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Abstract
The purpose of this paper is twofold. Firstly, to emphasise that the class of Lie algebras
with chain lattices of ideals are elementary blocks in the embedding or decomposition
of Lie algebras with finite lattice of ideals. Secondly, to show that the number of Lie
algebras of this class is large and they support other types of Lie structures. Beginning
with general examples and algebraic decompositions, we focus on computational
algorithms to build Lie algebras in which the lattice of ideals is a chain. The chain
condition forces gradings on the nilradicals of this class of algebras. Our algorithms
yield to several positive naturally graded parametric families of Lie algebras. Further
generalizations and other kind of structures will also be discussed.

Keywords Lie algebra · Quasi-cyclic · Carnot · Finite lattice · Chain · Algorithm ·
Transvection · Naturally graded algebra

Mathematics Subject Classification 17B05 · 17B10 · 17B70 · 03G10

1 Introduction

The algebraic structure of a Lie algebra imposes strong properties on its lattice of
ideals. Although, the lattice of ideals does not always determine the Lie algebra in
a unique way, many fundamental properties of Lie algebras can be interpreted as
properties about their lattices. The lattice of ideals of a thin algebra is a sequence of
diamonds (subspaces of a two-dimensional vector space) connected by chains (see
Mattarei 2022, Section 1). For finite-dimensional algebras, according to Benito and
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Roldán-López (2020, Corollary 2.10), reductive Lie algebras (i.e., direct sum of ideals
of semisimple by abelian) are just the class of Lie algebras with complemented lattice
of ideals. If we impose the additional condition of finiteness to a complemented lattice,
we get the class of semisimple or semisimple by one-dimensional Lie algebras, whose
lattices of ideals are hypercubes. In fact, finite lattices of ideals of Lie algebras are
sublattices of hypercube lattices (see Benito and Roldán-López 2020, Theorem 2.9).

FromDilworth’s Chain Decomposition Theorem (Dilworth 2009), any finite lattice
decomposes as a disjoint union of chains. This fact highlights n-element chain lattices
as basic blocks for embedding or decomposingfinite lattices. InBenito (1992,Theorem
2.2 and Theorem 3.4), structural-theoretic characterizations of finite-dimensional Lie
algebras of characteristic zero whose lattice of ideals is a chain are given. Over alge-
braically closed fields, the complete list of solvable Lie algebras in this family appears
in Theorem 3.4 (basis and bracket description). For dimension greater or equal than
2, these algebras are one-dimensional extensions of some nilpotent Lie algebra n by
an invertible self-derivation d with integer positive eigenvalues. So g = K · d ⊕ n and
n is either a generalised Heissenberg algebra, or a filiform one if the nilpotent index
is greater or equal than 3 or a thin algebra with two diamonds (the centre and n/n2

have dimension two and ni

ni+1 is one-dimensional otherwise). The common pattern
to all n is that they are naturally graded algebras and generated (as algebras) by a
subspace u, so n = ⊕k≥1u

k with u1 = u and ui = [u, ui−1]. A Lie algebra satisfying
previous conditions is called homogeneous or quasi-cyclic (first definition in Leger
(1963)). Even more, each nilradical n is a flexible Lie algebra and the whole algebra
g is semi-contractable (g0 = K · d) according to Cornulier (2016, Definition 3.1).

There is a large number of different types of mixed Lie algebras with chain lattice
of ideals, even over algebraically closed fields. The easier example is given by any
split extension of a simple Lie algebra and a nontrivial irreducible module (abelian
nilradical and 3-chain). In characteristic zero, the well-known Levi Theorem lets us
split a mixed chained-lattice Lie algebra as s ⊕ρ n where s is a simple subalgebra
and their radical n is nilpotent. The chain ideal condition forces strong patterns on
the faithful representation ρ : s → Der n and positively gradings on the nilradical are
found.

In this paper we develop computer algorithms which let us build mixed Lie algebras
whose ideals form a n-chain for n ≤ 6. These algorithmswill produce parametric fami-
lies of quasi-cyclic or Carnot graded Lie algebras of arbitrary dimension and nilpotent
index up to 5. The algebras are easily described by taking basis and defining their
respective structure constants. These algebras are quotient of free nilpotent algebras
by homogeneous ideals and admit expanding and partially expanding automorphisms
(check Deré 2017). Starting with the split 3-dimensional Lie algebra sl2(K) and using
its irreducible representations Vn and some suitable sl2(K)-invariant bilinear products
Vn ⊗ Vm → Vm+n−2k that appeared in Dixmier (1984), we propose a block construc-
tion of Lie algebras with chain ideal lattices. These algorithms are inspired by Dixmier
(1984) and Bremner and Hentzel (2004), and their specifications are presented at the
end of Sect. 3.2. Previously, Sects. 2 and 3 exhibit many more examples and introduce
generalities and tools that are the theoretical environment of the algorithms. In Sect. 4,
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we have included several results on existence induced by applying thementioned algo-
rithms. The existence results produce nilpotent positively Z-graded Lie algebras that
support additional structures as it is explain in the final comments in Sect. 5 (invariant
metrics, expanding automorphisms and left-symmetric structures among others).

Basic results on Lie algebras follow from Jacobson (1979) and Humphreys (1997).
Along this paper, all vector spaces are of finite dimension over afieldKof characteristic
zero unless otherwise stated.

2 Generalities and Examples

ALie algebra g is a vector space over a fieldK endowedwith a binary skew-symmetric
( 12 ∈ K) bilinear product [x, y] satisfying the Jacobi identity:

J (x, y, z) = [[x, y], z] + [[z, x], y] + [[y, z], x] = 0 ∀ x, y, z ∈ g. (1)

In case [x, y] = 0 for every x, y ∈ g, the Lie algebra g is called abelian and identity (1)
becomes trivial. Along this paper, we will denote as the Lie bracket of two vector
subspaces U , V of L to the whole linear span

[U , V ] = span〈[u, v] : u ∈ U , v ∈ V 〉.

A subspace U of g is subalgebra (or ideal) of g if [U ,U ] ⊆ U (or [g,U ] ⊆ U ). The
derived series of g is defined recursively as g(1) = g and g(n) = [g(n−1), g(n−1)] for
n > 1. While the lower central series (LCS) is defined as g1 = g and gn = [g, gn−1]
for n > 1. The terms gi and g(i) are ideals of g. If the derived series (or LCS) vanishes,
g is called solvable (or nilpotent). The solvable radical (or nilpotent radical) of g,
denoted as r(g) (or n(g)) is the biggest solvable (or nilpotent) ideal of g. We will also
denote these ideals as r (or n). The nilindex or index of nilpotency of a nilpotent Lie
algebra is the smallest integer such t such that nt = 0. Along this paper we refer to
nilpotent Lie algebras of nilindex t as t-nilpotent algebras or (t − 1)-step nilpotent.
And the (t − 1)-tuple (c1, . . . , ct−1) in which the i th component is ci = dim ni/ni+1

will be called the general type of n and c1 will also be termed type of n.
A semisimple Lie algebra is by definition an algebra with no non-zero solvable

ideals, and it decomposes as a direct sum of ideals which are simple Lie algebras. A
simple Lie algebra is a non-abelian Lie algebra that contains no nonzero proper ideals.
Levi’s Theorem asserts that a Lie algebra g decomposes as a direct sum g = s⊕rwhere
s is a semisimple subalgebra (Levi subalgebra). In this paper, a mixed Lie algebra is
a non solvable and non semisimple algebra.

A derivation of g is a linearmap d : g → g such that d[x, y] = [d(x), y]+[x, d(y)].
Der g, the whole set of derivations of g, is a Lie subalgebra of the general Lie algebra
gl(g), the linear maps of g under the commutator bracket [ f , g] = f g − g f . For any
x ∈ g, the map ad x(y) = [x, y] is a derivation called inner derivation. The general
Lie algebra, gl(V ) (or gl(V , K) or gln(K) for matrix description) can be defined for
any K-vector space V and the set of traceless linear maps, sl(V ) is a Levi subalgebra.
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Fig. 1 Pentagon and diamond
lattices
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For a vector space V , a representation of a Lie algebra g is an homomorphism of
Lie algebras ρ : g → gl(V ). The vector space V under the action x · v = ρ(x)(v)

is called g-module. By taking ρ = Id, the vector V is a natural module for any
subalgebra s of gl(V ), so ρ( f )(v) = f (v). The adjoint representation ρ = ad of
g is V = g and ρ(x)(y) = [x, y]. A module V is irreducible if it is nontrivial and
does not contain proper submodules. In case the kernel of ρ is trivial, V is said to be
a faithful g-module. Any representation of any semisimple Lie algebra is completely
reducible. New modules can be obtained from old ones: as a quotient of a module by
a submodule in the natural way or as a tensor product V ⊗ W (or �nV and SnV ) of
modules by declaring

x · (v ⊗ w) = (x · v) ⊗ w + v ⊗ (x · w).

A naturally graded (respectively positive naturally graded) algebra or N-graded
(respectively N

+-graded) algebra, is a Lie algebra g that admits a nontrivial grading
on the set of natural numbers N including 0 (respectively excluding 0).

Definition 1 A finite-dimensional quasi-cyclic (homogeneous or Carnot) Lie algebra
is a positive naturally graded algebra g = g1 ⊕ g2 ⊕ · · · ⊕ gt generated as an algebra
by g1. This means [gi , g j ] ⊆ gi+ j (here gs = 0 for s > t) and gi = [g1, gi−1

1 ].
Following Cornulier (2016, Definition 3.3) the terms quasi-cyclic, graded or homo-
geneous are better known in Lie algebras, while the word Carnot (graded) is more
commonly used in sub-Riemannian and conformal geometry.

The set of ideals of a Lie algebra L form a lattice as they are a poset (partially ordered
set) ordered by inclusion, and given two elements we have an infimum (intersection)
and supremum (sum). Lattices of ideals of Lie algebras are modular, and distributive
if we impose finiteness. A finite lattice can be represented through its Hasse diagram,
which is a graph where nodes are the ideals and there is a link between two ideals
when they are contained and there is no other ideal between. A modular lattice (or
distributive) does not contain pentagons (or diamonds) as sublattices.

In Fig. 1, we have which sublattices must not appear in case we want a modular and
distributive lattice, whereas in Fig. 2we can find some examples of lattices of ideals
of Lie algebras.

Note, in Fig. 2, we can find a chain of ideals which is the lattice in which we
are focus through this paper. It is worth mentioning that a Lie algebra determines a
unique lattice, but the contrary does not hold. This is why this chain lattice in Fig. 2
is associated to different mixed algebras, or even to the solvable oscillator Lie algebra
in the real field. This is a 4-dimensional Lie algebra which can be seen as

d4 = spanK〈d〉 ⊕ h3
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Fig. 2 Examples of lattices of Lie algebras

where h3 is the Heisenberg algebra with basis {x, y, z}. Thus, we have

[x, y] = z, [x, z] = 0, [y, z] = 0,

[d, x] = y, [d, y] = −x, [d, z] = 0.

Note, this same oscillator algebra, in the complex field, produces the second lattice of
ideals in Fig. 2. Also, we can see how the third lattice comes from a sort of duplication
of the second one. This duplication can be achieved, for example, by a direct sum of
a simple Lie algebra as a trivial extension. Indeed, this also explains why sl2(K) ⊕
sl2(K) ⊕ sl2(K) has by its lattice the fourth one in the same figure, as it comes by
duplicating two times the chain of two ideals. We also note that the direct sum as
ideals of a Lie algebra with chain lattice by a simple one produces a ladder lattice.
The deconstruction of the lattices in Fig. 2 into chains stated by Dilword’s Theorem
is clear.

In the sequel we will show that chained-lattice mixed Lie algebras are a very large
family.

According to Gauger (1973), any nilpotent Lie algebra n of (t + 1)-nilindex and
minimal generator vector space m of dimension d (type d) is a quotient of the free
nilpotent algebra nd,t on a set of d generators by an ideal I such that ntd,t � I ⊆ n2d,t .
Up to isomorphisms, the Levi subalgebra of the derivation Lie algebra Der nd,t is
sld(K). By using multilinear algebra, models of free nilpotent algebras of nilindex 3
and 4 are easily obtained:

nd,2 = m ⊕ �2m, [u, v] = u ∧ v,

nd,3 = m ⊕ �2m ⊕ m ⊗ �2m

�3m
, [u, v ∧ w] = u ⊗ v ∧ w mod �3m.

Any linearmap f : m → m extends to a derivation d f of nd,t . The set of such extension
maps that have zero trace is just the Levi subalgebra of Der nd,t that we also denote
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as sld(m, K) (for short sld(K) or sl(m)). As sl(m)-modules, for d ≥ 3, m = V (λ1),
�2m = V (λ2) and �3m = K if d = 3 and �3m = V (λ3) if d ≥ 4. In addition,

m ⊗ �2m

�3m
= V (λ1 + λ2).

Denoting by ρ1 and ρ2 the natural representations of sl(m) on nd,2 and nd,3, we arrive
at the series of mixed Lie algebras with 4-chain and 5-chain ideals:

sl(m) ⊕ρ1 nd,2 and sl(m) ⊕ρ2 nd,3. (2)

Example 1 The smallest Lie algebras in Eq. (2) correspond to a vector space m of
dimension 2. In this case, we get algebras of dimension 6 and 8with sl2(K)-irreducible
decomposition V2⊕V1⊕V0 and V2⊕V1⊕V0⊕V1. Here Vn is the (n+1)-dimensional
irreducible module of sl2(K) and V2 is just the adjoint module of sl2(K) (see next
section for a complete description of the algebras using basis and bracket product).

Example 2 From the set of skew-maps of afixedvector spacem relative to a bilinear and
non-degenerate form ϕ, either symmetric or skew-symmetric, we get classical simple
Lie algebras so(m, ϕ) (types B or D ifϕ is symmetric and depending onwhether dimm
is odd or even) and sp(m, ϕ) (type C if ϕ is skew and dimm is even). The natural
module m = V (λ1) of so(m, ϕ) (dimm ≥ 7 is required for tensor decompositions)
provides the representation ρi , (it is the restricted representation of the one given in
Eq. (2)). Then, �2m = V (λ2) and

Z(nd,3) = m ⊗ �2m

�3m
= V (λ1 + λ2) ⊕ V (λ1),

and we get the series of Lie algebras of seven ideals

L(m) = so(m, ϕ) ⊕ρ2 nd,3.

The lattice of ideals of L(m) is a 4-element chain connected by the rhombus ideal
Z(nd,3) at the bottom. But the quotient Lie algebras by minimal ideals inside Z(nd,3),

L(m)

V (λ1)
and

L(m)

V (λ1 + λ2)
,

are 5-chainmixedLie algebras. In both caseswe get the 5-chain by removing aminimal
node in the complete lattice of ideals of L(m).

Example 3 For any n ≥ 1, hn denotes the nth generalised Heisenberg Lie algebra of
dimension 2n + 1. This algebra has a standard basis e1, . . . , en, en+1, . . . e2n, z with
nonzero brackets [ei , en+i ] = z. The vector spacem = span〈e1, . . . , en, en+1, . . . e2n〉
is endowedwith the non-degenerate skew-form [a, b] = ϕ(a, b)z.According toBenito
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and de-la-Concepción (2013, Example 1), the Levi factor of Der hn is the Lie algebra
s of extended maps d f where and d f (z) = 0 and d f |m = f for every f ∈ sp(m, ϕ).
So s ∼= sp(m, ϕ) and hn decomposes as the natural sp(m, ϕ)-module m = V (λ1),
and the trivial one-dimensional module Z(hn) = K · z. Clearly, the ideals of the Lie
algebra s ⊕id hn (a mixed subalgebra of the mixed algebra Der hn ⊕id hn) form a
4-chain. For n = 1, since sp2(K) ∼= sl2(K), previous 4-chain Lie algebra is encoded
in a Lie structure V2 ⊕ V1 ⊕ V0 in Example 1. Here V1 ⊕ V0 is just h1. According
to Kharraf (2021, Example 6.6), for any n ≥ 1, the Heisenberg algebra hn can be
endowed with a structure of a simple Hom-Lie algebra. For the whole description of
Hom-Lie structures on h1 see Alvarez and Cartes (2019).

Example 4 The tensor product S ⊗ A of a Lie algebra S by a commutative and asso-
ciative algebra A produces a Lie algebra named in the literature current Lie algebra
of S by A. Poisson structures and invariant bilinear forms on current Lie algebras are
treated in Zusmanovich (2014, Theorem 2, Corrollary 2.2 and Lemma 2.3). If A has
unit, a copy of S appears as subalgebra of S ⊗ A. If S is simple, the ideals of S ⊗ A
are of the form S ⊗ I where I is an ideal of A. Since the Killing form is an invariant
and non-degenerate form of any simple Lie algebra, from Lemma 2.3 in Zusmanovich
(2014), the current Lie algebra S⊗A can also be endowedwith an invariant symmetric
and nondegenerate bilinear form. In this way we get a metric Lie structure (quadratic
or metrizable Lie algebra). Consider now the series of current algebras

gn(S) = S ⊗ K[t]
span〈tn〉

for S a simple Lie algebra. Note, the block s = S ⊗ 1 is a Levi subalgebra of gn , and
the solvable radical, r(gn) = n(gn) = ⊕n−1

i=1 S ⊗ xi , is a positive naturally graded Lie
algebra (here x is the class of the element t i mod span〈tn〉) generated by S ⊗ x . So,
n(gn) is Carnot and the whole algebra gn is also naturally graded. As s-module, gn
decomposes as the direct sum of n copies of the adjoint module of S and its lattice
of ideals is a (n + 1)-element chain. In addition, gn is a quadratic Lie algebra. The
smallest algebras appear by taking S = sl2(K). The sl2(K)-module decomposition of
gn(sl2(K)) is V2 ⊕ · · · ⊕ V2 (n summands).

3 Theoretical Support, Tools and Algorithms

The anticonmutivity and Jacobi identity are the identities that determine any Lie alge-
bra g. The first one is equivalent to say that the product [x, y] on g in is given by a
bilinear map �2g → g; while the latest is equivalent to state that the right multiplica-
tion ad x is a derivation of g, for every x ∈ g. If g is simple, it is irreducible as adjoint
module and a copy of g is inside �2g. Reversing and generalising this argument, for
an irreducible representation ρ of a semisimple Lie algebra s over a vector space V ,
the existence of a copy of V inside�2V let us define an skew-product � : V ⊗V → V
such that ρ(s) ⊆ Der(V , ∗). This induces naturally a Lie structure on the vector space
s⊕ρ V . Along this section, we follow this idea in order to get Lie algebras with chain
ideal lattices.
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Our algorithms to give the desired Lie structure are based on the representation
theory of sl2(K) and the use of transvections to express skew-products, and the struc-
ture results given in Benito (1992, Theorem 2.2) and Šnobl (2010, Theorem 2). Both
theorems can be found below.

Theorem 1 (Benito 1992) Let g be a mixed Lie algebra. Then, the ideals of g are in
chain if and only if g is a simple Lie algebra or a direct sum of a nonzero nilpotent
ideal n and a simple algebra s such that n/n2 is a faithful s-module and n j/n j+1 are
irreducible s-modules for j ≥ 1. In that case, if t is the nilindex of n, the ideals of g
are the (t + 1)-element chain 0 = nt � nt−1

� · · · � ni � · · · � n � g.

In order to obtain a Lie algebra as described in previous theorem we need a triad
(s, n, ρ)where s is simple, n nilpotent and ρ : s → Der n. So n = m1⊕m2⊕· · ·⊕mt

is a direct sum of irreducible s-modulesmi ∼= ni/ni+1. The nilpotency of nmakes the
construction easier because of the terms in the lower central series are characteristic
ideals (i.e., ni is Der n-invariant for all i) and n is generated by any subspace V such
that n = V ⊕ n2. We also note that g = s ⊕ρ n is indecomposable, so ρ is faithful.
Even more:

Theorem 2 (Šnobl 2010) Let g be an indecomposable Lie algebra with product [x, y],
nilpotent radical n of (t+1)-nilindex and nontrivial Levi decomposition g = s⊕n for
some semisimple Lie algebra s. Then, there exists a decomposition of n into a direct
sum of s-modules.

n = m1 ⊕ m2 ⊕ · · · ⊕ mt

where n j = m j ⊕ n j+1, m j ⊆ [m1,m j−1] such that m1 is a faithful s-module and
for 2 ≤ j ≤ t , m j decomposes into a sum of some subset of irreducible components
of the tensor representation m1 ⊗ m j−1.

FromTheorems1 and2,weget the followinggeneral constructionofmixed algebras
with chained lattices of ideals

Theorem 3 Let s be a simple Lie algebra and m1, m2, . . . , mt irreducible s-modules
with representations ρi : s → gl(mi ) for i = 1, . . . , t being ρ1 faithful. Also, we have
s-module homomorphisms

pi jk : mi ⊗ m j → mk

where 1 ≤ i ≤ j ≤ k ≤ t and i + j ≤ k such that

• pi jk is skew-symmetric when i = j ,
• pi jk is not null when i = 1 and k = 1 + j

which also verify the identity

t−i∑

l= j+k

t∑

r=i+l

pilr (u, p jkl(v,w)) −
t− j∑

l=i+k

t∑

r= j+l

p jlr (v, pikl(u, w))
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+
t−k∑

l=i+ j

t∑

r=k+l

p̂klr (w, pi jl(u, v)) = 0, (3)

where u ∈ mi , v ∈ m j andw ∈ mk for i + j +k ≤ t and i ≤ j ≤ k. Here p̂klr = pklr
if k ≤ l, or p̂klr = −plkr otherwise.

The vector space g = s ⊕ m1 ⊕ m2 ⊕ · · · ⊕ mt with product

[s, s′]g = [s, s′]S,
[s, u]g = ρi (s)(u),

[u, v]g =
t∑

k=i+ j

pi jk(u, v)

for s, s′ ∈ s, u ∈ mi , v ∈ m j and i ≤ j gives a Lie algebra with (t + 2)-chain lattice
of ideals

0 < mt < mt−1 ⊕ mt < . . . < m1 ⊕ m2 ⊕ · · · ⊕ mt < g.

Moreover, every mixed Lie algebra with (t + 2)-chain lattice of ideals has this form.

Proof By definition g is skew-symmetric and satisfies Jacobi identity, as it involves
the usual product in s, some of its representations ρi , or it is imposed by condition in
Eq. (3), which is effectively Jacobi inside n = m1 ⊕· · ·⊕mt . Sincemk is irreducible,
any (nonzero) map p1 jk is surjective when k = j + 1. Then, from [s,mi ]g ⊆ mi and
[mi ,m j ]g = 0 for i + j ≥ t + 1, it is straightforward to check that n is a nilpotent
ideal with k-th lower central term

nk = ⊕
s≥k

ms .

In fact n is the only maximal ideal of g because of ρ1 is faithful and irreducible and s
is a simple Lie algebra. The ideals we obtain, and the reason why every non-solvable
chain has this form is obtained from Theorem 1. ��
Remark 1 Lie algebras g = s⊕n described in Theorem 3 are perfect algebras (g = g2)
with nilpotent solvable radical, n = m1 ⊕ m2 ⊕ · · · ⊕ mt with LCS terms nk =
mk ⊕ . . .mt and [ni , n j ] ⊆ ni+ j . In addition, the summands mi are irreducible and
either dimmi = 1, so [s,mi ] = 0, or [s,mi ] = mi , and m j+1 ⊆ [m1,m j ]. In
particular, the module m1 generates n as a subalgebra and m2 ⊆ �2m1 by skew
commutativity.

Example 2 and Eq. (2) in Sect. 2 follow the rules of the decompositions given in
Theorem 3 by using the simple Lie algebras sl(m) and so(m) and taking m1 = m
the irreducible natural module and irreducible quotients of �2m and m ⊗ �2m (here
�3m must be removed). In each example, the homomorphisms pi jk are given by the
projections inside tensor product modules. These examples are particular cases of a
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more general situation. According to Benito and de-la-Concepción (2013, Theorem
3.5) and Theorem 1, the mixed Lie algebras with nilradical of type d and nilindex t+1
in which the lattice of ideals is a n-element chain are of the form

Lt (s,m, i) = s ⊕Id
nd,t

i
,

where s is a simple subalgebra of theLevi subalgebra of derivations of the free nilpotent
nd,t (see Benito and de-la-Concepción (2013, Section 3) for a complete description of
Der nd,t ) such that nd,t/n

2
d,t is a s-irreducible and faithful module, i is an ideal, and

also a s-submodule of n2d,t , that properly contains ntd,t . And each s-quotient module

nkd,t + i

nk+1
d,t + i

,

for 2 ≤ k ≤ t , is s-irreducible. Explicit expressions for the irreducible blocks mi

or the general product in Theorem 3 for the Lie algebra Lt (s,m, i) are not easy to
get, even in low nilindex. In the case of the 3-dimensional split simple Lie algebra,
where the irreducible modules can be described in terms of differential operators and
the maps pi jk are given by using partial differentiation of polynomials, computational
algorithms with a detailed description (including bases and bracket products) of the
algebras can be implemented.

3.1 sl2(K)-Modules and Transvections

As our final aim is constructing chains like the ones in Theorem 3 where s = sl2(K)

we are going to see some arithmetic particularities of this algebra. They will play a
significant role in obtaining these algebras automatically and theoretically. We follow
ideas and tools from Dixmier (1984) and Bremner and Hentzel (2004).

Let K[x, y] be the ring of polynomials in the variables x and y. For every d greater
or equal than 0, we denote as Vd = span〈xd , xd−1y, ..., xyd−1, yd〉 the set of homo-
geneous polynomials of degree d. Abusing notation, we will write deg Vd = d. Then,
Vd are vector spaces of dimension d + 1, with V0 = K · 1. The set Vd can also be
viewed as a sl2(K)-module in a natural way once sl2(K) is identified, into the Lie
algebra gl(K[x, y]), as the Lie subalgebra of partial derivations

span

〈
e = x

∂

∂ y
, f = y

∂

∂x
, h = x

∂

∂x
− y

∂

∂ y

〉
. (4)

This action turns Vd into an irreducible module as seen in Fig. 3. Even more, any
finite-dimensional irreducible module of sl2(K) can be viewed in this way, being V0
the trivial module.
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0

xd xd−1y xd−2y2

. . .

x2yd−2 xyd−1 yd

0

e e e e e e e

f f f f f f f

h h h h h h

Fig. 3 Diagram representing the sl2-action over module Vd

The Clebsch-Gordan’s formula gives the following decomposition of the tensor
product of two sl2(K)-irreducible modules. For n ≥ m we have

Vn ⊗ Vm ∼= Vm ⊗ Vn ∼=
m⊕

k=0

Vn+m−2k ∼= Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ Vn−m . (5)

While, when n = m we can decompose

�2Vn ∼=
� n−1

2 �⊕

k=0

V2n−4k−2 ∼= V2n−2 ⊕ V2n−6 ⊕ V2n−10 ⊕ . . . ,

which is simply taking the odd k-summands in Eq. (5).
Now, for 0 ≤ k ≤ min(n,m), let us consider the bilinear transvection map

introduced in Dixmier (1984) as (·, ·)k : Vn × Vm → Vn+m−2k where

( f , g)k = (m − k)!
m!

(n − k)!
n!

k∑

i=0

(−1)i
(
k

i

)
∂k f

∂xk−i∂ yi
∂kg

∂xi∂ yk−i

We will use these transvections to define sl2(K)-invariant products as it is explained
in Dixmier (1984). From Schur’s Lemma and Clebs-Gordan’s formula, it is easy to
prove the following result:

Lemma 4 Any bilinear sl2(K)-invariant product Pn,m,p : Vn ⊗ Vm → Vp, satisfies:

• Pn,m,p = α·( f , g)k for someα ∈ Kwhen p = n+m−2k and 0 ≤ k ≤ min{n,m}.
Here Pn,m,p(b, a) = (−1)k Pn,m,p(a, b).

• Pn,m,p = 0 otherwise.

So the product Pn,m,p is either symmetric or skew-symmetric.

Proof Note that the set of sl2(K)-invariant products Pm,n,p are just the vector space
of module homomorphisms Homsl2(K)(Vn ⊗ Vm, Vp). The dimension of this set is
equal to the number of copies of the irreducible Vp inside Vn ⊗ Vm . According to
Clebs-Gordan’s formula, the dimension is at most 1. ��
This lemma plays an important role in the construction of Lie algebras in which their
Levi factor is, up to isomorphism, sl2(K).
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3.2 Algorithms

Now we have all the tools to start constructing Lie algebras whose ideals are in a
chain. First, note we will go back to notation pi jk : mi ⊗ m j → mk , instead of the
one Lemma 4, as it will be more convenient. Aside, as every sl2-module mi can be
identified by an integer, our algorithm will receive integers. But, instead of integers
referring to the dimension or degree of each module we will set the integers in the
following way: n1, n2, . . . , nt will define modules m1,m2, . . . ,mt where

mi = Vi ·n1−2
∑i

j=2 n j
= Vi ·n1−2n2−...−2ni (6)

So m1 = Vn1 , m2 = V2n1−2n2 , m3 = V3n1−2n2−2n3 and so on. Here

dimmi = dimm1 + dimmi−1 − 2ni − 1

= i · n1 − 2
i∑

j=2

n j + 1 = i · n1 − 2n2 − . . . − 2ni + 1.

As this type of algebras would appear constantly till the end of the article, we would
introduce the following definition:

Definition 2 We say a Lie algebra g is a sl2-chained Lie algebra of length t + 2 when
g has Levi decomposition s ⊕ n with s ∼= sl2 and it is form as in Theorem 3.

We will denote these sl2-chained Lie algebras as

C({mi }i=1,...,t , {αi jk}i=1,...,� t
2 �; j=i,...,t−1; k=i+ j,...,t ),

where mi will be the sl2-modules of the form Vki for some ki and

pi jk = αi jk(·, ·)ci jk
where

ci jk = dimmi + dimm j − dimmk − 1

2

= degmi + degm j − degmk

2

=
(
i + j − k

2

)
n1 −

i∑

l=2

nl +
k∑

l= j+1

nl

=
(
i + j − k

2

)
n1 − n2 − · · · − ni + n j+1 + · · · + nk .

Therefore, our chains will be of the form

g = sl2 ⊕ m1 ⊕ m2 ⊕ · · · ⊕ mt ,
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with t + 2 ideals in a chain: 0,
⊕t

i=k mi for k = 1, . . . , t ; and g. It will also have the
following Lie bracket definition (s, s′ ∈ sl2, u ∈ mi ):

• Inside sl2, where the elements are viewed as partial differentiation maps according
to Eq. (4), the definition is given by the using usual special linear Lie bracket
[s, s′] = ss′ − s′s.

• The product [sl2,mi ] is defined using the representation ρi ,

[s, u] = ρi (s)(u)

where for the standard basis in sl2 it is defined as

ρ(e) = x
∂

∂ y
,

ρ( f ) = y
∂

∂x
,

ρ(h) = x
∂

∂x
− y

∂

∂ y
.

• The product between the modules satisfies a couple of conditions:

[m1,mi ] ⊇ mi+1,

[mi ,m j ] ⊆
t∑

k=i+ j

mk = mi+ j + mi+ j+1 + · · · + mt

Given u ∈ mi and v ∈ m j where i ≤ j the Lie product is

[u, v] =
t∑

k=i+ j

pi jk(u, v)

where pi jk : mi ⊗ m j → mk such that

pi jk(u, v) = αi jk · (u, v)ci jk

If ci jk /∈ Z≥0 then, as stated in Lemma 4, αi jk = 0. Moreover

– αi jk �= 0 for i = 1 and k = j + 1,
– As piik must be skew-symmetric then ciik must be odd or αi ik = 0.

So, when t = 3 we will have chains C({m1,m2,m3}, {α112, α113, α123}), and for
t = 4 chains will be

C({m1,m2,m3,m4}, {α112, α113, α114, α123, α124, α134, α224}).
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Algorithm 1 Checks if a succession of t integers referring to t modules is compatible
with being a Lie algebra whose ideals are in chain of t + 2 ideals.
Input: The algorithm receives t integers n1, n2, . . . , nt referring to sl2-modules as defined by Eq. (6).
Output: A boolean value (true or false) indicating if there is a Lie algebra
C({m1,m2, . . . ,mt }, {αi jk }i=1,...,� t

2 �; j=i,...,t−1; k=i+ j ,...,t ) for some αi jk . And the list those valid αi jk

such the chained algebra exists.
In case the validity of the algebra is subject to only some values of the parameters αi jk the algorithm also
gives them.
Steps: The algorithm is divided in two main steps:

1. Check integers input: this is equivalent to checking if

• m2 ⊆ �2m1
• mi+1 ⊆ m1 ⊗ mi for every i = 2, . . . , t

In terms of integers, this translates into n2 being an odd number, and for i = 1, . . . , t − 1,

0 ≤ ni+1 ≤ min(n1, dimmi − 1) = min

⎛

⎝n1, i · n1 − 2
i∑

j=2

n j

⎞

⎠

2. Check Jacobi identities inside m1 ⊕ m2 ⊕ · · · ⊕ mt : We need to study J (u, v, w) = 0 for u ∈ mi ,
v ∈ m j and w ∈ mk such i + j + k ≤ t and i ≤ j ≤ k. As seen in Theorem 3, here

J (u, v, w) = [u, [v, w]] + [v, [w, u]] + [w, [u, v]] (7)

=
t−i∑

l= j+k

t∑

r=i+l

pilr (u, p jkl (v, w)) −
t− j∑

l=i+k

t∑

r= j+l

p jlr (v, pikl (u, w))

+
t−k∑

l=i+ j

t∑

r=k+l

p̂klr (w, pi jl (u, v)) = 0,

where p̂klr = pklr if k ≤ l, or p̂klr = −plkr otherwise.

Now, all these tools and notation, in combination with Theorem 3, open up the idea
to develop Algorithm 1 to find all these algebras given the already mentioned list of
integers referring to the irreducible modules.

In case we want to find every tuple (n1, n2, . . . , nt ) that gives a chain we should
call Algorithm 1 using at least all integers that satisfy step 1 in Algorithm 1.

Note, Algorithm 1 only works for every chain of more than 3 ideals (so t > 2). But
we do not need more in case we want to study smaller cases. A 1-chain is simply the
zero-dimensional Lie algebra, the only 2-chain of this form is the simpleLie algebra sl2
with no modules. And, even for cases as 3-chains of 4-chains (t = 1, 2) the algorithm
is unnecessary as the algebras are sl2 ⊕ Vn for every n ≥ 0, and sl2 ⊕ Vn ⊕ V2n−2k
for 1 ≤ k ≤ n and k being an odd number. In all those algebras, skew-symmetry is
guaranteed by transvection properties, while the Jacobi identity is trivially null in the
modules. It is only in larger cases when the use of the algorithm becomes relevant for
finding valid algebras. That is why, for cases t = 3 and t = 4 we can find a detailed
implementation in Algorithm 2 and Algorithm 3 respectively.

Applying Algorithm 2, we can obtain every possible 5-chain for n1 ≤ 32. This
way we observe two families: the first family are 4 chains that exist for every n1 and
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Algorithm 2 Detailed implementation of Algorithm 1 in case t = 3.
Input: Three integers n1, n2 and n3 referring to modules

• m1 = Vn1 ,• m2 = V2n1−2n2 ,• m3 = V3n1−2n2−2n3 .

Output: A boolean value (true or false) indicating if there is a Lie algebra
C({m1,m2,m3}, {α112, α113, α123}) for any αi jk such that α112 · α123 �= 0.
Steps: The algorithm is divided in two main steps:

1. Check integers input:

• 1 ≤ n2 ≤ n1 and n2 is odd,
• 0 ≤ n3 ≤ min(n1, dimm2 − 1) = min(n1, 2n1 − 2n2).

2. Check Jacobi identity inside the nilradical N = m1 ⊕ m2 ⊕ m3. As we have t = 3, Eq. (7) can be
simplified as we have only one possibility: i = j = k = 1. Therefore, the only identity to check is

p123(u, p112(v, w)) + p123(v, p112(w, u)) + p123(w, p112(u, v)) = 0.

for every u, v, w ∈ m1. Every term of this equality has both coefficients α123 and α112, and, as they
are not zero, we can simplify obtaining

(u, (v, w)n2 )n3 + (v, (w, u)n2 )n3 + (w, (u, v)n2 )n3 = 0. (8)

If this is trueC({m1,m2,m3}, {α112, α113, α123}) is aLie algebra for anyαi jk such thatα112·α123 �= 0.

Table 1 Chains of 5 ideals for
n1 ≤ 32 which repeat for every
value of n1

n1 n2 n3 sl2-modules Condition

n 1 0 Vn ⊕ V2n−2 ⊕ V3n−2 n ≥ 1

n 1 1 Vn ⊕ V2n−2 ⊕ V3n−4 n ≥ 2

n 1 3 Vn ⊕ V2n−2 ⊕ V3n−8 n ≥ 3

n 3 1 Vn ⊕ V2n−6 ⊕ V3n−8 n ≥ 4

Table 2 Chains of 5 ideals for n1 ≤ 32 which repeat every four n1

n1 n2 n3 sl2-modules Condition

4n 2n + 1 4n − 3 V4n ⊕ V4n−2 ⊕ V4 n ≥ 2

4n + 1 2n + 1 4n V4n+1 ⊕ V4n ⊕ V1 n ≥ 0

4n + 2 2n + 1 4n + 1 V4n+2 ⊕ V4n+2 ⊕ V2 n ≥ 0

4n + 3 2n + 1 4n + 3 V4n+3 ⊕ V4n+4 ⊕ V1 n ≥ 0

4n + 4 2n + 1 4n + 3 V4n+4 ⊕ V4n+6 ⊕ V4 n ≥ 0

are described in Table 1. The second family are algebras which repeat every four n1
values. This last family appears in Table 2. And, up to1 n1 = 32 these are the only
chains of 5 ideals. Therefore, it is quite probable that this extends for every n1.

1 The n1 = 32 cap is set arbitrarily to limit the computational cost, and it is not based on some property
that does not work for greater values.
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Algorithm 3 Detailed implementation of Algorithm 1 in case t = 4.
Input: Four integers n1, n2, n3 and n4 referring to modules m1 = Vn1 , m2 = V2n1−2n2 , m3 =
V3n1−2n2−2n3 , m4 = V4n1−2n2−2n3−2n4 .
Output: A boolean value (true or false) indicating if there is a Lie algebra
C({m1,m2,m3,m4}, {αi jk }i=1,2; j=i,...,3; k=i+ j ,...,4) for some αi jk . It also returns a value α which gives
the following scalar restriction over α224:

α = α224 · α112

α123 · α134
. (9)

Any values for α112, α123, α134 different from zero would give an algebra, at least when considering
α124 = α113 = 0.
Steps: The algorithm is divided in two main steps:

1. Check integers input:

• 1 ≤ n2 ≤ n1 and n2 is odd,
• 0 ≤ n3 ≤ min(n1, dimm2 − 1) = min(n1, 2n1 − 2n2),
• 0 ≤ n4 ≤ min(n1, dimm3 − 1) = min(n1, 3n1 − 2n2 − 2n3).

2. Check Jacobi identity inside the nilradical N = m1 ⊕ m2 ⊕ m3 ⊕ m4. Here t = 4, so Eq. (7), taking
into account p114 and p124 go to the centre, appears in two scenarios:

(a) Three elements u, v, w ∈ m1.

p123(u, p112(v, w)) + p123(v, p112(w, u)) + p123(w, p112(u, v))

+p124(u, p112(v, w)) + p124(v, p112(w, u)) + p124(w, p112(u, v))

+p134(u, p113(v, w)) + p134(v, p113(w, u)) + p134(w, p113(u, v)) = 0.

Taking projections, we can separate the first three addends from the rest into two null equations.
The first one, following the same procedure as in Algorithm 2 turns again into Eq. (8). While the
second part could be omitted taking α124 = 0 and α113 = 0.

(a) Two elements u, v ∈ m1 and another w ∈ m2.

p134(u, p123(v, w)) − p134(v, p123(u, w)) + p224(w, p112(u, v)) = 0. (10)

For this equation, we have two options:
• If n3 + n4 − n2 is even or negative or n2 + n3 + n4 > 2n1 then α224 = 0, and Eq. (10)

turns into (u, (v, w)n3 )n4 − (v, (u, w)n3 )n4 = 0.
• If not, Eq. (10) turns into

(u, (v, w)n3 )n4 − (v, (u, w)n3 )n4 + α · (w, (u, v)n2 )n3+n4−n2 = 0

for α as in Eq. (9). Note this α is unique as in this case we have (w, (u, v)n2 )n3+n4−n2 �= 0.

On the sameway, applying Algorithm 3, we can try to obtain every possible module
combination of 6-chains for n1 ≤ 32. Again, we can distinguish two groups. The
general one that repeats for every n1 which appears in Table 3. But, in contrast to what
happens with five ideals, in this case there are some chains that only work for some
n1 values. These particular cases are listed in Table 4.

Remark 2 In case we want to study what happens in (t + 2)-chains for t ≥ 5 we can
use the general Algorithm 1. It is important to note, that in these cases the complexity
increases rapidly. For instance, when t = 5, which is the simplest case, checking
Jacobi identity following Eq. (7) produces up to 4 cases to study:
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Table 3 Chains of 6 ideals for n1 ≤ 32 which repeat for every n1

n1 n2 n3 n4 sl2-modules α Condition

n 1 0 0 Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−2 0 n ≥ 1

n 1 0 2 Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−6
4(4n−3)
3(3n−2) n ≥ 2

n 1 1 1 Vn ⊕ V2n−2 ⊕ V3n−4 ⊕ V4n−6
2n−2
3n−4 n ≥ 2

Table 4 Chains of 6 ideals for
n1 ≤ 32 which do not repeat for
different n1 values

n1 n2 n3 n4 sl2-modules α

3 1 1 3 V3 ⊕ V4 ⊕ V5 ⊕ V2 7/5

3 1 3 1 V3 ⊕ V4 ⊕ V1 ⊕ V2 − 2

4 1 3 3 V4 ⊕ V6 ⊕ V4 ⊕ V2 3/2

4 3 1 3 V4 ⊕ V2 ⊕ V4 ⊕ V2 1/2

5 1 3 5 V5 ⊕ V8 ⊕ V7 ⊕ V2 22/21

5 3 1 5 V5 ⊕ V4 ⊕ V7 ⊕ V2 12/7

6 1 3 5 V6 ⊕ V10 ⊕ V10 ⊕ V6 1

1. Three elements in m1
2. Two elements in m1 and other in m2
3. Two elements in m1 and other in m3
4. Two elements in m2 and other in m1

As seen in Algorithms 2 and 3, many αi jk could be considered null and we could
simplify them. But, as α224 could be different from zero many more subcases appear
making it much harder to solve.

4 Lie Algebra Structure Existence

Although our algorithms are useful for finding chains, they do not let us generalize
and prove the existence of 5 or 6-chains whose dimension is as big as we want. But,
at least, seeing their results we know approximately where we should look.

Before proving some results of existence, we need to introduce Gordan identities,
which appear in Dixmier (1984) (see also Bremner and Hentzel (2004) for further
information). These are some relationships that transvections fulfil which will be
helpful during proofs.

Definition 3 [Gordan’s identity] Let f ∈ Vn , g ∈ Vm and h ∈ Vp, and let α1, α2 and
α3 be non-negative integers such that α1 + α2 ≤ p, α2 + α3 ≤ m, α3 + α1 ≤ n, with
α1 = 0 o α2 + α3 = m. Then

⎡

⎣
f g h
m n p
α1 α2 α3

⎤

⎦ = 0,
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where
⎡

⎣
f g h
m n p
α1 α2 α3

⎤

⎦ =
∑

i≥0

(n−α1−α3
i

)(
α2
i

)
(m+n−2α3−i+1

i

) (( f , g)α3+i , h)α1+α2−i

+ (−1)α1+1
∑

i≥0

(p−α1−α2
i

)(
α3
i

)
(m+p−2α2−i+1

i

) (( f , h)α2+i , g)α1+α3−i .

4.1 Chains with Five Ideals

Now, we have all the necessary tools to prove all chains in Tables 1 and 2 can
be extended for any n and not only up to 32. But before proving the results we
introduce the following simplified notation for Gordan’s Identity. When writing
[ f , g, h, n, α1, α2, α3] we refer to (for f , g, h ∈ Vn)

⎡

⎣
f g h
n n n
α1 α2 α3

⎤

⎦ and

[ f , g, h, n, α1, α2, α3]∗ =
∑

�
f ,g,h

[ f , g, h, n, α1, α2, α3] −
∑

�
g, f ,h

[g, f , h, n, α1, α2, α3].

From now on ρ(n1,...,nt ) = ρn1 ⊕· · ·⊕ρnt will denote the direct sum representation
of sl2(K) on the vector space module W (n1, . . . , nt ) = Vn1 ⊕ V2n1−2n2 ⊕ · · · ⊕
Vtn1−2

∑t
i=2 ni

. According to Sect. 3.1, the action ρn j on the module V
jn1−2

∑ j
k=2 nk

of

homogeneous polynomials of degree jn1−2
∑ j

k=2 nk , is given in terms of differential
operators. The Lie bracket that makes W (n1, . . . , nt ) into a nilpotent Lie algebra is
defined rescaling by αi jk ∈ K the ci jk-transvection ( f , g)ci jk ∈ Vkn1−2

∑k
s=2 ns

of

f ∈ Vin1−2
∑i

r=2 nr
and g ∈ V

jn1−2
∑ j

q=2 nq
. Here i = 1, . . . , � t

2�, j = i, . . . , t − 1

and k = i + j, . . . , t . In the particular case where i = 1, j = p and k = p + 1

[ f , g]W = αi jk( f , g)nk and αi jk �= 0.

We will also denote the tuple λ(n1,...,nt ) = (αi jk)i jk . This encodes the structure con-
stants of the Lie algebra W (n1, . . . , nt ). Here, αi jk is nonzero for all i = 1, j = p =
1, . . . t − 1 and k = p + 1. We shall refer to a fold (αi jk)i jk structure constants fold
of the Lie algebra

g
ρ,λ

(n1,...,nt )
= sl2(K) ⊕ρ W (n1, . . . , nt )λ and

{
ρ = ρ(n1,...,nt ),

λ = λ(n1,...,nt ).
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Proposition 5 The 3-tuples (n, 1, 0), (n, 1, 1), (n, 1, 3) and (n, 3, 1) generate the
following λ-parametric families of sl2-chained Lie algebras:

a) g
ρ,λ

(n,1,0) = sl2(K) ⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−2)λ, for n ≥ 1,

b) g
ρ,λ

(n,1,1) = sl2(K) ⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−4)λ, for n ≥ 2,

c) g
ρ,λ

(n,1,3) = sl2(K) ⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−8)λ, for n ≥ 3,

d) g
ρ,λ

(n,3,1) = sl2(K) ⊕ρ (Vn ⊕ V2n−6 ⊕ V3n−8)λ, for n ≥ 4,

where scalar threefolds λ(n,k, j) = (α112, α113, α123) determine the product in
nilradical by α112(·, ·)k , α113(·, ·) 2k+2 j−n

2
and α123(·, ·) j . And they take values:

λ(n,1,0) = (α112, 0, α123)

λ(n,1,1) = (α112, 0, α123), for n �= 2, λ(2,1,1) = (α112, α113, α123)

λ(n,1,3) = (α112, 0, α123), for n �= 6, λ(6,1,3) = (α112, α113, α123)

λ(n,3,1) = (α112, 0, α123), for n �= 6, λ(6,3,1) = (α112, α113, α123)

Proof We denote the different tuples in the general form (n1, n2, n3), so m1 = Vn1 ,
m2 = V2n1−2n2 and m3 = V3n1−2n2−2n3 . It is a straightforward computation that the
module summand W (n1, n2, n3) = m1 ⊕ m2 ⊕ m3 is as described in all four items.
Using Clebsch-Gordan’s formula from Eq. (5) we can observe m2 appears in �2m1
andm3 appears inm1 ⊗m2. Therefore, by construction, we only need to check Jacobi
identity from Eq. (8), for every f , g, h ∈ m1. And this equality can be proved using
Gordan’s Identity from Definition 3 on expressions:

[ f , g, h, n, 0, 0, 1] = (( f , g)1, h)0 − (( f , h)0, g)1 − 1

2
(( f , h)1, g)0,

[ f , g, h, n, 0, 1, 1] = (( f , g)1, h)1 + 1

2
(( f , g)2, h)0 − (( f , h)1, g)1 − 1

2
(( f , h)2, g)0,

[ f , g, h, n, 0, 2, 2] = (( f , g)2, h)2 + (( f , g)3, h)1 + (n − 2)(n − 3)

(2n − 5)(2n − 6)
(( f , g)4, h)0

− (( f , h)1, g)1 − (( f , h)3, g)1 − (n − 2)(n − 3)

(2n − 5)(2n − 6)
(( f , h)4, g)0,

[ f , g, h, n, 0, 1, 3] = (( f , g)3, h)1 + 1

2
(( f , g)4, h)0 − (( f , g)1, h)3 − 3

2
(( f , h)2, g)2

− 3(n − 1)

2(2n − 3)
(( f , h)3, g)1 − (n − 1)

4(2n − 5)
(( f , h)4, g)0.

Depending on the different tuples, Eq. (8) is equivalent to the following identities (note
that (a, b)k = (−1)k(b, a)k according to Lemma 4):

• (n1, n2, n3) = (n, 1, 0) for n ≥ 1: Eq. (8) follows from,

[ f , g, h, n, 0, 0, 1] − [h, g, f , n, 0, 0, 1] = 0.
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We note that α113 = 0 because m3 = V3n−2 is not contained in �2m1.
• (n1, n2, n3) = (n, 1, 1) for n ≥ 2: Eq. (8) follows from,

[ f , g, h, n, 0, 1, 1] + [g, f , h, n, 0, 1, 1] + [h, g, f , n, 0, 1, 1] = 0.

In this case, m3 = V3n−4 ⊂ �2m1 implies 3n − 4 = 2n − 2k with k odd. Then
2k = 4 − n ≥ 0 and therefore α113 = 0 if n ≥ 3 and n = 2 implies k = 1 and
any α113 is valid.

• (n1, n2, n3) = (n, 1, 3) for n ≥ 4: Eq. (8) follows from,

[ f , g, h, n, 0, 1, 3]∗ − 7n − 9

4n − 6

(
[ f , g, h, n, 0, 2, 2]

−[g, f , h, n, 0, 2, 2] − [h, g, f , n, 0, 2, 2]
)

= 0.

And it is equivalent to [ f , g, h, 3, 1, 1, 2]∗ = 0 if n = 3. Here, α113 = 0 if n �= 6
and n = 6 implies k = 1 and any α113 is valid.

• (n1, n2, n3) = (n, 3, 1) for n ≥ 4: here Eq. (8) is equivalent to
[ f , g, h, n, 0, 2, 2] + [g, f , h, n, 0, 2, 2] + [h, g, f , n, 0, 2, 2] = 0.

��
Most of previous information on the Proposition 5 can be originally found dis-

tributed in several lemmas in Pérez-Aradros (2016, Sección 2.3.1), work that has
been revisited, sorted and extended to produce the mentioned proposition. From the
algorithms, we also reach the following series of Lie algebras.

Proposition 6 The 3-tuples (4n, 2n + 1, 4n − 3), (4n + 1, 2n + 1, 4n), (4n + 2, 2n +
1, 4n + 1), (4n + 3, 2n + 1, 4n + 3) and (4n + 4, 2n + 1, 4n + 3) generate only
algebras with N

+-graded nilradical. So, the valid scalar threefolds are λ(n1,n2,n3) =
(α112, 0, α123). The resulting λ-parametric families of sl2-chained Lie algebras are:

a) g
ρ,λ

(4n,2n+1,4n−3) = sl2(K) ⊕ρ (V4n ⊕ V4n−2 ⊕ V4)λ for n ≥ 2.

b) g
ρ,λ

(4n+1,2n+1,4n) = sl2(K) ⊕ρ (V4n+1 ⊕ V4n ⊕ V1)λ for n ≥ 0.

c) g
ρ,λ

(4n+2,2n+1,4n+1) = sl2(K) ⊕ρ (V4n+2 ⊕ V4n+2 ⊕ V2)λ for n ≥ 0.

d) g
ρ,λ

(4n+3,2n+1,4n+3) = sl2(K) ⊕ρ (V4n+3 ⊕ V4n+4 ⊕ V1)λ for n ≥ 0.

e) g
ρ,λ

(4n+4,2n+1,4n+3) = sl2(K) ⊕ρ (V4n+4 ⊕ V4n+6 ⊕ V4)λ for n ≥ 0.

And products in the nilradicals are given by α112(·, ·)n2 and α123(·, ·)n3 .
Proof We follow the notation introduced in the proof of Proposition 5. It is a straight-
forward computation that the module summand W (n1, n2, n3) = m1 ⊕ m2 ⊕ m3 is
as described in all items in the list. Using Clebsch-Gordan’s formula from Eq. (5) we
check that α113 = 0 in all the cases, m2 appears in �2m1 and m3 appears in m1 ⊗m2.
So, to establish the result, it only remains to prove Jacobi identity from Eq. (8) for
every f , g, h ∈ m1. As in Proposition 5, we proceed to check using Gordan identities:
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• (n1, n2, n3) = (4n, 2n + 1, 4n − 3), for n ≥ 2: Eq. (8) is just

[ f , g, h, 4n, 2n − 2, 2n + 2, 2n − 2]∗ − 2[ f , g, h, 4n, 2n − 2, 2n + 1, 2n − 1]∗ = 0

For the other cases n ≥ 0 is fixed and,

• (n1, n2, n3) = (4n+1, 2n+1, 4n): Eq. (8) follows from the identity [ f , g, h, 4n+
1, 2n, 2n + 1, 2n]∗ = 0.

• (n1, n2, n3) = (4n + 2, 2n + 1, 4n + 1): Eq. (8) is equivalent to [ f , g, h, 4n +
2, 2n, 2n + 1, 2n + 1]∗ = 0.

• (n1, n2, n3) = (4n + 3, 2n + 1, 4n + 3): Eq. (8) is just

[ f , g, h, 4n + 3, 2n − 1, 2n, 2n + 3]∗

+4n + 3

2n
[ f , g, h, 4n + 3, 2n − 1, 2n + 3, 2n]∗ = 0

for n ≥ 1. While case n = 0 is just item c) for n = 3 in Proposition 5.
• (n1, n2, n3) = (4n + 4, 2n + 1, 4n + 3): Eq. (8) is obtained from

[ f , g, h, 4n + 4, 2n − 2, 2n + 4, 2n]∗ − [ f , g, h, 4n + 4, 2n − 2, 2n, 2n + 4]∗

−3(n + 2)(2n + 3)(7n + 10)

4n(4n + 1)(6n + 7)

(
[ f , g, h, 4n + 4, 2n − 2, 2n + 4, 2n]∗

−5(n + 2)

7n + 10
[ f , g, h, 4n + 4, 2n − 2, 2n + 3, 2n + 1]∗

)
= 0

for n ≥ 1. While case n = 0 is item c) for n = 4 in Proposition 5.

��
Remark 3 As seen in some proofs, some algebras are repeated in Propositions 5 and
6. The cases n = 0 from Proposition 6 in items b), c), d) and e) coincide with the cases
from Proposition 5 in item a) for n = 1, item b) for n = 2, and item c) for n = 3, 4.

Remark 4 Other 3-tuples that do not produce chain ideal Lie algebras are:

(n, 1, 2)n≥2, (n, 1, 4)n≥4, (n, 1, 5)n≥5, (n, 1, 6)n≥6,

(n, 3, 0)n≥3, (2n, 2n − 1, 1)n≥3, (2n, 2n − 1, 0)n≥2, (n, 3, 2)n≥3,

(2n + 1, 2n + 1, 0)n≥1, (2n, 2n − 1, 2)n≥3.

We can check why and where they do not work as chains in Pérez-Aradros (2016,
Sección 2.3.1).

Example 5 The 3-tuples (n, 1, 2)n≥2 or (2n + 1, 2n + 1, 0)n≥1 do not produce Lie
algebra structures with chain ideal lattice. In the first case, the Lie product must be
induced on Vn ⊕V2n−2⊕V3n−6 by using λ = (α112, 0, α123). But Jacobi identity fails
(unless α112α123 = 0):

J (xn, yxn−1, y2xn−2) =
∑

cyclic

((xn, yxn−1)1, y
2xn−2)2
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= 9n − 12

n2(2n − 3)(n − 1)
x3n−6

For the second tuple, the vector space is V2n+1 ⊕ V0 ⊕ V2n+1 and Jacobi identity also
fails:

J (yx2n, y2x2n−1) =
∑

cyclic

((yx2n, y2x2n−1)2n+1, y
2nx)0 = 1

2n + 1
y2x2n−1.

4.2 Chains with 6 Ideals

Now, we have to prove the existence results inspired by Table 3. Before proving them,
we are going to introduce simplified notations as in all following resultsm1 = Vn and
m2 = V2n−2. So, we will write [h, f , g, n, α1, α2, α3]1, [ f , h, g, n, α1, α2, α3]2 and
[ f , g, h, n, α1, α2, α3]3 instead of

⎡

⎣
h f g

2n − 2 n n
α1 α2 α3

⎤

⎦ ,

⎡

⎣
f h g
n 2n − 2 n
α1 α2 α3

⎤

⎦ ,

⎡

⎣
f g h
n n 2n − 2
α1 α2 α3

⎤

⎦ ,

respectively, and

� = [ f , g, h, n, α1, α2, α3]3 − [g, f , h, n, α1, α2, α3]3
+ [g, h, f , n, α1, α2, α3]2 − [h, g, f , n, α1, α2, α3]1
+ [h, f , g, n, α1, α2, α3]1 − [ f , h, g, n, α1, α2, α3]2,

for f , g ∈ Vn and h ∈ V2n−2.
Note, as first seen in Algorithm 3, every chained Lie algebra of length 6 depends

on an α parameter which imposes restrictions over α224 for every not null α112, α123,
α134 as seen in Eq. (9).

Proposition 7 The 4-tuples (n, 1, 0, 0), (n, 1, 0, 2) and (n, 1, 1, 1) generate the fol-
lowing parametric families of sl2-chained Lie algebras:

a) g
ρ,λ

(n,1,0,0) = sl2(K) ⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−2)λ for n ≥ 1,

b) g
ρ,λ

(n,1,0,2) = sl2(K) ⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−6)λ for n ≥ 2,

c) g
ρ,λ

(n,1,1,1) = sl2(K) ⊕ρ (Vn ⊕ V2n−2 ⊕ V3n−4 ⊕ V4n−6)λ for n ≥ 2.

Along here, λ(n1,n2,n3,n4) = (α112, 0, 0, α123, 0, α134, α224), where

α224 = 0 when λ = λ(n,1,0,0),

α224 = 4(4n − 3) α123 α134

3(3n − 2) α112
when λ = λ(n,1,0,2),

α224 = (2n − 2) α123 α134

(3n − 4) α112
when λ = λ(n,1,1,1),
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defines the product in the N-graded nilradical given by α112(·, ·)n2 , α123(·, ·)n3 ,
α134(·, ·)n4 and α224(·, ·)n3+n4−n2 . We also have the not necessarily graded partic-
ular cases, where α113, α114, α124 are not necessarily zero, given by the sevenfolds
λ(n,1,k, j),

λ(2,1,0,2) = (α112, 0, α114, α123, α124, α134, α224),

λ(4,1,0,2) = (α112, 0, 0, α123, α124, α134, α224),

λ(2,1,1,1) = (α112, α113, α114, α123, α124, α134,

λ(4,1,1,1) = (α112, 0, 0, α123, α124, α134, α224).

For these four last parametric families, gρ,λ

(2,1,k, j) and g
ρ,λ

(4,1,k, j), the entry α224 and the
irreducible decomposition are described as in the graded case, and the product in the
nilradical is given by α112(·, ·)1, α11p(·, ·)1 for2 p = 3, 4, α123(·, ·)k , α124(·, ·) 4−n

2
,

α134(·, ·) j , α224(·, ·)1.

Proof According to Proposition 5 and the notation in its proof, it is easily check that
the module summandW (n1, n2, n3, n4) = m1 ⊕m2 ⊕m3 ⊕m4 is as described in the
three items.

Assume first (n1, n2, n3, n4) = (n, 1, 0, 0) and look at scalar entries α113, α114,
α124 and α224 of λ(n,1,0,0). Using Clebsch-Gordan’s formula from Eq. (5) we check
that α113 = α114 = α124 = α224 = 0 because modules m3 = V3n−2 and m4 = V4n−2
are not contained in �2m1 and m4 is not contained in either m1 ⊗ m2 or m2 ⊗ m2.
Proposition 5 says tuple (n, 1, 0) generates a chain. So our case is reduced to checking
if m4 = V4n−2 appears in m1 ⊗ m3 decomposition, which it is true; and studying
Jacobi identity for two elements in m1 and another in m2. But this last condition,
seen in Eq. (10), is equivalent to [ f , g, h, n, 0, 0, 0]3 = 0 for n ≥ 1, f , g ∈ Vn and
h ∈ V2n−2.

Suppose now (n1, n2, n3, n4) = (n, 1, 0, 2), and note that α113 = 0 and α114 �= 0
(respectively α124 �= 0) only if n = 2 (respectively n = 2, 4). For the N-graded
condition α113 = α114 = α124 = 0, Proposition 5 says that tuple (n, 1, 0) generates
a chain. So this case is reduced to checking if m4 = V4n−6 appears in m1 ⊗ m3
decomposition, which it is true; and studying Jacobi identity for two elements in m1
and another in m2. But this last condition, seen in Eq. (10), is equivalent to

[h, f , g, n, 0, 2, 0]1 + [ f , h, g, n, 0, 2, 0]2 − [h, g, f , n, 0, 2, 0]1
−[g, h, f , n, 0, 2, 0]2 + 14n − 18

9n − 12

([ f , g, h, n, 0, 2, 0]3

−[g, f , h, n, 0, 2, 0]3
) + (n − 1)(2n − 4)

(3n − 4)(3n − 2)
G = 0

2 In general, we have α113(·, ·) 2k−n+2
2

and α114(·, ·) j+k−n+1. But, as we only have non null α113 and

α114 for some λ we can simplify to those which have them.
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for n ≥ 2, f , g ∈ Vn and h ∈ V2n−2, where

G = 2n − 3

n − 1
[h, f , g, n, 0, 1, 1]1 + [g, h, f , n, 0, 1, 1]2 + [ f , g, h, n, 0, 1, 1]3,

which will appear again in our final case (n1, n2, n3, n4) = (n, 1, 1, 1, 1). By reap-
plying Proposition 5, tuple (n, 1, 1) generates a chain. So, assuming α113 = α114 =
α124 = 0, our case is reduced to checking if m4 = V4n−6 appears in m1 ⊗m3 decom-
position, which it is true; and studying Jacobi identity for two elements in m1 and
another in m2. But this last condition, seen in Eq. (10), is equivalent to

2n − 3

n − 1
[h, f , g, n, 0, 1, 1]1 + [g, h, f , n, 0, 1, 1]2 + [ f , g, h, n, 0, 1, 1]3 = 0,

for n ≥ 2, f , g ∈ Vn and h ∈ V2n−2. Here also appear the particular tuples (2, 1, 1, 1)
and (4, 1, 1, 1) for which (α113, α114, α12,4) �= (0, 0, 0) and α113 = α114 = 0 but
(α113, α114, α124) �= 0. Exceptions (2, 1, 0, 1), (4, 1, 1, 1), (2, 1, 1, 1) and (4, 1, 1, 1)
are covered by the particular sevenfold λ at the end of the proposition. ��

4.3 Overview

Finally, to sum up, we will see the relation among all the previously described chains.
As on any t-chain we can take the quotient by their last sl2-modules to obtain smaller
chains, there is a strong relation between chains. This is idea is expressed in the
following lemma.

Lemma 8 The tuple (n1, n2, . . . , nt ) could form a sl2-chained Lie algebra if
(n1, n2, . . . , nk) forms a valid sl2-chained Lie algebra for every k ≤ t .

Proof If (n1, n2, . . . , nt ) forms a valid sl2-chained Lie algebra L = sl2 ⊕ N for
N = m1 ⊕ m2 ⊕ · · · ⊕ mt , then L/Nk+1 = sl2 ⊕ m1 ⊕ m2 ⊕ · · · ⊕ mk would be a
Lie algebra for every k. ��
This is the same as saying that, if (n1, n2, . . . , nk) does not produce any valid chain,
then (n1, n2, . . . , nk, . . . , nt ) would never produce a valid chain.

Example 6 From Remark 4, tuples (n, 1, 2, ∗)n≥2 or (2n + 1, 2n + 1, 0, ∗)n≥1 do not
produce Lie algebras with t-chain ideal lattice for t ≥ 4.

This result is interesting for creating a tree-dependency between these chains, which
can be seen in Fig. 4.

5 Final Comments

The notion of quasi-cyclic or homogeneous or Carnot Lie algebra is introduced in
1963 by Leger (1963). Up to isomorphisms, any quasi-cyclic Lie algebra is a quotient
of a free nilpotent Lie algebra by some homogeneous ideal. The variety of quasi-
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Vn

Vn ⊕ V2n−2k

Vn ⊕ V2n−2 ⊕ V3n−2

Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−2

Vn ⊕ V2n−2 ⊕ V3n−2 ⊕ V4n−6

Vn ⊕ V2n−2 ⊕ V3n−4

Vn ⊕ V2n−2 ⊕ V3n−4 ⊕ V4n−6

V3 ⊕ V4 ⊕ V5 ⊕ V2

Vn ⊕ V2n−2 ⊕ V3n−8

V3 ⊕ V4 ⊕ V1 ⊕ V2

V4 ⊕ V6 ⊕ V4 ⊕ V2

V5 ⊕ V8 ⊕ V7 ⊕ V2

V6 ⊕ V10 ⊕ V10 ⊕ V6

Vn ⊕ V2n−6 ⊕ V3n−8

V4 ⊕ V2 ⊕ V4 ⊕ V2

V5 ⊕ V4 ⊕ V7 ⊕ V2

V4n ⊕ V4n−2 ⊕ V4

V4n+1 ⊕ V4n ⊕ V1

V4n+2 ⊕ V4n+2 ⊕ V2

V4n+3 ⊕ V4n+4 ⊕ V1

V4n+4 ⊕ V4n+6 ⊕ V4

Fig. 4 Relationships of sl2-chained Lie algebras up to length 6

cyclicLie algebras includes free nilpotent, generalisedHeisenberg andfiliforms among
others Lie algebras. Even more, quasi-cyclic Lie algebras of type d are the class of
nilpotent Lie algebras that contain a minimal generator set {e1, . . . , ed} such that the
correspondence ei �→ ei extends to a derivation of n (see Johnson 1975, Corollary 1).
Note that such a derivation is invertible.

An automorphism of a real Lie algebra is called expanding authomorphism if it
is semisimple with eigenvalues greater than 1 in absolute value. According to Dyer
(1970), quasi-cyclic Lie algebras admits expanding automorphisms, but the converse
is false. In fact, real quasi-cyclic Lie algebras are those Lie algebras that admit grading
automorphisms (Johnson 1975). And following (Deré 2017, Theorems 3.1 and 3.3)
(see also (Cornulier 2016)), the class of real Lie algebras admitting expanding auto-
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morphisms is just the class of positive graded Lie algebras (positive naturally graded
along this paper) which is bigger than the quasi-cyclic class. In the realm of nilpotent
Lie groups, the existence of an expanding map (respectively a non-trivial self-cover)
in an infra-nilmanifold modeled on a Lie group G is equivalent to the fact that the
real algebra Lie(G) admits a positive grading (respectively a naturally and non-trivial
grading). Expanding automorphisms of real Lie algebras are hyperbolic (mapswithout
eigenvalues ±1), and Lie algebras admitting hyperbolic automorphisms are nilpotent
(see (Smale 1967, Proposition 3.6)).

Any 3-step nilpotent Lie algebra can be endowed with a complete affine structure
(check (Scheuneman 1974)). In the context of Lie algebras this concept is equivalent
to that of left-symmetric structure (see (Elduque and Myung 1994) and references
therein). Any naturally graded real Lie algebra admits a left symmetric structure
according to Dekimpe and Lee (2003, Theorem 3.1).

Along the paper we have built series of naturally graded Lie algebras of nilindex
4 and 5 whose derivation algebra contains a subalgebra isomorphic to sl2(K). The
algebras are given by t-tuples (n1, . . . , nt ) for t = 3, 4 that encode their structure in
an easy way:

(n1 + 1, 2n1 − 2n2 + 1, . . . , 2n1 − 2(n2 + · · · + nt ) + 1)

is their general type and the transvections α1i j (·, ·)ni+1 where j = i +1 let us describe
their Lie bracket product.Among these algebraswe point outV1⊕V0⊕V1, general type
(2, 1, 2), that corresponds to n2,3 and V1⊕V0 ⊕V1⊕V2, general type (2, 1, 2, 3), and
its mixed extension sl2(K)⊕V1⊕V0 ⊕V1⊕V2. The first and the third algebras admit
a non-degenerate invariant symmetric bilinear form (metric Lie structure). We also
note that their decompositions into irreducible modules follow a symmetric pattern
which is caused by the existence of an invariant form. The second one is not a metric
Lie algebra. The series V2 ⊕ · · · ⊕ V2 (n-summands) of general type given by the
n-tuple (3, 3, . . . , 3)n≥1 and their mixed extensions sl2(K)⊕V2 ⊕· · ·⊕V2 are metric
Lie algebras (rescaling of structure constants may be required). These algebras are
a particular case of the series of current Lie algebras gn(S), for S simple, which
are naturally graded and metrizable. The general type of n(gn(S)) is (m, . . . ,m)n≥1,
where m is the dimension of the simple Lie algebra S.
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