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Abstract

Of all the different types of public buildings, hospitals are the biggest energy consumers. Cooling systems for air
conditioning and healthcare uses are particularly energy-intensive. Forecasting hospital thermal-cooling demand
is a remarkable and innovative method capable of improving the overall energy efficiency of an entire cooling
system. Predictive models allow users to forecast the activity of water-cooled generators and adapt power gen-
eration to the real demand expected for the day ahead, while avoiding inefficient subcooling. In addition, the
maintenance costs related to unnecessary starts and stops and power-generator breakdowns occurring over the
long-term can be reduced.

This study is based on the operations of a real hospital facility and details the steps taken to develop an
optimal and efficient model based on a genetic methodology that searches for low-complexity models through
feature selection, parameter tuning and parsimonious model selection. The methodology, called GAparsimony,
has been tested with neural networks, support vector machines and gradient boosting techniques. Finally, a
weighted combination of the three best models was created.

The new operational method employed herein can be replicated in similar buildings with similar water-
cooled generators.

Keywords: GAparsimony, parsimonious modeling, hybrid forecasting, thermal demand forecasting, cooling
demand forecasting, Building Management System, Air Conditioning.

1. Introduction1

Hospitals require vast amounts of energy. In particular hospital cooling systems that2

use chilled water for air conditioning (AC) or in other essential healthcare services and3

activities are what make hospitals some of the most energy-intensive consumers.4

A common pitfall in many facilities is that after equipment is installed, it is not set up5

according to the expected level of energy efficiency. Using Building Management Systems6

(BMS) can improve energy efficiency and generate economic savings [1, 2]. Hospitals can7

decrease their energy use by 20% to 30% by implementing a BMS, adequately zoning for8

AC, using temperature measurement and control systems in different areas and planning9

proper-use schedules, and regulating the speeds of fans and water pumps [3].10
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The BMS used herein this study was implemented during the construction of the hospi-11

tal under study in January 2008. The existing BMS, like most systems installed in buildings,12

is based on real-time control that utilizes information captured by sensors. Nevertheless,13

the control system generated more starts and stops than necessary in the liquid-cooled gen-14

erators. This led to premature ageing in the generators, higher cooling demand than neces-15

sary, frequent breakdowns, and unnecessary thermal variations that did not correspond to16

the actual demand.17

This study addresses these problems and improves the building’s overall efficiency by18

creating a predictive model of the thermal cooling demand to help forecast the activity of19

the hospital’s water-cooled generators (controlled by the BMS).20

1.1. The Search for Parsimonious Models21

Several prior studies have already conducted related research into energy efficiency:22

Analysis of building energy consumption in a hospital [4], forecasting cooling demand23

[5, 6] and short-term electrical load [7, 8]. These studies often utilize Gaussian processes24

[9], support vector machines(SVM) [10, 11], artificial neural networks (ANN) [12, 13], ANN25

applied to electrical consumption forescasting in a hospital facility [14], ANN comparison26

with random forest (RF) [15], and hybrid methods [16].27

Forecasting applications are often based on regression models that are constructed with28

small databases gathered over a short period of time. In this case, however, the information29

was collected over more than three years, and during this period substantial improvements30

were achieved in the control of the cooling system. Therefore, the training database could31

be reduced to include just the final 21 months. In addition, the pre-processing strategy32

adopted measurements averaged by the hour, thereby considerably reducing the size of33

the training dataset and translating energy data to a common and understandable unit (in34

kWh).35

In this kind of situation, seeking out low-complexity models (that is, more parsimonious36

models), among various accurate solutions, is usually a reliable strategy for finding models37

that are robust against perturbations or noise. Parsimonious models aim to have a lower38

number of features, making them easier to maintain and understand [17, 18].39

In recent years, there is an increasing need to create methods to automate and facilitate40

modeling processes with hyperparameter optimization (HO), and feature selection (FS),41

in order to reduce the human effort involved in these time-consuming tasks [19, 20] and42

therefore allow researchers to focus on other important processes like feature engineering43

or data mugging. Among the currently available methods, GAparsimony [21] is a genetic44

algorithm (GA) methodology that searches for parsimonious models and is specifically de-45

signed to work with smaller datasets. GAparsimony optimizes HO and FS by executing a46

parsimonious model selection (PMS), which is based on criteria that considers complex-47

ity and accuracy separately. Although GAparsimony performs quite well with HO, model48

selection with a complexity measurement based on the number of selected features has49

proven to be useful for obtaining more parsimonious solutions as compared to previous50

experiments [22].51

GAparsimony has been extremely useful with classical machine learning methods, such52

as extreme gradient boosting machines (XGBoost), support vector regression (SVR), ran-53

dom forest (RF) or artificial neural networks (ANNs) [23], and has also been successfully54

applied in a range of contexts such as steel industrial processes [24], hotel room booking55

forecasting [25], mechanical [26] design and solar radiation forecasting [27]. The GAparsimony56

package for R has been available since July 2017 [28].57
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The present study presents a real application of GAparsimony that was utilized to create58

a parsimonious predictive model of a hospital’s cooling demand. With the model created59

in this research, the amount of cooling water generated can be adapted to meet the actual60

demand expected for the day ahead, meanwhile maintenance costs related to power gen-61

erator breakdowns or ineffective starts and stops can also be reduced. Thus, the model can62

be useful for improving overall energy efficiency, decreasing the electrical consumption of63

cooling systems and CO2 emissions, and minimizing maintenance costs.64

2. Case study description65

The San Pedro Hospital is located in the city of Logroño (Spain), It is the top hospi-66

tal in the autonomous community of La Rioja, and is part of the Spanish national public67

healthcare system.68

The building covers an area of about 125, 000 m2. Most of the thermal generation, gas69

and high voltage installations are located in a separate building. Let us make note of the70

most energy-intensive medical services offered by this hospital: 600+ beds for hospital-71

ization, a diagnostic imaging area, 23 operating rooms, emergency and consultation area72

with 21 boxes, hemodialysis, an intensive care unit, endoscopy, rehabilitation, laboratories,73

pharmacy, sterilization, and other general services.74

2.1. Description of the installations75

The San Pedro hospital has a centralized cold-water production system for the high76

cooling demand of many healthcare services and for air conditioning the building. The77

system consists of 4 chillers EF1, EF2, EF3 and EF4: 3 centrifugal units of 3.51 MW (Trane78

CVFG equipment), and 1 screw machine with 1 MW (Trane RTHD equipment) of cooling79

capacity. The system’s electrical consumption data is described in Table 1.80

The hospital’s BMS is comprised primarily by controllers belonging to the Sauter Sauter81

EY3600 family, which communicate with each other through the novaNet bus. The Building82

Management System is a SCADA application with a novaPro Open 4.1. environment. The83

server is located in the hospital data center.84

Chilled water in a hospital has essential applications not only for human welfare, but85

also for industrial and healthcare needs: air conditioning operating rooms, out-patient86

surgery, intensive care, delivery rooms, and emergency rooms, for example. It is also uti-87

lized in radiology and diagnostic imaging equipment, scanners, mammography, etc.; and88

for refrigeration storage such as in a blood bank, kitchen, or pharmacy; for Kardex, patho-89

logical anatomy, and in the morgue, laboratories, and data center racks, etc.90

This article focuses on the study of a prediction model for a chilled-water system, given91

its significance for hospital services and its significant electrical consumption. Specific stud-92

ies of hospitals have shown that the energy they use to generate chilled water exceeds 45%93

of the total energy necessary for building operations [3].94

2.2. Optimization process for the cooling system95

The existing problems detected in the cooling water system were:96

- Uncontrolled starts and stops of the cooling generators, which negatively impact en-97

ergy efficiency and can lead to significant breakdowns.98
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Table 1: Chilled Water production data.

Electric Power Flow

Cooling unit with 3.5 MW of cooling power (per unit) 754.60 kW -

Centrifugal Chiller (EF1, EF2, EF3) 574.60 kW
Group of evaporation pumps 45.00 kW 615.60 m3/h
Group of condensation pumps 90.00 kW 770.40 m3/h
Fans (3 units) 45.00 kW

Cooling unit with 1 MW of cooling power (total) 317.50 kW -

Screw Chiller (EF4) 280.00 kW
Group of evaporation pumps 7.50 kW 205.00 m3/h
Group of condensation pumps 15.00 kW 253.00 m3/h
Fan 15.00 kW

Chilled Water circuit 37.00 kW 2019.60 m3/h

Group of drive pumps (4 pumps) 9.25 kW 673.20 m3/h

- Subcooling water-ring temperature below established set points, is detrimental to en-99

ergy efficiency.100

- Overheating water-ring temperature above established set points, can adversely af-101

fect health care processes.102

Therefore, as a result of re-engineering and optimization using Exploratory Data Anal-103

ysis (EDA) techniques and a full review of the installations, several actions were imple-104

mented following an established timeline, as can be seen in Figure 1, in order to improve105

the energy efficiency of the cooling system:106

1. The first optimization of the system improved how the BMS calculated the temper-107

ature set point of the cold-water ring to cut down on the number of starts and stops108

in the chillers. This modification implemented a variable and graduated set point109

depending on the outside temperature.110

2. The second optimization established a minimum work-time for every generator of at111

least one hour, and set up a cyclic order of use.112

3. The third optimization implemented a variable setpoint for the ring temperature to113

be regulated according to the outside temperature as a ramp variable instead of as a114

stepped variable .115

4. The forth optimization consisted of installing frequency inverter systems in the EF4116

generator. The frequency inverter (AFD) can regulate the speed of the compressor117

motor with a partial load. In the EF1, EF2, EF3, which are centrifugal chillers, AFDs118

could not be installed, since they still have a modulation with the refrigerant charge.119

Communication hardware cards were installed in every generator to improve com-120

munication with the BMS.121

The first energy demand models were calculated in March 2019 but inefficient behav-122

ior was observed following the improvements implemented in April 2018 (see Figure 3).123
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Figure 1: Case study timeline indicating remarkable improvements and model generations.

Therefore, the preprocessed data and the model itself needed to be updated to improve the124

model’s accuracy. The second set of energy demand models were calculated in January125

2020 after notable improvements were applied to the real system.126

3. Dataset127

3.1. Data extraction128

The BMS installed in San Pedro Hospital recorded data through a measurement logger129

in the generation system (the BMS Sauter novaPro Open). Cooling energy was not mea-130

sured by the system, thus it had to be calculated and the data preprocessed. The variables131

extracted from the BMS generation system are listed in Table 2.132

Table 2: Control system variables
Short name Description

EF1 EF1 - Status
EF2 EF2 - Status
EF3 EF3 - Status
EF4 EF4 - Status
TIMP Cold Ring Drive Temperature [oC]
TEXT Exterior Temperature of Facilities Building [oC]
TCONSIG Calculated Setpoint of the regulation for Cold Production

Drive [oC]

TENEF1 to 4 Water temperature at the inlet of the EF1 to EF4 [oC]
TSALEF1 to 4 Water temperature at the outlet of the EF1 to EF4 [oC]
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3.2. Data preprocessing133

Data preprocessing involved the following actions:134

1. Averaging measurements by the hour. The system recorded data whenever a vari-135

able altered its state or changed its measurement. The time difference between mea-136

surements could range from seconds to hours. Therefore, the data was divided into137

groups and presented by the hour .138

2. Filling in missing values. Imputation of missing values was done by using the mean139

of the previous and next values.140

3. Creating Generated Thermal Power and ENERGYKWHPOST features.141

4. Filtering the target (ENERGYKWHPOST) to create a more stable variable.142

The BMS lacked a thermal energy meter to save and measure the data. Nevertheless,143

both the instantaneous thermal power and the generated thermal energy could be obtained.144

Thanks to the other available variables in the measurement system and the fact that the145

pump flow in this system has a set value, thermal power could be calculated by the follow-146

ing formula:147

Thermal Power = Flow ∗ Thermal jump ∗ Ce (1)

Where the thermal power is expressed in watts [W], the flow rate in l/h, and the ther-148

mal jump in the chiller in degrees Celsius [oC]. The specific heat of water is equal to 1.16149

Wh/kgoC and its specific weight is 1kg/l.150

The time differences between thermal power measurements is a known value, so ther-151

mal energy could be calculated. Considering that the minimum work-time of generators152

is one hour, the chosen prediction variable was energy, ENERGYKWHPOST [kWh], rather153

than instantaneous power [kW].154

Due to the previous adjustments made to remedy incorrect starts/stops and setpoints in155

the generators, the calculated variable of Thermal Energy (ENERGYKWHPOST) exhibited156

a sawtooth graph, as can be seen in Figure 3. Such results could later lead to an inade-157

quate learning process; and thus the thermal energy was filtered in order to smooth out158

ENERGYKWHPOST, as can be observed in Figure 2.159

Table 3: Data filtering of prediction variable, year 2018
Filter: ENERGY [kWh] RMS MAE

ENERGYKWHPOST 10.266.880,7 0 0
ENE_GAUSSFILT3 10.266.843,3 166,4 37,4
ENE_GAUSSFILT5 10.266.883,6 278,3 2,9
ENE_GAUSSFILT9 10.266.911,1 328,2 30,4
ENE_GAUSSFILT11 10.266.889,9 338,5 9,2

Different filters were tested, but the Gaussian function was the method selected to fil-160

ter and smooth thermal energy. This method was chosen for it slow error rate, as shown161

in Table 3, and because the accumulated energy in the tested year was similar to the real162

amount of accumulated energy. ENERGYKWHPOST was compared with different filters163

(see Figure 2). A Gaussian filter with a window size of 11 (ENE_GAUSSFILT11), repre-164

sented by a dashed line, displayed a smoother curve without distortion as compared to the165
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dotted line of a Gaussian filter with a window size of 3 (ENE_GAUSSFILT3). Therefore,166

ENE_GAUSSFILT11, was eventually selected as the target. This feature was considered167

close to the hospital’s energy demand, which primarily depends upon weather conditions168

and the use of the facilities.169
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Figure 2: Filtering ENERGYKWHPOST with different Gaussian steps.

3.3. Final dataset170

The attributes selected were the following:171

Table 4: Attributes selected for the forecast model.
Variable Description

ENE_GAUSSFILT11 Target.
month Month of measurement.
day_of_week Day of the week.
Is_holiday Boolean variable for holiday.
TIMP Instant impulsion temperature.
TEXT Instant exterior temperature.
TMEAN Average daily temperature.
TMAX Maximum daily temperature.
TMIN Minimum daily temperature.

4. Parsimonious Modeling172

The search for parsimonious models was performed with the GAparsimony method-173

ology. For this purpose, three popular algorithms were used: support vector machines174

(SVR) with RBF kernel, artificial neural networks (ANN), and extreme gradient boosting175

machines (XGB). All the experiments were implemented with the GAparsimony [29] pack-176

age in R programming language.177

4.1. GAparsimony settings178

GAparsimony optimization extracts the algorithm’s parameters and the selected input179

features from the λi
g chromosome for each individual i of the generation g.180
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Chromosome λi
g was defined for each method as:181

SVR(λi
g) = [cost, gamma, epsilon, Q]

ANN(λi
g) = [size, decay, num_epochs, Q]

XGB(λi
g) = [subsample, colsample_bytree,

max_depth, alpha, lambda, Q]

(2)

182

Where the values correspond to the algorithm’s parameters except the last one, Q, which is183

a vector of probabilities for selecting each input feature j when Qj ≥ 0.5.184

GAparsimony uses Root Mean Squared Error (RMSE) for evaluating individuals within185

the optimizing process, RMSEval . RMSE measured with the test database, RMSEtst, is used186

to check the model’s generalization capability. Finally, model complexity reflects to the187

number of selected features NFS. This complexity performed well in previous experiments188

with GAparsimony.189

The genetic optimization process in GAparsimony is defined with a population of 40190

individuals evaluated in 100 generations but with an early stopping criteria if RMSEval191

does not improve in 20 iterations. The selection process uses 20% of the best solutions and192

is based on a two-step process: first, models are ordered by RMSEval , next, individuals193

with similar RMSEval are reordered according to complexity. The objective is to promote194

parsimonious solutions (with lower complexity) to top positions. In this case, two RMSEval195

are considered to be similar if their RMSEval absolute difference is lower than a ReRank196

parameter which is defined by the user. In this study, after several experiments, ReRank =197

0.1 achieved a satisfactory trade-off between complexity and RMSEval .198

In order to start the GA process with a high percentage of input, 90% of the features199

were selected from the first population. Finally, mutation was defined by the number of200

most elite individuals that were not mutated (2), the probability of mutation in the model’s201

parameter in the chromosome (10%), and the probability of a feature having the value of 1202

if the feature is selected to be mutated (10%). This parameter was set to a low value of 10%203

to facilitate the reduction of input features in the following generations.204

5. Results and Discussion205

5.1. Initial energy-demand models206

The first energy-demand models were trained with the dataset from the period between207

January 2017 and February 2018. The validation database corresponds to the even weeks208

between March 2018 and February 2019, and the testing database with the odd weeks of209

that same time period.210

Surprisingly, GAparsimony with SVR was capable of obtaining a parsimonious model211

with only 3 attributes and acceptable validation and testing errors. To some degree, an212

explanation for this can be found in the improvements (applied) in the control process after213

the first acquisition period that averaged out ’the noise’ thereby reducing the differences214

between the training database and the validation/testing data.215

The SVR algorithm obtained the best validation and testing error with only 3 attributes:216

month (month), and the external (TEXT) and minimum temperatures (TMIN). ANN came217

in second place with 7 features and, finally, XGB which selected only 4.218
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Table 5 shows the validation and testing errors, and the final selected features for the219

best model from the last generation with SVR, ANN, and XGB, respectively.220

Table 5: Best individual for each algorithm obtained with GAparsimony.
SVR ANN XGB

RMSEval 294.9 327.4 347.8
RMSEtst 342.4 363.3 371.1

VARS: month 1 1 1
day_of_week 0 1 1
Is_holiday 0 1 0
TIMP 0 1 1
TEXT 1 1 1
TMEAN 0 0 0
TMAX 0 1 0
TMIN 1 1 0

Complexity 3 7 4

5.2. Second energy-demand models221

In order to create the second set of energy-demand models, the data recorded between222

2017 to March 2018 was removed due to the significant optimizations implemented in the223

cooling system during this period. Figure 3 shows the high level of noise produced by inef-224

ficient starts and stops prior to April 2018. Thus, the second model was trained and tested225

with the information collected from April 2018 to December 2019. The training dataset cor-226

responds to the period between January 2018 and February 2019. The validation data base227

corresponds to the even weeks between March 2019 and December 2019; and the testing228

database to the odd weeks of the same time period.229

Figure 3: Evolution of ENERGYKWHPOST within the acquisition.
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GAparsimony was used again to choose the best models among the different algorithms,230

to adjust the internal parameters, and develop the feature selection as well. Errors, param-231

eters, and selected features are shown in Table 6. In the table below, it can be observed that232

the error values are better than those obtained with the initial energy-demand model.233

Table 6: Best models with results, complexity, generation and parameters.
SVR ANN XGB

RMSEval 231.9 233.2 239.8
RMSEtst 260.9 268.2 267.7

month 1 1 1
day_of_week 0 0 1
Is_holiday 0 1 0
TIMP 0 1 0
TEXT 1 1 1
TMED 1 1 1
TMAX 1 0 0
TMIN 0 0 0

Complexity 4 5 4

Generation V7 V4 V4

Parameters:
expcost 0.42 size 21 subsample 0.70
gamma 0.20 decay 45.0 colsample_bytree 0.91
epsilon 0.09 maxit 637.8 max_depth 2

alpha 0.03
lambda 0.31

SVR Model: The best SVR model was obtained with 4 features: month (month), and the234

external (TEXT), averaged (TMED), and maximum (TMAX) daily temperatures. Figure 4235

shows, in white and gray box-plots, the RMSEval and RMSEtst SVR evolution for the most236

elite population of the best GAparsimony iteration. In this case, GAparsimony converged in237

7 generations.238

ANN Model: The best ANN model converged in 4 generations with 5 features: month239

(month), if the day was a bank holiday (Is_holiday), ring temperature (TIMP), and the ex-240

ternal (TEXT) and averaged (TMED) daily temperatures. ANN errors were only slightly241

superior to those of the SVG model.242

XGB Model: The best XGB model was optimized after 4 generations with 4 features:243

month (month), day of week (day_of_week), and the external (TEXT) and averaged tempera-244

tures (TMED) of the day.245

Ensemble Model: Finally, the best SVR, ANN and XGB were combined to obtain an246

ensemble model with an enhanced performance. The process was conducted by weighting247

the predictions of each learner as follows:248

Ensemble_Model = (w1 ∗ SVR + w2 ∗ ANN + w3 ∗ XGB)/3.0 (3)

In order to determine the weights, an optimization of w1 and w2 was performed by249
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reducing the RMSEval obtained with this equation and the previous model validation pre-250

dictions. In this process, w3 was internally calculated as w3 = 3 − w1 − w2.251

The optimum model was comprised by the following weights:252

Ensemble_Model = (1.36 ∗ SVR + 1.41 ∗ ANN + 0.23 ∗ XGB)/3.0 (4)

Table 7 shows the RMSEval and RMSEtst of the weighted combined model versus single253

models. Error values are slightly better in the ensemble model than the best single model254

(SVR Model). Complexity increases because of the number of features needed as input for255

the models comprising the hybrid model; however, the variable of minimum daily temper-256

ature (TMIN) was not utilized in the final model.257

Table 7: Ensemble validation and test errors versus single models.
SVR ANN XGB HYBRID

RMSEval 231.9 233.2 239.8 224.82
RMSEtst 260.9 268.2 267.7 257.49

complexity 4 5 4 7

6. Conclusions258

This study has demonstrated that GAparsimony is an effective and advanced method for259

selecting the best parsimonious model among different forecasting methodologies, and for260

adjusting internal parameters and selecting the best features as well.261

The analysis conducted in this study took place over the course of more than three262

years, and demonstrates the imperative need to optimize cooling systems before effective263
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Figure 5: Ensemble and SVR combined predictions.

prediction models can be created, as they would then be able to learn from balanced sys-264

tem data. The models obtained have similar errors and use similar features; and this fact265

demonstrates that the prior optimization process was a worthwhile endeavor.266

The final ensemble model which combines the three best parsimonious models will be267

easy to maintain because information is directly available from sensors and meteorological268

forecasting. The error rate has been significantly reduced compared to the initial models.269

And, although it is not an insignificant error, it does facilitate forecasting that will allow270

control engineers to program the chillers to supply the maximum demand for the coming271

hours. In addition, with the improvements made in modulating the cooling system, the272

system will be able to buffer variations not programmed into the day-to-day activity.273

The next step in this line of research is to implement the ensemble model within the274

BMS decision software, and then test and track the real response in order to validate and275

measure the results.276
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