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Near-Infrared spectroscopy (NIR) returns full spectra in the region between 750 and

2500 nm. Although a full spectrum provides extremely informative data, sometimes this

enormous amount of detail is redundant and does not bring any additional information. In

this work, different attribute selection methods for the development of vineyard water

status predictive models are presented. Spectra from grapevine leaves were collected on-

the-go (from a moving vehicle) along nine dates during the 2015 season in a commercial

vineyard using a NIR spectrometer (1200e2100 nm). Contemporarily, the stem water po-

tential (Jstem) was also measured in the monitored vines. A manual selection, based on

Variable Importance in Projection scores (VIP scores) to choose the spectrum intervals

including the most important wavelengths (interval selection), the locally most important

wavelengths in the spectrum (peak selection), as well as the Interval Partial Least Squares

(IPLS) were tested as attribute selection methods. The results obtained for the estimation of

Jstem using the whole spectrum (R2
P ¼ 0.84, RMSEP ¼ 0.167 MPa) were comparable to those

yielded by the three attribute selection methods: the interval selection method (R2
P ¼ 0.80,

RMSEP ¼ 0.186 MPa), the peak selection method (R2
P ¼ 0.77, RMSEP ¼ 0.201 MPa) and the

IPLS (R2
P ~ 0.62e0.79, RMSEP ~ 0.186e0.252 MPa). The highest simplification was provided

by two IPLS models with three wavelengths and bandwidths of 20 and 4 nm that yielded

R2
P~0.78 and RMSEP~ 0.190 MPa. These results corroborate the suitability of a highly

reduced selection of NIR wavelengths for the prediction of grapevine water status, and its

utility to develop simpler multispectral devices for vineyard water status estimation.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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1. Introduction

Water scarcity is being aggravated in recent years by climate

change. In viticulture, the development of new irrigation

scheduling strategies that optimisewater resources’ usage are

aimed to be driven by plant stress sensing, as decisionmaking

regarding watering is based on plant response, considering

the grapevine as a biosensor, which integrates soil and at-

mospheric water demands (Jones, 2004). Among the methods

based on measuring the plant water status, plant water po-

tential, either leaf (J1eaf), stem water potential (Jstem), or

pre-dawn water potential (JPD) is one of the most widely

accepted indicators due to its reliability and effectiveness

(Chon�e et al., 2001; Rienth & Scholasch, 2019). This method is

destructive, discontinuous, time-intensive and provides in-

formation of a reduced number of samples; hence, its ability

to disclose the variability in plant water status within a

vineyard plot is limited. To overcome this, in the last decades,

non-destructive technologies, such as thermography (Araújo-

Paredes et al., 2022; Guti�errez et al., 2021; Zhou et al., 2022) or

near infrared spectroscopy (Diago et al., 2018; Fern�andez-

Novales et al., 2018; Pampuri et al., 2021) have been adapted

to estimate plant water status in grapevines.

The NIR region is the part of the electromagnetic spectrum

between 750 and 2500 nm and it is based on the absorption of

energy from molecules or chemical constituents related with

the overtones and combinations of these fundamental vibra-

tions due to the stretching and bending of NeH, OeH and CeH

groups (Nicolai et al., 2007). When incident light reaches the

surface of the sample it interacts with the sample at a mo-

lecular level according to the sample's chemical composition

and internal organic matter, and it is basically reflected,

transmitted or absorbed (Pasquini, 2003). The water molecule,

which is a predominant component of leaves, can partially or

fully absorb the light at given wavelengths of 760, 971 or

1450 nm (OeH overtones) and at a combination band of

1940 nm (Nicolai et al., 2007) within the NIR spectral range.

In the last years, a growing interest has risen toward the

development of portable Vis/NIR systems for the monitoring

of water status directly in the vineyard (De Bei et al., 2011;

Giovenzana et al., 2014, 2018; Guidetti et al., 2010; Tardaguila

et al., 2017) or in greenhouse-located potted plants (Pampuri

et al., 2021; Rapaport et al., 2015). In terms of J1eaf and

Jstem, the outcomes, expressed as determination co-

efficients of cross validation (R2CV) or prediction (R2P) ranged

between 0.59 and 0.87 in these works. Within the context of

precision viticulture, several studies (Diago et al., 2018;

Fern�andez-Novales et al., 2018, 2019; Guti�errez et al., 2019)

have recently reported the capabilities of NIR spectrometers

and hyperspectral sensors installed in a mobile terrestrial

platform to on-the-go monitor and map grape composition

parameters and plant water status along the ripening period

with reliable and encouraging results. Moreover, on plant

water status specifically, the works of Pôças et al., 2015, 2017;

Pôças, Tosin, Gonçalves, & Cunha, 2020 and Tosin et al. (2020,

Tosin et al., 2021, 2022) are remarkable in the use of hyper-

spectral data and reflectance vegetation indices to model and

predict grapevine JPD in Portugal vineyards, and the work of

Wei et al. (2021) to predictJstem in vineyards of New Zealand
using different data processing pipelines. As a matter of fact,

Tosin et al. (2022) reviewed the existing literature covering the

prediction of grapevinewater potential (regardless the specific

type) from Vis/NIR spectroscopy using either hand-held sen-

sors or spectrometers covering different spectral ranges, and

used either statically or from moving platforms, both aerial

(e.g. UAVs) and terrestrial ones. While all these reviewed

works corroborate that NIR spectroscopy has a great potential

to predict grapevine water status appropriately, its practical

implementation in commercial operations requires a higher

degree of automation and robustness.

Further steps towards the automation of this spectral

approach involve the miniaturisation and cost reduction of

spectral devices as well as the simplification of spectral pro-

cessing. In this regard, chemometric techniques are often

used to select a few relevant variables that represent themost

important information contained in the full spectral region.

This selection eliminates variables containing mostly redun-

dant information and spectral noise, and reduces the cost of

the potential miniaturised devices built only with the selected

wavelengths (Xiabobo et al., 2010). Different spectral selection

strategies, such as manual approaches based on VIP scores

and interval selection methods based on IPLS (Nørgaard et al.,

2000) have been proved in this work to recognise the most

significant wavelengths for grapevine water status estimation

and their subsequent comparisonwith the PLSmodels yielded

on the full spectrum. All of these selectionmethods have been

previously used in a wide variety of research related to agri-

culture and food. The VIP scores based strategy has been

considered in the determination of winter oilseed rape yield

(Lantao et al., 2017), chilling injury in green bell peppers

(Babellahi et al., 2020), leaf nitrogen concentration in winter

wheat (Li et al., 2020) and internal quality indices in oriental

melon (Cho et al., 2022). Regarding the IPLS method, it has

been employed in wavelength selection to the assessment of

soluble solids content in mandarin (Sun et al., 2009), grape

juice composition (Wu et al., 2010), flavonoids in ginkgo leaves

(Zou, Huang, et al., 2012), pigments in leaves of cucumber (Shi

et al., 2011; Zou, Chen, et al., 2012), wheat moisture (Dong

et al., 2013), blueberries’ composition (Leiva-Valenzuela

et al., 2014), soil specific surface area (Knadel et al., 2018),

leaf primordia of potato tubers (Rady et al., 2018), neutral

detergent fibre content in corn stover (Pan et al., 2020), lately

food colorants (Al-Degs et al., 2021) and egg origin (Liu et al.,

2022). Giovenzana et al. (2018) and Zhang et al. (2012) have

addressed the potential of the variable selection methods to

determine the leaf water status in ornamental plants and

grapevines using Vis/NIR spectroscopy with promising results

for the design of a simplified handheld device that supports 66

small-scale growers and optimises irrigation scheduling. More

recently, Pampuri et al. (2021) built a PLS-model with Vis/NIR

(350e2500 nm) spectra taken statically on leaves of Pinot Blanc

(in potted vines) and JPD reaching R2P ¼ 0.70 and

RMSEP ¼ 0.056 MPa, and a reduced model with only three

relevant bands (530, 700 and 1400, with a 20 nm bandwidth),

achieving R2P¼ 0.60 and similar RMSEP values. These authors

carried out a SWOT analysis of the possibilities of Vis/NIR

spectroscopy-derived models to assess JPD using a reduced

set of relevant bands. As the main opportunities, these au-

thors identified the monitoring of crop water status in a semi-

https://doi.org/10.1016/j.biosystemseng.2023.04.001
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continuous way, and the improvement of irrigation manage-

ment. As one of the major weaknesses, the difficulty to posi-

tioning infield stand-alone sensors was highlighted. To

overcome this last difficulty, the goal of the present study is

two-fold. First to test the capability of different attribute se-

lection methods to identify the crucial wavelengths able to

predict the grapevine water status; second to compare the

predictive capacity of the different variable selection methods

among them andwith respect to themodel built using the full

spectrum, employing a proximal NIR sensor from amotorised

platform in a commercial vineyard.
2. Materials and methods

2.1. Experimental layout

The field experimentwas performed in a commercial vineyard

placed in Tudelilla, La Rioja, Spain (Lat. 42�18018.2600 Long.

�2�7014.1500, Alt. 515 m) along eight weeks from 23rd July 2015

to 18th September 2015. Grapevines of (Vitis vinifera L.) Tem-

pranillo (Clone 776) grafted on rootstock R-110 were planted in

2002. The vines were trained to a vertically shoot-positioned

trellis system (VSP) on a double-cordon Royat. Vine spacing

was 2.60 m between rows and 1.20 m in the row in a north-

south orientation. The total rainfall from April to October

2015 was 245.8 mm at the study site, and the average tem-

perature was 17.8 �C during this period.

Three different water treatments were deployed in a

randomised block design (Hinkelmann & Kempthorne, 2007)

with four blocks so as to induce a substantial variability of

grapevine water status within the plot. The treatments were.

� T0 (low water stress, full irrigation). Two water pipe-

lines irrigating 6 L h�1 were installed. The total amount

of delivered water during the studied period was

406.5 mm H2O m�2.

� T1 (moderatewater stress and irrigation). A singlewater

pipeline, which irrigated half the amount in T0, was

installed and provided a total of 221.7 mm H2O m-2

during the studied period.

� T2 (highwater stress, no irrigation). The plants were not

irrigated in any moment during the experiment.

For each treatment, a completely randomised block design

with four replications (one per block) were set up, coming to a

total of 12 treatment replicates in three different vine rows

(see Fig. 1 in Diago et al. (2018)). The experiment was con-

ducted with 25 plants in each of three adjacent rows. How-

ever, only themiddle rowwas used for measurement, and out

of the 25 plants in the middle row, only the 15 middle plants

were considered. These 15 plants were divided into sub

replicate units consisting of groups of five vines (Fig. 1 in Diago

et al. (2018)). The first and last five vines in each row were

excluded, as well as the adjacent rows to avoid any edge ef-

fects. The plants subjected to water regimes T0 and T1 were

watered for a total of 2 h per day, with four equal watering

sessions of 30 min each, evenly spaced throughout the day.
2.2. Spectral measurements

Spectra were collected on-the-go under field conditions using

a Polytec PSS 2120 spectrometer (Polytec GmbH, Waldbronn,

Germany) working in the 1100e2100 nm spectral range, at a

2 nm resolution (501 datapoints per spectrum) and with an

acquisition rate of 24 Hz. The spectrometer was a NIR optical

device, based on a polychromator as reflection light source

selector, and Indium Gallium Arsenide (InGaAs) diode array

detectors. This device is made up of a sensor head (based on

an integrated 20W tungsten halogen lamp) for capturing light

connected to a processing unit by optical fibre. The system

was assembled in the front part of an all-terrain-vehicle (ATV)

(Trail Boss 330, Polaris Industries, Minnesota, USA), pointing

to the left and able tomake spectral acquisitions controlled by

a physical trigger while the ATV was in motion. In order to

cover the mid-upper part of the vineyard's canopy, the sensor

head was installed at a height of 0.95 m from the ground, so

that it was located above the fruiting zone. Measurements

were performed contactless, keeping a distance from 0.25 to

0.35mbetween the canopy and the sensor head. The diameter

of the measurement window was 19 mm, and it remained

constant since it was not influenced by the distance to the

canopy. All the measurements were conducted from the ATV

moving at an average speed of 5 km per hour from the east

side of the canopy. The collected spectra also contained in-

formation from non-grapevine objects such as gaps, wood,

and metal. Therefore, a filtering step was necessary to select

only those spectra that corresponded to grapevine canopy. To

achieve this, a well-captured leaf signature was taken prior to

each measurement day and used as a reference for compari-

son during the filtering process. The task of filtering was

performed using the “Spectra Comparison & Filtering” tool,

which is part of the SL Utilities software (version 3.1, Polytec

GmbH, Waldbronn, Germany). The spectral measurements

were conducted at solar noon (between 14:00 and 15:00

GMTþ1) on nine different dates (23/07, 28/07, 06/08, 12/08, 19/

08, 26/08, 07/09, 11/09 and 18/09) during season 2015.

2.3. Measurement of stem water potential

The gold reference indicator of the plant water status was the

midday stem water potential (Jstem). Measurements were

taken at solar noon (14:00e15:00 local time), just a short time

after spectral acquisition. For each treatment replicate, the

first and last five plants were discarded, so as to avoid edge

effects. The other 15 middle plants were considered of inter-

est, and it was in these vines where spectral measurements,

as well as Jstem readings, were taken. From each group of five

plants, one of them was marked randomly and then one leaf

from the mid-upper part of its canopy, on the west side, was

selected for the determination of Jstem. Measurements of

Jstem were conducted with a Sch€olander pressure bomb

(Model 600, PMS Instruments Co., Albany, USA) on leaves that

had been previously subjected to dark adaptation during 1 h,

covered with aluminium foil. Each day, 36 data for stemwater

potential were recorded, making a total of 324 data over the

whole experiment.

https://doi.org/10.1016/j.biosystemseng.2023.04.001
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2.4. Data analysis

Data processing and statistical analysis were performed with

MATLAB version 7.6.0 (R2008a) and PLS_Toolbox version 5.5.1

(Eigenvector Research Inc., Manson, WA). Spectral pre-

processing is useful for counterbalancing baseline offset and

bias. Many combinations of spectral pre-processing filters

were tested to obtain the models with the best calibration

statistics. These filters involved the use of Standard Normal

Variate (SNV) to correct scattering data (Barnes et al., 1898;

Dhanoa et al., 1995) and the application of the SavitzkyeGolay

smoothing and derivative processes, which were used to

emphasise small bands and to resolve overlapping peaks

(Savitzky & Golay, 1964). Different values for the window size

(7 and 15 points) and the degree of the derivative (first and

second) were set. Moreover, the spectra were properly nor-

malised by mean centring after pre-processing. With the aim

of building robust models capable of predicting totally un-

known samples, the original dataset was split up into two

independent datasets: a calibration one (comprising 80% of all

data) and an external validation set (comprising the remain-

ing 20% of original data). The calibration dataset was used to

train and to perform an internal cross-validation of themodel,

while the external validation set was only utilised for predic-

tion purposes, using the calibration models. The ten-fold

Venetian blind method was selected for the internal cross-

validation. In an n-fold Venetian blind cross-validation, each

fold i is built taking samples from the dataset of an n-multiple

position until the end of the dataset (i.e., samples i, iþ n, iþ 2n,

i þ 3n). Once the folds are built, a traditional n-fold cross-

validation is carried out, in which n models are trained with

n � 1 folds and tested with the remaining fold, rotating the

latter until all of them have been used. The average perfor-

mance of the n models is finally computed. For each model,

the optimal number of latent variables (LVs) was selected as

that yielding the minimum root mean square error of cross-

validation (RMSECV). To evaluate the quality of the best

models that were obtained, the coefficient of determination

and the root mean square error of calibration (R2
C, RMSEC),

cross-validation (R2
CV, RMSECV) and prediction (R2

P, RMSEP)

were calculated.
The expected number of samples was reduced due to

diverse reasons, such as anomalous spectra, inconsistencies

in the reference method and spectral outliers. So, after this

data depuration, the final data set from the nine dates of the

experiment comprised 288 samples. Since our aim was to

select those features (wavelengths) in the data spectra that

were most useful and relevant to the estimation of Jstem,

three attribute selection methods were considered: two

manual selection methodsdinterval selection and peak

selectiondand IPLS. The manual selection methods were

based on the calculation of the VIP scores, whereas the ones

selected by IPLS were automatically selected by the algorithm.

In addition, a full spectrum model based on partial least

squares (PLS) regressionwas created to compare it against the

models built using these attribute selectionmethods. PLS is an

accurate, robust and reliable chemometric method which has

been widely used to analyse spectral information as it is able

to cope with huge amounts of data (Wold et al., 2001).

The referred-to attribute selection methods are described

below.

� Interval selection: this method is about estimating the

significance of each wavelength within the PLS model,

according to the VIP scores function (where VIP stands

for Variable Importance in Projection) and then

choosing intervals whose wavelengths are relevant

above a certain threshold. The VIP was calculated for

each wavelength, as recommended byWold et al. (2001)

and Lin et al. (2013) to verify the wavelengths with

greater impact on the predictions. The larger the VIP

value, the more important the predictor is for esti-

mating the response variable. According to Ericksson

et al. (2001), variables with VIP greater than 1.0 are

highly influential, so this was the threshold value above

which a wavelength was considered important.

� Peak selection: this method is similar to the interval se-

lection method, but in this case those wavelengths

representing a local maximum for the VIP scores func-

tion is chosen, together with the contiguous ones. That

is to say, only the intervals around the most relevant

wavelengths are taken, with a determined bandwidth.

https://doi.org/10.1016/j.biosystemseng.2023.04.001
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Five different bandwidths were considered: 4 nm, 8 nm,

12 nm, 16 nm and 20 nm.

� IPLS: The Interval PLS (IPLS) method (Leardi & Nørgaard,

2004; Nørgaard et al., 2000) is used to develop local PLS

models on equidistant subintervals of the full spectrum

region, selecting a subset of variables which will give a

good prediction by doing a sequential, exhaustive

search for the best variable or combination of variables.

For the analysis of the gathered data, the MATLAB IPLS

Variable Selection Interface was used in forward mode

with eight latent variables at most and searching be-

tween one and four intervals with a bandwidth of 4, 8,

12, 16, 20 and 80 nm, respectively.

For both the interval selection and the peak selection

methods, the choice of the most important wavelengths for

evaluating plant water status was carried out after applying

a combination of the SNV and the SavitzkyeGolay first de-

rivative with a 15-point window spectral pre-processing

methods. After the selection, different additional pre-

processing methods were applied only to the chosen

wavelengths in the former spectrum. At the end, the pre-

processing method that gave rise to the model with the

greatest R2
CV while keeping a small value for RMSECV was

chosen. All of these PLS models were created with

eight latent variables to avoid overfitting the data. With

regard to IPLS selection, three kinds of interval searching

algorithms were run, each one corresponding to only three

different pre-processing steps: SavitzkyeGolay first deriva-

tive with a 15-point window, no pre-processing, and SNV.

Once the most relevant wavelengths in the spectrum were

chosen, PLS models were built without any pre-processing

from such wavelengths, again with a maximum of eight

latent variables. The whole process is shown in diagram

of Fig. 1.
3. Results

3.1. Vineyard water status

The irrigation treatments that were imposed produced a wide

variability in plant water status within the vineyard (Table 1),

comprising plants under no water stress at all (e.g. Jstem-

¼ �0.55 MPa) to plant subjected to severe water stress (e.g.

Jstem ¼ �2.25 MPa). As a result, significant differences

(p < 0.001) in Jstem among treatments across the measuring

dates were induced (Fig. 2).
Table 1 e Descriptive statistics of the stem water
potential (Jstem) across the nine dates of the whole
experiment (n ¼ 324), expressed in megapascals (MPa).

Irrigation treatment Minimum Maximum Mean SD

T0-Full irrigation �1.60 �0.55 �0.88 0.203

T1-Moderate irrigation �1.70 �0.65 �1.17 0.238

T2-No irrigation �2.25 �1.10 �1.68 0.286

SD. Standard deviation.
3.2. Spectral measurements

The absorbance spectra of the grapevine canopies (Fig. 3a) in

the wavelength range of study (1100e2100 nm) and its trans-

formation with SNV and first derivative (Fig. 3b) clearly

revealed two absorption peaks: one at 1450 nm, which was

related to the first overtone of the symmetric and asymmetric

OeH bond stretching and/or combination bands, and another

around 1940 nm, which can be assigned to the combination of

the OeH stretching and bending bands (Nicolai et al., 2007).

Stretching, bending and combinations are vibrational re-

actions of the organic groups to the electromagnetic excita-

tion induced by NIR spectroscopy. Since leaves are mostly

constituted by water, the prevalence of the hydroxyl (OeH)

group absorbance in their NIR spectra is well justified.

3.3. Regression models for grapevine water status

3.3.1. Full spectrum
When no selection methods were carried out (full spectrum,

501 datapoints), a PLS model with eight latent variables

coming from a pre-processing that combined SNV and

SavitzkyeGolay first derivative with a 15-point window

(Fig. 3b) was built from the data gathered along the nine dates.

This pre-treatment turned out to be the best one for the whole

spectrum, and that is the reasonwhy it was applied as well for

the interval and peak selectionmethods. As shown in Table 2,

the model built using the information contained in the full

spectrum yielded an R2
P of 0.84 and a RMSEP of 0.167 MPa.

3.3.2. Interval selection method
When the interval selection method was used, and the VIP

scores function was considered (Fig. 4a), three wavelength

intervals were chosen: 1402e1508 nm, 1676e1750 nm and

1870e1926 nm (Fig. 4b). All the selected intervals involved

wavelengths around the OeH string first overtone (1450 nm)
Fig. 2 e Evolution of the average stem water potential

(Jstem) stated in megapascals (MPa) for each irrigation

treatment (T0: Full irrigation, T1: Moderate irrigation, T2:

No irrigation) across the ripening season. For each date, the

averaged data (n ¼ 12) for each irrigation treatment was

calculated. Significant differences among the three

irrigation treatments at p < 0.001 were observed at all

dates.

https://doi.org/10.1016/j.biosystemseng.2023.04.001
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Fig. 3 e (a) Absorbance raw spectra acquired on-the-go (at 5 km h¡1) in the vineyard, (b) Absorbance preprocessed spectra

with SNV and first derivative.
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and thewater combination band near thewavelength value of

1940 nm, except the interval between 1676 nm and 1750 nm,

which may be related to carbon-hydrogen bonds. With these

filters (Table 3), the number of datapoints of the PLS model

was reduced from 501 to 121. After applying SNV pre-

processing, a value for R2
P of 0.80 was obtained while the

RMSEP was 0.186 MPa.

3.3.3. Peak selection method
Regarding the peak selection method, after applying SNV and

a SavitzkyeGolay first derivative with a 15-point window to

the full spectrum and considering the VIP scores function
(Fig. 4a), four peaks were chosen: 1428 nm, 1704 nm, 1892 nm

and 1912 nm (Fig. 4c). Again, all the selected peaks were near

the OeH string overtone and water combination bands, with

the exception of the peak at 1704 nm (carbon-hydrogen

bonds). As it can be seen in Table 3, after trying different

mathematical pretreatments and choosing the optimal one, a

bandwidth of 8 nm produced a PLS model using only 20 data

points that yielded a R2
P of 0.77 and an RMSEP of 0.201 MPa.

3.3.4. IPLS method
Table 4 summarises the best regressionmodels when the IPLS

selection method was applied. For each number of selected

https://doi.org/10.1016/j.biosystemseng.2023.04.001
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Table 2 e Calibration, validation and prediction results of
the best PLS model to predict Jstem considering the full
spectrum (n ¼ 288). The model was created with eight
latent variables after applying a pre-processing
consisting of SNV and 1st derivative with a 15-point
window. RMSEC, RMSECV and RMSEP are shown in
megapascals (MPa).

DP Calibration Validation Prediction

R2
c RMSEC R2

cv RMSECV R2
P RMSEP

501 0.86 0.154 0.83 0.171 0.84 0.167

DP: Number of datapoints; RMSEC: Root mean square error of

calibration; RMSECV: Root mean square error of cross-validation;

RMSEP: Root mean square error of prediction.
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intervals (one to four) and bandwidth, only the best PLS

models among those created after having filtered the wave-

lengths according to the three above-mentioned interval

searching algorithms were taken. Figure 5 shows the wave-

length selections that yielded the best PLS models.

The best result for this method was obtained when three

intervals with a bandwidth of 20 nm were selected (Fig. 5c).

Unlike the othermethods, only one of the intervals comprised

wavelengths close to the OeH string overtone or water com-

bination bands; despite this, a PLS model with 33 datapoints,

eight latent variables, an R2
P of 0.78 and an RMSEP of 0.190MPa

could be fitted (Table 4).

With the aim of reaching a trade-off between removing as

many redundant wavelengths as possible from the whole

spectrum but still producing robust models using the IPLS

method, a model with no more than ten datapoints could be

built when three intervals were chosen with a bandwidth of

4 nm. This nine-datapoint PLS model had six latent variables,

an R2
P of 0.77 and an RMSEP of 0.199 MPa (Table 4).
Fig. 4 e Manual selection methods based on VIP scores

after applying SNV and SavitzkyeGolay first derivative to

the whole spectrum (a). The selected intervals are filled in

grey. (b) Interval selection method. (c) Peak selection

method. In the peak selection method's subplot, the

chosen peaks are represented by triangles and the vertical

solid lines represent intervals with a bandwidth of 8 nm. In

all subplots, the VIP scores function is drawn by a solid line

and the regression vector function is drawn by a dashed

line.
4. Discussion

Variable selection in NIR spectroscopy enables to reduce

redundant information and/or to remove noisy wavelengths,

which turns into less timeneeded for the system to collect and

process the data. This makes sense only if the values of R2
CV,

R2
P, RMSECV and RMSEP, which are key performance metrics,

remain stable when compared to the ones yielded by the

model developed using the entire spectrum. In all the

considered cases in this work, it can be seen that a substantial

reduction of the number of datapoints did not lead either to a

big reduction of the values of R2
CV and R2

P nor to a consider-

able enhancement of the values of RMSECV and RMSEP,

respectively, thus resulting in accurate predictions from

reduced number of bands. For instance, when moving from

501 datapoints to 121 with the interval selection method (a

reduction of 75.85% in the number of datapoints), the values of

R2
CV and R2

P diminished from 0.83 to 0.84 to 0.78 and 0.80,

respectively, while the values of RMSECV and RMSEP

increased from 0.171 MPa to 0.167 MPae0.195 MPa and

0.186 MPa, respectively. This trend was held even when the

number of datapoints was reduced from 501 to 20 by the peak

selection method (that is a decrease of 96.01% from the initial
amount of datapoints). In this case, R2
P was diminished from

0.84 to 0.77, while RMSEP reached 0.201 MPa (an increase of

20.36%), not far from the interval selection method's errors.

https://doi.org/10.1016/j.biosystemseng.2023.04.001
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Table 3 e Wavelength selection according to the manual selection methods based on VIP scores (interval selection and
peak selection), along with calibration, validation and prediction results with the optimal pre-processing treatment for the
selected intervals to predictJstem. All themodels were createdwith eight latent variables. RMSEC, RMSECV and RMSEP are
shown in megapascals (MPa).

Interval selection method

BW (nm) DP Pre-processing Calibration Validation Prediction

R2
c RMSEC R2

cv RMSECV R2
P RMSEP

e 121 SNV 0.82 0.175 0.78 0.195 0.80 0.186

Peak selection method

8 20 1D (15) 0.77 0.201 0.74 0.213 0.77 0.201

BD: Bandwidth; DP: Number of datapoints; RMSEC: Root mean square error of calibration; RMSECV: Root mean square error of cross-validation;

RMSEP: Root mean square error of prediction; 1D(15): SavitzkyeGolay 1st derivative with a 15-point window; SNV: Standard Normal Deviation.
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Although the peak selection method yielded slightly infe-

rior models than the interval selection method, it is worth

pointing out that the former has the advantage of selecting

intervals with a fixed bandwidth. From a practical standpoint,

this may result in more inexpensive filters in case a multi-

spectral solution, using the relevant wavelengths to be

assembled and used is aimed, instead of a conventional and

more expensive full-spectrum spectrometer (Guti�errez et al.,

2019). Just as the peak selection method, IPLS also generated

a selection of intervals with a fixed bandwidth, giving similar

models in terms of performance. It should be highlighted that

themodel generated from three intervals with a bandwidth of

20 nm, by which a reduction of 91.22% in the total of data-

points was obtained, yielded an R2
P six percentage points

smaller (a decrease of 7.14%), an RMSEP of 0.190 MPa (an in-

crease of 14.3%). Even two other IPLS models with yet less

datapoints but still comparable to the full-spectra's was ach-

ieved: these models are those constituted by three intervals

with a bandwidth of 4 or 8 nm (a reduction ofmore than 95% in

the total of datapoints), which yielded a R2
P of 0.77 and RMSEP

between 0.197 and 0.199 MPa. It is worth mentioning that two
Table 4 e Wavelength selection according to the IPLSa selection
results for the selectedwavelengths to predictJstem and the nu
were picked to create the models. RMSEC, RMSECV and RMSEP

Central wavelengths (nm) BW (nm) DP Cal

R2
c

1714 80 41 0.77

1708 56 29 0.74

1550, 1714 80 82 0.84

1630, 1720 16 18 0.74

1304, 1550, 1714 80 123 0.82

1418, 1638, 1792 20 33 0.81

1344, 1604, 1704 8 15 0.78

1420, 1498, 1690 4 9 0.72

1222, 1304, 1550, 1714 80 164 0.83

1418, 1638, 1704, 1792 20 44 0.83

1344, 1494, 1604, 1704 8 20 0.81

1582, 1726, 1738, 1882 4 12 0.79

BD: Bandwidth; DP: Number of datapoints; RMSEC: Root mean square erro

RMSEP: Root mean square error of prediction.
a The IPLS method was developed without using any pretreatment, sinc
of the central wavelengths (1420 nm and 1498 nm) of the 3-

interval model with 4 nm bandwidth pivoted around the

1450 nm (first overtone of the symmetrical OeH bond).

Nowadays, there are few published works dealing with NIR

wavelength selection used for water status predictive models,

let alone those focused on vineyards. Of these, Giovenzana

et al. (2018) used two portable contact sensors in the field

and reportedMultiple Linear Regression (MLR)models with an

R2
CV of 0.69 and an R2

P of 0.63 after selecting 14 effective

datapoints from the NIR region. These datapoints were

selected by applying Regression Coefficient Analysis (RCA)

derived from PLS analysis and choosing the highest absolute

regression values, and were mainly related to the two main

absorption peaks at 1200 and 1450 nm. MLR models with only

five datapoints were created. In that work, some wavelengths

capable of summarising the largest part of the useful infor-

mation contained in the spectra were found, and the overall

prediction results were comparable to those obtained in the

present study.

Other approaches are reported in the literature regarding

NIR attribute selection applied for the determination of water
method, along with calibration, validation and prediction
mber of latent variables of eachmodel. One to four intervals
are stated in megapascals (MPa).

ibration Validation Prediction

RMSEC R2
cv RMSECV R2

P RMSEP

0.197 0.72 0.219 0.65 0.242

0.210 0.70 0.228 0.62 0.252

0.165 0.80 0.184 0.75 0.205

0.214 0.71 0.225 0.69 0.227

0.174 0.80 0.184 0.79 0.189

0.179 0.79 0.191 0.78 0.190

0.197 0.74 0.211 0.77 0.197

0.221 0.70 0.228 0.77 0.199

0.172 0.80 0.185 0.79 0.186

0.169 0.81 0.182 0.78 0.191

0.183 0.78 0.194 0.77 0.200

0.190 0.77 0.197 0.68 0.231

r of calibration; RMSECV: Root mean square error of cross-validation;

e better models were obtained this way.
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Fig. 5 e IPLS wavelength selection. The selected intervals are filled in grey. A suitable bandwidth to obtain the best models

when one (a) or two (b) intervals were selected was 80 nm, and 20 nm when three (c) or four (d) intervals were chosen,

respectively. In all subplots, the VIP scores function is drawn by a solid line and the regression vector function is drawn by a

dashed line. Both functions were obtained from the full spectrum without any pre-processing.
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content in plants other than vines. Song et al. (2011) selected

the most sensitive wavelengths for the discrimination of the

imperceptible spectral variations of paddy rice, identifying

threewavelengths (1158, 1378 and 1965 nm) as themost useful

bands to diagnose the stress condition. The PLS model that

was created in their work was quite encouraging, as it had a

coefficient of determination R2
CV of 0.72. Principal Component

Analysis (PCA) and bandeband correlation methods were

used to select the most significant wavelengths. Besides,

Zhang et al. (2012) investigated the feasibility of detecting the

water content in Epipremnum Aureum leaves using the diffuse

reflectance spectra limited in the Vis/NIR region

(400e1100 nm), proposing a hybrid wavelength selection that

combines Backward Interval PLS (BIPLS) and Successive Pro-

jection Algorithm (SPA) to extract the efficient feature wave-

length. This selection method returned an outstanding PLS

model with 25 datapoints, an R2
CV of 0.85, an RMSECV of 1.5%,

an R2
P of 0.96 and an RMSEP of 0.73%. Therefore, it proved to

extract the most efficient information regarding water con-

tent, and improved the model precision and stability.

However, unlike the present work, all of these studies

involved spectral data acquisition in a laboratory (under

controlled conditions) from randomly chosen leaves that were
then pulled up and destroyed or statically on potted vines. One

of the major weaknesses towards the operational application

of NIR spectroscopy to assess vineyard water status spatial

variability, as identified in Pampuri's SWOT analysis (Pampuri

et al., 2021) was the difficulty of positioning stand-alone sen-

sors in the field. Towards this end, it has to be highlighted that

the spectral data in the present work were acquired contact-

less, on-the-go, from a moving vehicle, and directly from the

canopy in the field, therefore mitigating this pitfall. As

opposed to indoor spectroscopy, on-the-go in-field spectros-

copy has to overcome not only the changing natural illumi-

nation (mostly mitigated by the light of the lamp installed in

the moving vehicle), but also vibrations derived from the un-

evenness of the terrain, and fluctuations in the distance to the

target, inherent to the moving acquisition, particularly at

speeds such as 5 km h�1, which can be considered “opera-

tional speed” as most machinery in vineyards operates be-

tween 3 and 5 km h�1. All these experimental factors may

cause artefacts in the spectral signal acquired from the mov-

ing vehicle, and could potentially lead to reduced performance

of the derivedmodels, when compared to those obtained from

spectral data acquired under controlled static conditions. As

demonstrated in the present work, the performance of the

https://doi.org/10.1016/j.biosystemseng.2023.04.001
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derived models was comparable to that of those obtained in

more controlled studies (Wei et al., 2021).

Likewise, the results obtained in this study suggest that

PLS models with a reduced number of wavelengths (three or

four, from the IPLS method) were almost as good in esti-

mating the grapevine water status as those that used the

whole spectrum, having the plus of lacking redundant

wavelengths and being simpler and more economical to

implement. This brings the opportunity of building simpler,

more economical, miniaturised multispectral sensors

involving only three to four wavelengths of interest to be

used for on-the-go plant water status monitoring in a non-

destructive way, directly in the vineyard. Additionally, the

vast amount of data that could be retrieved by this sensor

would enable the assessment of vineyard water status vari-

ability, hence ensuring the representativeness needed to

design optimised irrigation strategies. Quantitatively

speaking, the values of RMSEP yielded by these spectral

methods using discrete reduced information are higher than

those of the Sch€olander pressure bomb method to assess

plant water potential when this technique is performed by

well-trained operators (Rodrı́guez-Domı́nguez et al., 2022).

However, the process of measuring with the Sch€olander

pressure bomb in the field involves several experimental

steps which are not always conducted in a similar way by

operators, and that may induce increased uncertainty in final

measurement (Rodrı́guez-Domı́nguez et al., 2022). These po-

tential sources of error may include: the need for equilibra-

tion of previously transpiring leaves; leaf storage before

measurement; the equilibration of Jleaf for leaves on bagged

branches, the use of ‘pulse’ pressurisation versus gradual

pressurisation and different skill among operators. As shown

in Rodrı́guez-Dominguez et al. (2022), the uncertainties

associated to some of these factors may range between 0.1

and 0.2 MMPa, and become even larger when untrained op-

erators carry out the measurements. As a result, only in plant

water potential measurements with the Sch€olander pressure

bomb are carried out following a best practice protocol, these

sources or error are minimised. Moreover, from a qualita-

tively point of view, the accuracy achieved with the spectral

method is enough to determine whether the water stress

level is high, medium or low. Likewise, this classification is

acceptable for industry operators to manage irrigation in a

more efficient way.

4.1. Future development and requirements

With this experiment, it is intended to select certain wave-

lengths in the NIR region of the spectrum to develop a low-

cost sensor for estimating water status of vineyards with an

adequate precision, classifying it as high, medium or low.

In order tomeasure the referredwater status in real time, it

is necessary to carry out a rapid processing of the data, which

can be obtained by initially taking the spectrum of the entire

bandwidth in the NIR region and then develop an ad hoc

software that takes into account only the wavelengths stated

in this article when building the PLS models.

At this time, we believe that the filtering of the wave-

lengths should be done by a custom device with this type of

software implemented in it, since it is currently very
expensive to purchase specific filters in the NIR zone between

1600 nm and 2100 nm and, assuming that they are affordable,

the filter bandwidth may not suit our needs.
5. Conclusions

The results obtained in this work allows for claiming that

variable selection is a reliable method towards the simplifi-

cation of the estimation of plant water status using NIR

spectroscopy on-the-go in commercial vineyards. Despite the

fact that a large number of bands of the full spectrum were

removed when applying all the considered attribute selection

methods, the robustness of the generated models was never

compromised. Of the three NIR attribute selection methods

tested in this work, the IPLS method proved to yield the best

reduced models (with only three to four wavelengths) and

narrow bandwidths between 4 and 8 nm, causing a dimin-

ishment in the number of points from 501 (whole spectrum) to

9 to 15 points.

This could be interpreted as a first step towards the design

of low-cost, simpler multispectral instruments that would be

able to rapidly and non-destructively determine grapevine

water status by building accurate predictive models from a

reduced amount of data collected from a moving terrestrial

vehicle. The invention of these devices may boost the estab-

lishment of more profitable irrigation strategies in the future.
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