may compare this expression with the string type II Hamiltonian
in the closed sector.

Let us consider next representation of gamma matrices in 11 dimensions

Γ+ = i
√

2
(

0 I16×16
0 0

)
,Γ− = i

√
2
(

0 0
−I16×16 0

)
,Γa =

(
γa 0
0 −γa

)
(A.1)

where γa ∈ SO(9) are 16 × 16 matrices and a = (m, r) with m = 1, . . . , 7 and r = 8, 9. It
can be check that these representations satisfies the anticommutation relations{

Γ+,Γ−
}

= 2I32,
{
Γ±,Γa

}
= 0,

{
Γa,Γb

}
= 2ηab (A.2)

We may choose

θ =
(
ψ

0

)
, θ̄ =

(
0 −ψT

)
, (A.3)

such that Γ+θ = 0. Therefore, in terms of the SO(9) Majorana spinor ψ, it can be seen
that the fermionic term is given by

S̄∗√
W

Γ∗∂ξθ = i
√

2P 0
−ψ

Tγ8∂ξψ (A.4)
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where the representation of SO(9) matrices is given by

γ1 = −σ2 ⊗ σ2 ⊗ σ2 ⊗ σ1, (A.5)
γ2 = −σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, (A.6)
γ3 = −σ2 ⊗ σ2 ⊗ σ2 ⊗ σ3, (A.7)
γ4 = σ2 ⊗ σ2 ⊗ σ1 ⊗ I, (A.8)
γ5 = σ2 ⊗ σ2 ⊗ σ3 ⊗ I, (A.9)
γ6 = −σ2 ⊗ σ1 ⊗ I⊗ I, (A.10)
γ7 = −σ2 ⊗ σ3 ⊗ I⊗ I, (A.11)
γ8 = σ1 ⊗ I⊗ I⊗ I, (A.12)
γ9 = σ3 ⊗ I⊗ I⊗ I, (A.13)

with
σ1 =

[
0 1
1 0

]
, σ2 =

[
0 i

−i 0

]
, σ3 =

[
1 0
0 −1

]
(A.14)

the Pauli Matrices 2× 2 and σ0 = I. It can be seen that the SO(9) spinor can be splitted
as ψ = ψ+ + ψ− with

ψ+ = P+ψ =
(
χ+

0

)
, ψ− = P−ψ =

(
0
χ−

)
(A.15)

and P± = 1
2(I± γ9) written in terms of the chiral matrix of SO(8) such that

γ9ψ
± = ±ψ±. (A.16)

B Supersymmetric M2-branes string configurations

The Hamiltonian (3.48), or equivalently (6.7), are reminiscent of the LCG type II super-
string Hamiltonian. It can be checked that the equations of motion for the bosonic variables
are given by

∂2
tX

M = c2∂2
ξX

M , (B.1)

if K =
√
P 0
−. On the other hand, the equations of motion for the fermionic variables are

given by the standard expressions

(∂τ + c∂ξ)λ̂1 = 0, (∂τ − c∂ξ)λ̂2 = 0, (B.2)

In order to obtain the mass operator in terms of the oscillators, let us impose the boundary
conditions on the bosonic and fermionic fields. The canonical pairs of bosonic variables is
given by (Xm, Pm) y (X∗, P∗). Therefore, the periodic boundary conditions characteristic
of closed strings is

Xm(ξ + a, σ0) = Xm(ξ, σ0), (B.3)
X∗(ξ + a, σ0) = X∗(ξ, σ0) + (2πRB)n̂, (B.4)
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However, we know that the Hamiltonian (3.48) corresponds to the excitations of the non-
trivial M2-branes with respect to the center of mass. The zero modes contributions has
been used on the winding and KK term. In consequence, we have that

XM (ξ, σ0) = −i

√
α′

2
∑

n∈Z−{0}

[
αMn
n
e

2iπn(ξ+σ0)
a + α̃Mn

n
e
−2iπn(ξ−σ0)

a

]
, (B.5)

with M = 1, . . . , 8. If we set c = ~ = 1 we have the M2-brane tension has dimensions
of 1

[L]3
and the string tensions can be written as Tc = 1

2πα′ with the fundamental length

given by l =
√

2α′. Therefore, as a = 2πl we have that α
′

2 = a

4πP̂ 0
−
. On the GS formalism,

the boundary conditions on the spinors are given by

λ̂1(ξ, τ) = λ̂1(ξ + a, τ), λ̂2(ξ, τ) = λ̂2(ξ + a, τ), (B.6)

then
λ̂1 =

∑
n

β1
ne

i2πn(τ+ξ)
l , λ̂2 =

∑
n

β2
ne
−i2πn(−τ+ξ)

l . (B.7)

Finally, inserting this on the Hamiltonian (3.48) and using the standard (anti)-commutation
brackets for the (fermionic) bosonic oscillators we have that

HC− |SC = T8π2R′|τ ′|(NT + N̄T ), (B.8)

where NT = NB +N1
F , N̄T = N̄B +N2

F , are the total number operators∑
n 6=0

αMn α
M
−n = 2(NB + E0), (B.9)

∑
n 6=0

α̃Mn α̃
M
−n = 2(N̄B + Ē0), (B.10)

∑
n 6=0

nβ1
nβ

1
−n = −2(N1

F − Ē0), (B.11)

∑
n 6=0

nβ2
nβ

2
−n = −2(N2

F − E0) . (B.12)

and the vacuum energies has been cancelled as in the Ramond sector on the NSR formalism.
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