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Abstract: Novel and sustainable approaches are required to curb the increasing threat of antimicro-
bial resistance (AMR). Within the last decades, antimicrobial peptides, especially bacteriocins, have
received increased attention and are being explored as suitable alternatives to antibiotics. Bacteri-
ocins are ribosomally synthesized antimicrobial peptides produced by bacteria as a self-preservation
method against competitors. Bacteriocins produced by Staphylococcus, also referred to as staphylococ-
cins, have steadily shown great antimicrobial potential and are currently being considered promising
candidates to mitigate the AMR menace. Moreover, several bacteriocin-producing Staphylococcus
isolates of different species, especially coagulase-negative staphylococci (CoNS), have been described
and are being targeted as a good alternative. This revision aims to help researchers in the search
and characterization of staphylococcins, so we provide an up-to-date list of bacteriocin produced
by Staphylococcus. Moreover, a universal nucleotide and amino acid-based phylogeny system of
the well-characterized staphylococcins is proposed that could be of interest in the classification and
search for these promising antimicrobials. Finally, we discuss the state of art of the staphylococcin
applications and an overview of the emerging concerns.

Keywords: Staphylococcus; staphylococcin; applications; antimicrobial-resistance alternatives

1. Introduction

Antimicrobial resistance (AMR) is considered one of the most relevant threats affect-
ing not only human and animal health but also environmental health and food security.
Unless AMR’s spread and associated infections are globally prioritized and mitigated,
health and economic burdens across the world will continue to worsen. Therefore, the
sustainable prevention of human and animal infections and the reduction of the trans-
mission of foodborne and zoonotic pathogens is necessary for ensuring food safety and
public health. The frequent detection of top-priority antibiotic-resistant pathogens, espe-
cially methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus
faecium, carbapenem-resistant and extended-spectrum beta-lactamase (ESBL)-producing
Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa,
and fluoroquinolone-resistant Campylobacter spp. and Salmonella [1] within the human, ani-
mal, and environment/food systems pose a significant threat which could be exacerbated
if urgent measures are not explored. In this respect, it has been reported that infections
caused by MRSA are more difficult to treat and costlier for healthcare systems [2].

Within the last decades, several emerging therapeutic alternatives, including antimicro-
bial peptides, bacteriophages, nanomedicines, probiotics, phytochemicals, photodynamic
light therapy, etc., are being explored as suitable alternatives to antibiotics [3–6]. Bacteri-
ocins are antimicrobial peptides produced by bacteria, mainly of ribosomal synthesis [7]
that have recently attracted immense interest due to their high antimicrobial activities and
stability [8]. Bacteriocin production seems to be a common characteristic among microor-
ganisms, and it has been reported that most bacteria synthesize at least one antimicrobial
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compound [9]. Moreover, bacteriocin production is considered a self-preservation mech-
anism that allows bacteria to outcompete other members of the community, interfere in
communication with the host and/or other bacteria, and prevent colonization, setting up
very robust communities [10–12].

Staphylococcus is a Gram-positive commensal bacterial genus of humans and animals
and can also be found in diverse environments and food [13–16]. Some staphylococcal
species, including coagulase-positive (CoPS) and coagulase-negative staphylococci (CoNS),
have been described as bacteriocin producers, commonly termed as staphylococcins [17–19].
Interestingly, CoNS species are frequently found as commensals of humans and animals,
being infrequently associated with infections. These characteristics make them excellent
candidates for the research and development of safe and economical antimicrobial sub-
stances against antibiotic-resistant pathogens.

In recent times, increasing research focusing on the characterization, mechanisms,
activity (mostly against S. aureus), safety evaluation (including cytotoxicity), and regulations
of bacteriocins detected in staphylococci have been reported [7,19]. Recently, we identified
and characterized some relevant bacteriocin-producing staphylococci from animal, human,
and environmental sources in our laboratory [20–22].

In this review, a comprehensive and technical dossier for the search for and charac-
terization of bacteriocins detected in staphylococci is presented as an interesting source of
novel natural antimicrobial compounds with relevant interest to deal with the AMR prob-
lem. Furthermore, an extensively up-to-date classification of staphylococcal bacteriocins is
provided, as well as a novel phylogeny classification of staphylococcin structural genes
and proteins. Finally, a brief overview of possible bacteriocin applications is included.

2. Classification and Niche of Staphylococcus

Many staphylococcal species, both CoPS and CoNS, are found in humans, animals,
and food [23]. They normally interact as commensal bacteria, although they can also act as
opportunistic pathogens [24], especially CoPS, with S. aureus and S. pseudintermedius as the
most reported cause of infections [25]. S. aureus is commonly related to skin and soft tissue
infections in humans and cow mastitis [26]. As for companion animals, S. pseudintermedius
is frequently isolated from pyoderma and postoperative dermatological infection cases in
dogs [27]. Staphylococci are also common contaminants of animal-derived foods, such as
raw meats or milk-derived products, and are responsible for most food toxi-infections in
humans [23,24].

Staphylococci inhabit a wide diversity of polymicrobial environments and often com-
pete for resources. Some commensal staphylococcal species can prevent the colonization
of other pathogenic ones. Bacteriocin production is regarded as one of the defense mecha-
nisms developed for self-preservation. Since bacteriocins, both CoPS and CoNS, are being
considered as a new strategy to combat bacterial infections and the problem of antibiotic
resistance, it is important to study their respective niche microbiota.

2.1. Staphylococci in Skin/Nasal Microbiota of Humans

Long-term bacterial residents isolated from the human skin microbiota include those
from the genus Staphylococcus. It is estimated that 20–30% of the anterior nares are colonized
by S. aureus [11,18], and the presence of this opportunistic pathogen has been linked
to reduced bacterial diversity, exacerbated disease symptoms, and frequently precede
infection [28–30]. This percentage of S. aureus carriers could be affected by risk factors such
as occupational contact with farm animals [31].

Various CoNS species are known to inhabit the human skin microbiota, including
S. epidermidis, S. capitis, S. hominis, S. cohnii, and S. warneri, among others [28,30]. S. epi-
dermidis is known to be a core microbiome member of both the skin and nose, typically,
while S. warneri has been found at a lower percentage than other CoNS but also in the
nares and on the skin [30]. S. lugdunensis has been isolated from the human nose at an
incidence rate of 10 to 26% [30]. Interestingly, some strains of these species have been found
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to negatively impact S. aureus viability, thus, preventing nasal S. aureus colonization or
infections [11,30,32–34].

Over time, bacteriocin-producing staphylococcal isolates have been recovered from
human skin and nasal microbiota. Among the well-described staphylococcins, we can
highlight the Staphylococcin C55 [35,36], Bsa [37,38], Capidermicin [8], Endopeptidase
ALE-1 [39], NisinJ [32,40], Nukacin IVK45 [41], Pep5 [42–44], Epidermicin NI01 [45],
Epilancin 15X [46,47], Staphylococcin T (StT) [48], Hominicin [49,50], Lugdunin [51],
and SWLP1 [19] bacteriocins. Moreover, the bacteriocins Epidermin [52–56] and Epi-
cidin 280 [57] have been isolated from human clinical samples and an extensive number
of bacteriocin-like-inhibitory-substances have also been detected in Staphylococcus of hu-
man origin, such as Staphylococcin BacR1 [58], Staphylococcin IYS2 [59], Staphylococcin
Au-26 [60], Bac 201 [61], Staphylococcin 188 [62], Staphylococcin D91 [63], TE8 [64], and
Hogocidinα/β [34] (Tables 1 and 2).

Finally, several bacteriocins included in Tables 1 and 2 are produced by isolates
re-covered from environmental samples (Warnericin RK [65]) or laboratory strains (Staphy-
lococcin 1580 [66], Bac 1829 [67], Lysostaphin [68,69] and Epilancin K7 [70]).
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Table 1. Bacteriocins described in coagulase-positive staphylococci (CoPS) and coagulase-variable staphylococci (S. hyicus/S. agnetis).

Bacteriocin Producer (Strain) Origin
Activity against *

Classification a References
Gram (+) Gram (−)

Staphylococcin C55 S. aureus (C55) Human skin S. aureus, streptococci, pneumococci,
Corynebacterium, Enterococcus Neisseria Class II [35,36]

Staphylococcin BacR1 S. aureus (UT0007)
S. aureus (UT0002) Clinical Staphylococcus, Streptococcus,

Corynebacterium, Enterococcus, Bacillus

Neisseria, Haemophilus,
Moraxella, Bordetella,

Pasteurella
BLIS [58]

Aureocin A70 S. aureus (A70) Milk Listeria monocytogenes, Staphylococcus − Class II [71,72]

Aureocin 4181 S. aureus (4181) Bovine mastitis Staphylococcus, Streptococcus − ClassII [73]

Aureocin A53 S. aureus (A53) Milk
Lactic acid bacteria,

L. monocytogenes, S. aureus,
Mycobacterium bovis

− Class II [74]

Aureocin 215FN S. aureus (215FN) Cow nare Corynebacterium, Streptococcus,
L. monocytogenes, Bacillus, Lactobacillus − BLIS [75,76]

Staphylococcin 414 S. aureus (414) Turkey Staphylococcus, Micrococcus, Bacillus,
Lactobacillus, Streptococcus − BLIS [77]

Staphylococcin 462 S. aureus (462) Mink S. aureus − BLIS [78]

Staphylococcin IYS2 S. aureus (IYS2) Human saliva
S. aureus, Streptococcus,

Propionibacterium, L. monocytogenes,
Corynebacterium, Actinomyces

− BLIS [59]

Staphylococcin Au-26 S. aureus (26) Human vagine Staphylococcus, Lactobacillus, Micrococcus,
Streptococcus Neisseria BLIS [60]

Bac 1829 S. aureus (KSI1829) Laboratory isolate
S. aureus (RN4220)

S. aureus, Streptococcus, Enterococcus,
Corynebacterium

Haemophilus, Moraxella,
Bordetella, Pasteurella BLIS [67]

Bac 201 S. aureus (AB201) Wound Staphylococcus, Streptococcus,
Enterococcus Neisseria, Acinetobacter BLIS [61]

Staphylococcin 188 S. aureus (188) Clinical
Staphylococcus, Micrococcus,

Streptococcus, Corynebacterium,
Mycobacterium tuberculosis

Escherichia coli, Salmonella,
Shigella, BLIS [62]
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Table 1. Cont.

Bacteriocin Producer (Strain) Origin
Activity against *

Classification a References
Gram (+) Gram (−)

Staphylococcin D91 S. aureus (D91) Clinical Staphylococcus, Streptococcus Proteus, E. coli, Pseudomonas BLIS [63]

BacCH91 S. aureus (CH-91) Poultry
(DSM26258)

Staphylococcus, Streptococcus,
Micrococcus − Class I [79]

Bsa S. aureus (MW2)
MRSA

community-acquired
(ST8, ST80)

Staphylococcus, Micrococcus − Class I [37,38]

Aureocyclicin 4185 S. aureus (4185) Bovine mastitis Listeria monocytogenes, Micrococcus,
Bacillus − Class IV [80]

Hyicin/Agneticin 3682 S. hycius/S. agnetis (3682) Bovine milk Staphylococcus, Listeria, Streptococcus − Class I [81]

Hyicin/Agneticin 4244 S. hycius/S. agnetis (4244) Bovine mastitis Staphylococcus, Listeria
Anti-biofilm against S. aureus − Sactipeptide [82]

BacSp222 S. pseudintermedius (222) Dog skin Staphylococcus, Micrococcus,
Streptococcus, Bacillus + Class II [83]

a Staphylococcin classification in 6 groups (Class I–IV) also considering sactipeptides, thiopeptides, NRPs, and BLIS. * Antimicrobial activity: (+) positive; (−) negative.

Table 2. Bacteriocins described in coagulase-negative staphylococci (CoNS).

Bacteriocin Producer (Strain) Origin
Activity against *

Classification a References
Gram (+) Gram (−)

Capidermicin S. capitis (CIT060) Human skin Bacillus, Enterococcus, Lactococcus,
Micrococcus, Staphylococcus − Class II [8]

Endopeptidase ALE-1 S. capitis (EPk1) Clinical sample + − Class III [39]

NisinJ S. capitis (APC2923) Human skin
Listeria, Lactobacillus, Staphylococcus,

Streptococcus, Corynebacterium,
Enterococcus

− Class I [32,40]

TE8 S. capitis (TE8) Human skin S. aureus − BLIS [64]

Nukacin L217 S. chromogenes (L217) Bovine teat apices Staphylococcus, Streptococcus − Class I [84]
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Table 2. Cont.

Bacteriocin Producer (Strain) Origin
Activity against *

Classification a References
Gram (+) Gram (−)

Staphylococcin T (StT) S. cohnii (T) Healthy human Staphylococcus, Streptococcus,
Micrococcus, Listeria Neisseria Class I [48]

NukacinIVK45 S. epidermidis (IVK45) Human nasal Micrococcus, Corynebacterium,
Streptococcus, Dolosigranulum pigrum − Class I [41]

Pep5 S. epidermidis (5) Clinical Staphylococcus, Micrococcus,
Corynebacterium − Class I [42–44]

Epicidin 280 S. epidermidis
(BN 280) Clinical Staphylococcus − Class I [57]

Epilancin K7 S. epidermidis (K7) Laboratory strain + − Class I [70]

Epidermin S. epidermidis
(Tü 3298) Clinical + − Class I [52–56]

Epidermicin NI01 S. epidermidis (224) Clinical S. aureus, Enterococcus
Anti-biofilm against S. epidermidis − Class II [45]

Epilancin 15X S. epidermidis (15X154) Clinical Staphylococcus, Enterococcus − Class I [46,47]

Staphylococcin 1580 S. epidermidis (1580) Laboratory strain Staphylococcus, Streptococcus, Bacillus,
Corynebacterium, Listeria, Acinetobacter − BLIS [66]

Micrococcin P1 S. equorum (WS 2733) Cheese S. aureus, Enterococcus, Listeria − Thiopeptide [85]

Gallidermin S. gallinarum F16/P57
Tü3928 Chicken

Propionibacterium, Staphylococcus,
Streptococcus, Micrococcus

Anti-biofilm against S. aureus
Neisseria, Moraxella Class I [86–90]

Hominicin S. hominis
(MBBL 2-9) Healthy human S. aureus, Micrococcus, Bacillus,

Lactobacillus + Class I [49,50]

Nukacin KQU-131 S. hominis
(KQU-131)

Thai fermented fish
Pla-ra Lactic acid bacteria, Micrococcus, Bacillus − Class I [91]

Hogocidin-α
Hogocodin-β S. hominis (A9) Human skin S. aureus − BLIS [34]
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Table 2. Cont.

Bacteriocin Producer (Strain) Origin
Activity against *

Classification a References
Gram (+) Gram (−)

Homicorcin S. hominis (MBL_AB63) Seeds Staphylococcus, Micrococcus luteus,
Bacillus subtilis, Lactococcus lactis Class I [92]

Lugdunin S. lugdunensis (N920143) Human nasal S. aureus, Enterococcus − NRPs [51]

Nukacin 3299
Simulancin 3299

S. simulans (3299)
S. simulans (Ec105) Bovine mastitis Staphylococcus, S. agalactiae,

Corynebacterium − Class I [93]

Lysostaphin S. simulans biovar
staphyIolyticus (ATCC1362) NRRL B-2628 Staphylococcus − Class III [68,69]

Warnericin RB4 S. warneri (RB4) Rice Thermo-acidophiles, Alicyclobacillus,
Micrococcus − Class I [94]

Warnericin RK S. warneri (RK) Environmental + Legionella BLIS [65]

SWLP1 S. warneri (DSM 16081) Human skin + − Class I [19]

Nukacin ISK-1 S. warneri (ISK-1) Fermented rice bran
“Nukadoko”

Staphylococcus, Streptococcus,
Micrococcus, Lactococcus, Bacillus − Class I [95–99]

a Staphylococcin classification in 6 groups (Class I–IV) also considering sactipeptides, thiopeptides, NRPs, and BLIS. * Antimicrobial activity: (+) positive; (−) negative.
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2.2. Staphylococci in Skin/Nasal Microbiota of Animals

Animal nasal and skin microbiota has been broadly analyzed, mostly for their carriage
of pathogenic CoPS species such as S. aureus and S. pseudintermedius. On the other hand,
several other studies also focused on multiple members of the animal skin/nasal microbiota,
including CoNS.

Livestock often acts as a reservoir for livestock-associated MRSA (LA-MRSA), a variant
of S. aureus with worldwide distribution among different animal species, which remains
a serious public health threat [100]. The most relevant subgroup of LA-MRSA, the clonal
complex (CC) 398, is known to colonize livestock, especially pigs, as well as humans in
contact with pigs. A high prevalence of LA-MRSA CC398 is usually detected in regions
with intensive pig farming [101,102]. Staphylococcus is very frequent in the skin and nasal
microbiota of pigs, and S. aureus is commonly detected, together with other CoNS species
such as S. equorum, S. schlifieri, S. cohinii, S. chromogenes, S. haemolyticus, S. hyicus, and
S. microti, among others [103–106].

Moreover, nasal microbiota plays an important role in individual predisposition to
S. aureus nasal carriage in pigs [107]. In this respect, studies evaluating the pig microbiota
revealed that S. aureus colonization is also linked with the absence of S. sciuri, S. cohnii, or
S. saprophyticus [108]. Although both S. aureus and S. sciuri have been found colonizing
pigs [106], it seems that S. sciuri is more frequent in animals where S. aureus is less frequent
in the nasal microbiota [109].

Recent studies have confirmed the high frequency of colonization of staphylococci
in wild animals. CoPS species were commonly found in nasopharynx and rectal samples
of free-ranging mammals recovered in Spain [110,111]. Moreover, CoNS isolates have
been detected among 60–75% of wild birds, according to studies performed in Spain and
Portugal [112,113], and in 38% of wild mammals [114].

Some mammal species, such as wild boars, mouflons, and deers, are frequently
colonized by MSSA, S. pseudintermedius, and S. hyicus staphylococcal species [110]. S. aureus,
especially the LA-MRSA CC398 genetic lineage, was the most frequent CoPS species
detected [111]. Remarkably, hedgehogs and wild rabbits could be reservoirs of MRSA
carrying the mecC gene, which could be a risk to human health [110,115–117].

According to CoNS, S. sciuri was the most common colonizer of healthy wild animals.
With respect to wild birds, S. lentus was the second most frequently recovered species
and has also been detected in farm animals and people with professional exposure to
livestock [118–120]. S. xylosus and S. chromogenes were also frequently detected in wild
boars [114].

Focusing on companion animals, S. pseudintermedius is a CoPS commonly found in
the normal nasal and skin microbiota of dogs and is considered one of the most frequent
bacterial pathogens isolated from clinical samples in these animals [27]. Moreover, it
highlights the emergence of methicillin-resistant S. pseudintermedius (MRSP) [121] as a
significant health problem [122]. Studies assessing the commensal staphylococci in pets
revealed CoNS as the predominant (89%) microbial group of the bacterial community of
the nasal cavity of healthy dogs [123,124].

On the other hand, a comparative analysis performed in 2019 by Gómez–Sanz and
collaborators showed that although CoPS was predominant in owners and pets, MRCoNS,
especially methicillin-resistant S. epidermidis (MRSE), are common colonizers of healthy
owners and pets [125]. The co-carriage of CoPS and MRCoNS highlights the relevance of
companion animals as reservoirs of important multidrug-resistant opportunistic pathogens,
which can be transferred to in-contact individuals.

As for bacteriocin production, several staphylococcins have been reported among
staphylococci of livestock (Tables 1 and 2), frequently in those recovered from bovine
mastitis (Aureocin 4181 [73], Aureocyclicin 4185 [80], Hyicin/Agneticin 4244 [82], Nukacin
L217 [84], and Simulancin 3299 [93]). Moreover, several staphylococcins such as Aureocin
215FN [75,76], Staphylococcin 414 [77], Staphylococcin 462 [78], and BacCH91 [79] have
also been detected in cow nares, turkey, mink, and poultry, respectively. On the other
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hand, the detection of bacteriocin-producing staphylococci in pets is very limited, and as
far as we know, only two bacteriocins have been reported in isolates of dogs (BacSp222,
S. pseudintermedius) and cats (Micrococcin P1, S. felis) [83,126]. There is little information
about the detection of staphylococcins in staphylococci of wild animals. However, in a
recent study, antimicrobial substances of Staphylococcus from migratory birds were detected
and their potential role in nasotracheal microbiota modulation was analyzed [20].

2.3. Staphylococcus in Food

Staphylococcus isolates can be present in animal-derived food products. S. aureus has
been related to food poisoning due to the production of enterotoxins, while CoNS species
are not commonly involved in any case of staphylococcal infection [127,128]. However,
CoNS can also carry enterotoxin genes, such as S. saprophyticus and S. epidermidis species,
considered opportunistic pathogens [129].

A wide list of CoNS species has been well described in fermented meat, sausages,
fermented fish, milk, cheese, and, more recently, in fermented soybean [16]. Moreover,
S. pasteuri has been found in a large percentage (65.7%) of drinking water [23], and other
species of the genus Staphylococcus have been reported in raw pork, chicken, and beef
meat [130]. In recent years, Staphylococcus spp. have attracted the attention of worldwide
researchers due to their relevant role in improving the organoleptic properties (texture,
acidity, and flavor) of fermented food products [131]. One of the most remarked benefits
of staphylococci in food is the stabilization capacity of the red color of meat products,
derived through the production of nitrate reductase, an action that also inhibits foodborne
pathogens [132].

Several CoNS species have typically been associated with fermented foods (sausages
and meat-based items) and used as starter cultures [133]. Among them, S. xylosus and
S. carnosus are the CoNS species most frequently applied as starter cultures to standardize
production and inhibit foodborne pathogens [16].

Staphylococcin-producing isolates in food have been widely reported in the literature,
especially in milk and fermented food (Hyicin 3682 [81], Aureocin A70 [71,72], Aureocin
A53 [74], Gallidermin [86–90], Micrococcin P1 [85], Nukacin ISK-1 [95–99], Nukacin KQU-
131 [91], Warnericin RB4 [94] and the recently discovered Homicorcin [92]) (Tables 1 and 2).
Moreover, recent works have reported the presence of bacteriocin-producing CoNS isolates
in chicken-derived food that can act as protectors against other contaminant or pathogenic
bacteria. The detection of two S. sciuri isolates with high antimicrobial activity is no-
table [21].

3. The Rationale for Exploring Bacteriocin-Producing Staphylococci: Beneficial and
Functional Properties

The dearth of production of new and potent antimicrobial agents has led the scien-
tific community to explore creative and unconventional remedies for AMR, including
microorganisms and their products. Different studies have reported interest in bacteriocin-
producing Staphylococcus isolates as noticeable sources of therapeutic agents.

Moreover, the ubiquitous nature of staphylococci, added to their flexible, multifaceted,
and versatile metabolism, allow them to survive and inhabit highly diverse and distinct
niches ranging from biotic and abiotic surfaces, environments, animals, humans, plants,
(fermented) food, etc. Unlike other microbial groups, staphylococci are robust to environ-
mental stresses, for example, acidic pH, the presence of the host’s antimicrobial peptides,
regular UV radiation exposure, dryness, constant environmental changes, and perturba-
tions, among others [134,135].

Strains from different staphylococcal species, such as S. xylosus, S. simulans, and
S. equorum, can tolerate harsh environmental stresses, such as high concentrations of salts
(up to 21%) thanks to the possession of membrane pumps, voltage-gated channels, and
accumulation of glycine betaine [134,136,137]. Additionally, most staphylococci are often
robust toward nitrogen metabolism and oxidative pressures [138].
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On the other hand, recent studies have reported their lipolytic and proteolytic activi-
ties [139,140]. Some strains of staphylococci often degrade amino acid-derived biogenic
amines [141], and depending on the species and strain, staphylococci disintegrate fatty
acids, resulting in the formation of methyl ketones [142]. With respect to the metabolism
of carbohydrates, several staphylococcal strains usually produce organic acids depend-
ing on oxygen availability [133,143]. In this respect, Staphylococcus is a suitable microbial
group to be explored for techno-functional aspects, including bacteriocins and ecological
interests [144].

4. Bacteriocins: Promising Antimicrobial Substances

Currently, many natural peptidic antimicrobials have been discovered, and they
usually fall into one of these three classes: ribosomally-synthesized peptides (RSAPs),
ribosomally-synthesized and post-translationally modified peptides (RiPPs) or peptides
produced by non-ribosomal peptide synthetases (NRPs) [145]. Most of the bacteriocins are
ribosomally-synthesized and have been generally described as small, heat-tolerant, broad-
spectrum proteinaceous substances that may act on target cells in a variety of different
mechanisms [146].

4.1. Staphylococcins: Classes and Diversities

Staphylococcus is a well-known bacteriocin-producing genus [17], and staphylococ-
cins constitute a relatively narrow group of compounds. Staphylococcins are defined as
antimicrobial peptides or proteins produced by staphylococci [19].

According to the classical bacteriocin classification, staphylococcins have been com-
monly divided into four groups of peptides and proteins (Class I–IV) [18,19]: (A) Class
I bacteriocins, heat-stable and post-translationally modified small peptides known as
lantibiotics (<5 kDa, 19–37 amino acids) [147]; (B) Class II bacteriocins, non modified post-
translationally and heat-stable and small peptides (<10 kDa) [148]; (C) Class III bacteriocins,
large (>30 kDa) and heat-labile peptides subdivided as lytic and non-lytic bacteriocins [149];
(D) Class IV bacteriocins, cyclic peptides formed by the post-translationally covalent
linkage [150]. Moreover, other bacteriocins of the sactipeptides and thiopeptides groups
have been recently discovered [151,152]. In this sense, recent reviews proposed to divide
staphylococcins into six classes to better understand the characteristics of each group of
antimicrobial peptides. These consider placing Aureocyclicin 4185 into Class IV, the first
cyclic bacteriocin described in Staphylococcus; sactibiotics as Hyicin/Agneticin 4244 into
Class V; and thiopeptides, as Micrococcin P1, into Class VI [19].

In addition to these bacteriocin classes, there are other types of NRP antimicrobials
peptides with non-ribosomal synthesis (NRPs) [153] and among them, lugdunin pro-duced
by S. lugdunensis is worth noting as an NRP produced by S. lugdunensis [51]. Moreover,
there is another group of antimicrobial substances that act as bacteriocins but are neither
obtained in pure form nor fully characterized. These substances known as Bacteriocin-
Like Inhibitory Substances (BLIS) have been reported in the literature since 1991 [154].
Despite the unclear characteristics of BLIS, it should be noted that the unclear chemical
structure of these compounds often does not limit even advanced applicative studies on
these substances [155]. The presence of BLIS-producing staphylococcal isolates was recently
reported among 60 of 890 staphylococcal isolates (6.7%) of different species and origins [21].

4.2. Biochemical and Genetic Characterization of Staphylococcins

To date, 47 staphylococcins have been fully identified and characterized depending
on whether the producing Staphylococcus strain is considered CoPS or CoNS, respectively
(Tables 1 and 2).

Regarding CoPS, 20 staphylococcins have been reported, including those produced by
S. aureus (aureocins of Class I, II, IV or BLIS), S. pseudintermedius (BacSp222, Class II), or
the coagulase-variable staphylococci S. agnetis (Hyicins/Agneticins of Class I or Class V)
(Table 1). Aureocins such as BacCH91 and Bsa, considered lantibiotics, are generally
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included in Class I and are mostly active against Gram-positive pathogens. Nevertheless,
aureocins have also been described in Class II (Staphylococcin C55, Aureocin A70, the newly
described variant Aureocin 4181 and Aureocin A53) and Class IV (Aureocyclicin 4185).
Other aureocins without a completely determined gene or protein sequence are considered
BLIS, and their characteristics are also shown in Table 1.

The 27 CoNS bacteriocins presented in Table 2 are mostly lantibiotics (Class I), but
also bacteriocins of Classes II (Epidermicin NI01 and Capidermicin), III (Lysostaphin and
Endopeptidase ALE-1), NRPs (Lugdunin), and 4 BLIS (TE8, Hogocidinα/β, Staphylococcin
1580, and Warnericin RK).

5. Bacteriocin Detection and Characterization Methods

To succeed in the detection of novel antimicrobial peptides, a rational selection of the
environmental source of potential producers is a crucial step. Moreover, culture conditions
and nutrient requirements should be carefully considered before the screening process. In
this respect, it is known that changes in the natural environment of the producing isolate
affect antimicrobial peptide synthesis, especially under in vitro conditions. In addition to
the fact that bacteriocin production tends to occur against a narrow spectrum of bacteria,
the detection and identification of the producing strains could be difficult. Here, we present
a summary of the most common methodologies used to search for new antimicrobial
compounds and suggestions for bacteriocin detection.

5.1. Phenotypic Methods

Multiple techniques have been used to identify and screen bacterial isolates for bacte-
riocin production in vitro. Frequently, agar diffusion assays are employed to evaluate the
antimicrobial activity of potentially producing isolates using spot-on-lawn [156,157].

Moreover, diffusion assays are performed to evaluate the bioactivity of antimicrobial
agents prior to and after the pre-purification process by comparing the zones of activity
obtained with cell-free supernatants as well as the whole-cell extracts obtained after chem-
ical extraction procedures against indicator bacteria [157]. In this respect, the extract of
the producing strain is aseptically applied to blank discs (about 6 mm in diameter) or
wells (diameter of 6 to 8 mm) and then introduced onto a plate previously seeded with
the indicator microorganism (target). Multiple variations using specific culture media and
various incubation conditions could be followed [158].

Moreover, other diffusion methods have been reported to screen the antimicrobial
activity of extracts, fractions, or pure substances or to investigate the antagonism between
microorganisms. Among these techniques, the agar plug diffusion and cross streak methods
are the most commonly used [158].

However, all these methods have limitations because they cannot discriminate between
inhibitory activity caused by bacteriocins or other antimicrobial substances [17]. Therefore,
for a deeper physicochemical characterization of the antimicrobial agent’s nature, an
overnight culture of the bacteria could be prepared, and later, a cell (or viable cell) free
extract could be obtained and characterized. The effect of proteolytic enzymes, different
temperatures and times of incubation, and several ranges of pH values are commonly
evaluated [159,160]. Other studies have also tested the effect of organic solvents (alcohols,
phenols) and salts [161].

5.2. Genotypic Methods

Genes encoding bacteriocins, as well as those genes encoding a set of immunity
proteins and other accessory proteins, are arranged in operon clusters that reside in ei-
ther chromosomes, plasmids, or other mobile genetic elements. The ribosomal synthesis
and the presence of a self-defense immunity system distinguish bacteriocins from sec-
ondary metabolites that also exhibit antimicrobial activity [162]. Commonly, the detection
of bacteriocin structural genes has been carried out through PCR and/or DNA/DNA
hybridization [163,164].
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The bacteriocin PCR matrix is based on known bacteriocin-related genes from the
databases. To date, this method is actively used for screening bacteria that produce lantibi-
otics. However, due to each producing strain usually carrying different gene sequences or
slight variations, PCR analysis and primer pairs should be optimized to avoid unspecifici-
ties [165].

Although a wide variety of bacteriocin genes have been described, there is no method
based on PCR that allows the detection of several staphylococcins from a preliminary screen-
ing. Thankfully, since the advent of in-silico screening, this process of bacteriocin discovery
has been significantly reduced in terms of time and cost. Moreover, the new genome mining
tools offer an important technological resource in the discovery of novel natural products
based either on the detection of bacteriocin structural genes or other bacteriocin-associated
genes [166]. A wide variety of bioinformatic tools such as BACTIBASE, antiSMASH,
BAGEL, APD3, ANTIMIC, DRAMP, or URMITE have been described [167–171]. However,
it is noteworthy that harboring the staphylococcin gene clusters does not necessarily imply
peptide production; thus, bacteriocin production should be confirmed by the antagonism
assays explained above after finding those genes in the genomes [19].

5.3. Protein Methods

For bacteriocin detection and purification, it is important to verify the optimal con-
ditions of production, and it is recommended to test the resulting eluents to verify their
antimicrobial activity. Since bacteriocins form an extremely heterogeneous group of sub-
stances, specific purification protocols generally need to be designed. Three major bacte-
riocin purification methods can be distinguished according to the biochemical structure.
(1) Subsequent ammonium sulfate precipitation, ion exchange, hydrophobic interaction,
gel filtration, and reversed-phase high-pressure liquid chromatography [172], (2) a protocol
based on simple three-step phases starting with ammonium sulfate precipitation, continu-
ing with chloroform/methanol extraction/precipitation, and finishing with reversed-phase
high-pressure liquid chromatography, as the sole chromatographic step involved [173], and
(3) bacteriocin isolation through a unique unit operation. This last protocol can distinguish
between the expanded bed adsorption method [174] and the use of organic solvents such
as butanol [51].

After purification, MALDI-TOF mass spectrometry can be used for quick bacteriocin
detection, and chromatograms should be examined for the identification of a known
bacteriocin. Moreover, the presence of multiple peaks may indicate the presence of more
than one peptide [157]. Thus, a combination of reverse-phase high-performance liquid
chromatography (HPLC) and MALDI-TOF mass spectrometry can be used to determine
if a purified substance obtained from the pooled active fractions contains a single, active
bacteriocin or if multiple peptides are present [157].

In conjunction with peptide purification, genomic analysis for the identification of
bacteriocin gene clusters is required to determine the novelty of the recovered antimicrobial
peptide, and for the identification of new bacteriocins, ultra-HPLC coupled with mass
spectrometry is recommended.

As a help for researchers, we present in this review a complete guide for staphylococcin
identification. Table 3 shows a total of 27 structural bacteriocin nucleotidic and amino
acid sequences registered on the NCBI databases until January 2023 and summarizes their
associated genes, their accession GenBank number and GenePept sequences, their gene
position, gene size (bp), and bacteriocin masses (Da). This information is of great use for
staphylococcin detection both with PCR and whole genome analysis but also for their
verification with mass spectrometry analysis.
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Table 3. Description of the staphylococcal bacteriocin sequences used in this study a.

Bacteriocin Gene a GenBank
Accession No.

GenePept
Accession No. a UniProt Gene Size (bp) Protein Size (Da)

Staphylococcin C55
sacaA AF147744 AAD47011 Q9S4D3 188 3339

sacbA AAD47012 Q9S4D2 203 2993

Aureocin A53 aucA AF447813 AAN71834 Q8GPI4 142 6012.5

Aureocin A70/
Aureocin 4181

aurD
AF241888*/
MK796167

AAK73555 95 3147.7 ± 1.5
aurC AAK73554 95 2983.6 ± 1.5
aurB AAK73553 92 2824.4 ± 1.5
aurA AAK73552 95 2951.5 ± 1.5

BacCH91 bacCH91 JQ655767 AFN42846 I6XG59 144 2074.9

Bsa
bsaA2 BAB95630 A0A0H3K3P8 143 2089
bsaA1 BA000033 BAB95631 A0A0H3JXA5 143 2281

Aureocyclin 4185 acIA KF836421 ATV90647 195

BacSp222 bacSp222 CP011490 ALI97662 A0A0P0C3P7 150 5921.92

Hyicin/Agneticin 3682 hyiA KY021154 ARD24445 A0A1V0JZL0 144 2139

Hyicin 4244 hycS KY887472 ASL69762 A0A221C8V1 128 3274

Capidermicin orf4 MN234131 QFR37570 A0A5P8N9U9 153 5438

Endopeptidase ALE-1 ale-1 D86328 BAA13069 O05156 1089 39,350

NisinJ nsj NZ_MN602039 QGN18867 183

Gallidermin/
Staphylococcin T (StT) gdmA U61158 b AAB61135 b P21838 159 2165.6

Epidermin epiA X62386 P08136 P08136 156 2151

Epidermicin NI01 ecdA JQ025382 AFD03077 H9BG66 390 6074

Epicidin
280/Homicorcin eciA Y14023 CAA74348 O54220 90 3133 ± 1.5 and

3136 ± 1.5

Pep5 pepA Z49865 CAA90023 P19578 183 6575.4 ± 1.7

Epilancin 15X elxA JQ979180 P86047 P86047 168 3173

Epilancin K7 elkA U20348 AAA79236 Q57312 165 3032 ± 1.5

NukacinIVK45 nukA KP702950 AKQ51579 173 2940

Nukacin KQU-131 nkqA AB432987 BAG70955 B5MFD0 173 3003.97

Nukacin 3299 nukA GQ380548 ACU82391 E0WX65 173 2957.3

Nukacin ISK-1 nukA AB125341 BAD01007 Q9KWM4 173

783 (g/mol)
Lugdunin

lugA CP020406 ARB77241 7124
lugC ARB77243 8813
lugD ARB77244 1739

Lysostaphin lss U66883 P10547 P10547 1482

Hominicin - c - c WP_152903494 - c 2038.4

Micrococcin P1 d tclE KM613043.1 AIU53942.1 Q9F9L4 150 1144.4
a In the cases in which several genes for a bacteriocin have been identified, the coding genes are marked in
bold. b Bacteriocins with high similarities between their coding gene sequence as the case of Gallidermin and
Staphylococcin T (StT) or Epicidin 280 and Homicorcin. c The nucleotide sequence for Hominicin is not available.
d The reference accession number is the one of Macrococcus caseolyticus.

5.4. Universal Nucleotide and Amino Acid-Based Staphylococcin Phylogenetics

Here, we present a novel tool for bacteriocin detection in order to help researchers
in their search and characterization. All structural genes and coding amino acids of
well-described staphylococcins were selected (Table 3) (consult entry databases), and a
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phylogenetic analysis was conducted in MEGA X [175] based on the maximum likelihood
homology of the sequences included (Figure 1). Thus, 34 amino acids and 33 gene sequences
were used. The relationships were inferred using the neighbor-joining method [176]. The
percentage of replicate trees in which the associated taxa clustered together in the bootstrap
test (1000 replicates) is shown next to the branches [177]. The tree is drawn to scale 0.5, with
branch lengths in the same units as those of the evolutionary distances used to infer the
phylogenetic tree. The evolutionary distances were computed using the Poisson correction
method [178]. All ambiguous positions were removed for each sequence pair (pairwise
deletion option). Those genes or protein sequences with more than 50 substitutions per site
were considered unrelated bacteriocins.

Thus, phylogenetic analysis both at genetic and protein levels revealed six bacteriocin
groups that we refer to as families (Figure 1): BS, including the bacteriocins Bsa, Hyicin 3682
and BacCH91; EP5, formed by Epidicin 280/Homicorcin and Pep5; NUK, which comprises
all the nukacins (Nukacin IVK45, Nukacin KQU-131, Nukacin 3299, and Nukacin ISK-1);
GEST, including Gallidermin, Staphylococcin T (StT), and Epidermin; the bacteriocin family
named EPI, formed by Epilancin 15X and Epilancin K7, and finally, the family CAPSP,
including Capidermicin and BacSp222 bacteriocins. The gene cluster encoding the Aureocin
A70 (aurA, B, C, D) was not considered as a family because it only codifies for a unique
bacteriocin and showed high similarity only comparing the amino acid sequence.

Notably, our arrangement corresponds to a majority of those recently reported [19] but
provides more details of the similarities of staphylococcins included in each of the 6 classes
proposed by this work. Concretely, within Class I Lantibiotics, our families revealed higher
similarities between nukacins (NUK family), Gallidermin, Staphylococcin T (StT), and
Epidermin (GEST family) and Bsa, Hyicin 3682 and BacCH91 bacteriocins, considered as
BS family. As for Class II, we proposed the family CAPSP (conformed by Capidermicin and
BacSp222) due to their higher similarities in nucleotide and amino acid sequence. These
bacteriocin families have been used in a previous work of our group for designing PCR
primers in order to detect possible bacteriocin genes [21].
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6. Applications of Bacteriocin-Producing Staphylococcus Isolates or
Their Staphylococcins

Based on the rise of antibiotic-resistant bacteria, a complementary approach in search-
ing for novel drug formulations is demanded. In this respect, purified or partially purified
bacteriocins hold great promise and may ultimately be employed as pharmabiotics and/or
novel alternatives to existing antibiotics [179]. Moreover, the activity of conventional
antimicrobials can be enhanced when combined with novel and often naturally derived
antimicrobials [17,180]. It is to note the antimicrobial properties of some staphylococcins
alone or in combination with other antimicrobials with high interest to be used in the
clinical field, both veterinary and human medicine [7,19,180].

There are few studies concerning the use of staphylococcins carried out in vivo, having
a need for in vitro validation before their use in clinical trials both in animal models and in
humans. In this respect, the pharmacokinetic parameters of the host [181], the potential
bacteriocin-induced toxicity [182], and the route of administration must be considered.

Several studies have tested some staphylococcins in animals. Murine models have
been used to analyze the possible role of Staphylococcin 1580 for inhibition of caries [183],
Lysostaphin for treating MRSA wounds, pneumonia, and/or systemic infections [184–186],
or as an alternative for mastitis produced by S. aureus [187] and MP1 for skin infections
produced by MRSA [188]. Epidermicin NI01 has been tested in the Galleria mellonella
larvae model [189] and for eradicating nasal colonization of MRSA in rats [190] with very
promising results. Human studies have also been performed, and the bacteriocin-producing
S. hominis ShA9 has been reported as a good alternative to control S. aureus during skin
dysbiosis and other diseases such as atopic dermatitis [34,191].

Skin infections, especially skin and soft tissue infections (SSTIs) caused by S. aureus,
are among the most common infections in the world and have been one of the most studied.
In the same way, it has been reported that S. aureus nasal carriers suffer from infective
processes or present a low richness of species in their nasal microbiota, which can precede
disease. Moreover, MRSA and specific genetic lineages of S. aureus (MRSA-CC398) present
emerging antibiotic resistance determinants of special interest. Therefore, being able to
control the high prevalence of this multidrug-resistant microorganism in the skin and nasal
microbiota of pigs and in-contact humans is a public health challenge.

One new and emerging potential application of staphylococcins or bacteriocin-producing
staphylococci is their interesting role in human microbiota modulation [192]. One applied
example consists of the balance of skin microbiome in atopic dermatitis, made by CoNS
strains to compete or limit S. aureus growth, including MRSA [34]. In this respect, several
bacteriocin-producing CoNS isolates of skin and mucous tissues with interesting antimicro-
bial activities commonly against potentially pathogenic Gram-positive and, in a few cases,
also in Gram-negative microorganisms, have been reported [49,51,193]. Due to the great po-
tential of bacteriocins, especially those produced by commensal isolates, the identification
and characterization of novel antimicrobial peptides should be a clear goal [34,188,191].

On the other hand, bovine mastitis is one of the most persistent and economically
significant diseases affecting dairy cattle worldwide. S. aureus and Streptococcus spp. are
the most common etiologic agents involved in bovine mastitis [194,195]. In recent years,
the emergence of resistance and the increasingly strict regulations on dairy farms regarding
the use of these drugs in animal production has forced the development of alternatives,
such as bacteriocins, for the control and prevention of this disease [196]. As mentioned
before, Lysostaphin has been tested in a murine mastitis model [187]. Recently, ex vivo
and in vitro assays have been carried out with Lysostaphin and with other staphylococcins
such as Aureocin A53 and Aureocin A70 [19].

Apart from the antimicrobial activity of bacteriocins produced by Staphylococcus de-
scribed over time, anti-virus, anti-inflammatory, and immunomodulation activities have
also been recently reported [133,197–204]. In this respect, one of the most intriguing new
fields of investigation is the study of bacteriocins as potential anti-cancer and anti-tubercular
agents [205–207]. Moreover, recent studies have shown the potential use of staphylococcins
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or Staphylococcus-producing isolates as bio preservatives in meat to assure the microbial
shelf-life of the product [208] or as anti-fungic agents to prevent toxigenic molds [209].

However, it is important not only to discover new bacteriocins and antagonism ac-
tivities but also to test for toxicity to prove their safe use in a preclinical phase (in vivo
antimicrobial and/or toxicity effects) as candidates for therapeutic processes.

To this end, biotechnological techniques such as bioengineering or chemical synthesis
of bacteriocins can be important tools to improve the antimicrobial activity of bacteriocins,
change their physicochemical properties, or reduce the cost of production.

7. Emerging Concerns Associated with the Use of Staphylococcins

Apart from the antimicrobial properties exhibited by bacteriocins that make them
suitable antimicrobial agents, various concerns associated with their applications in human
and animal medicine, food production, and industries have emerged. Among the emerging
concerns associated with staphylococcin application, here we will give an overview of
their safety in host cells as their toxicity, immunogenicity, bioavailability and absorption,
exposure and development of resistance, and the legal framework.

Staphylococcins, as well as other bacteriocins, are generally considered safe antimicro-
bials and therapeutic substances. However, some staphylococcins have been reported to
be cytotoxic to mammalian cell lines, usually at high concentrations [7]. To a large extent,
bacteriocins’ cytotoxicity to eucaryotic cells depends on the concentration, purity, compo-
sition, and type of eucaryotic cell line used [210,211]. Therefore, since the cytotoxicity of
bacteriocins is often evaluated using different concentrations and types of eucaryotic cell
lines, it is difficult to generalize and/or compare the cytotoxicity levels. For a comparative
safety evaluation, it is necessary to have a consensus on the type of assay, the concentration
of staphylococcin, the composition, and the type of cell line to be used.

Regarding the safety and immunogenicity of staphylococcins, it has been reported that
the use of bioactive molecules with undesirable immune responses could be detrimental
to the host [212–214]. Therefore, the assessment of bacteriocins’ immunogenicity profile
should be considered crucial and necessary, especially when they are intended for use in
the food industry or as biotherapeutics in humans or animals.

Another concern associated with the use of staphylococcins in the food industry or as
a therapeutic strategy in humans or animals is the potential risk for the development of
resistance upon prolonged exposure to the target or spoilage of pathogenic microorganisms.
The resistance development to bacteriocins has been reported to be either (1) intrinsically
(innate) within specific genera or related strains or (2) acquired, i.e., resistance developed
from a previously susceptible strain [215,216]. However, our understanding of the potential
for bacteriocin resistance development has been revealed primarily from experiments per-
formed under laboratory conditions [217]. In this respect, the bacteriocins most studied for
the development of resistance are nisin, lacticin 3147, and pediocin-like bacteriocins [216],
and regarding staphylococccin resistance, lysostaphin is the most studied so far [218].

Finally, there is a lack of a universal consensus on the legal and regulatory aspects
of the use of bacteriocins. Although several bacteriocin-producing microorganisms have
attained the ‘generally regarded as safe (GRAS)’ status, it is generally necessary to achieve
the guidelines for the approval of bacteriocins either as food additives/preservatives,
technological or therapeutic agents depending on their intended use and the subsisting
laws of the particular country.

8. Conclusions

Bacteriocin-producing staphylococci, especially the commensal CoNS of human and
animal microbiota, provide an excellent model to find bacteriocins that could be promising
candidates to combat AMR and to compete against pathogens or protect against infections.
Moreover, staphylococcins have steadily shown great potential and are being considered
for potential applications in clinical, veterinary, food, and biotechnology.
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However, characterizing and mining staphylococci for staphylococcins could be de-
manding. Therefore, this review provides comprehensive and up-to-date approaches for
the search, characterization, and evaluation of staphylococcins from staphylococci of differ-
ent origins. For the first time, we developed a universal nucleotide and amino acid-based
phylogeny of all the fully characterized and known staphylococcins. We believe that these
resources will undoubtedly help and spur researchers’ interest in exploring staphylococci
and advancing the science and application of staphylococcins.
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