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Abstract
This study determined the carriage rates and antimicrobial resistance (AMR) genes of enterococci from nasotracheal samples 
of three healthy animal species and in-contact humans. Nasal samples were collected from 27 dog-owning households (34 
dogs, 41 humans) and 4 pig-farms (40 pigs, 10 pig-farmers), and they were processed for enterococci recovery (MALDI-
TOF–MS identification). Also, a collection of 144 enterococci previously recovered of tracheal/nasal samples from 87 white 
stork nestlings were characterized. The AMR phenotypes were determined in all enterococci and AMR genes were studied by 
PCR/sequencing. MultiLocus-Sequence-Typing was performed for selected isolates. About 72.5% and 60% of the pigs and 
pig-farmers, and 29.4% and 4.9%, of healthy dogs and owners were enterococci nasal carriers, respectively. In storks, 43.5% 
of tracheal and 69.2% of nasal samples had enterococci carriages. Enterococci carrying multidrug-resistance phenotype was 
identified in 72.5%/40.0%/50.0%/23.5%/1.1% of pigs/pig-farmers/dogs/dogs’ owners/storks, respectively. Of special relevance 
was the detection of linezolid-resistant enterococci (LRE) in (a) 33.3% of pigs (E. faecalis-carrying optrA and/or cfrD of 
ST59, ST330 or ST474 lineages; E. casseliflavus-carrying optrA and cfrD); (b) 10% of pig farmers (E. faecalis-ST330-
carrying optrA); (c) 2.9% of dogs (E. faecalis-ST585-carrying optrA); and (d) 1.7% of storks (E. faecium-ST1736-carrying 
poxtA). The fexA gene was found in all optrA-positive E. faecalis and E. casseliflavus isolates, while fexB was detected in 
the poxtA-positive E. faecium isolate. The enterococci diversity and AMR rates from the four hosts reflect differences in 
antimicrobial selection pressure. The detection of LRE carrying acquired and transferable genes in all the hosts emphasizes 
the need to monitor LRE using a One-Health approach.

Keywords Nasal enterococci · Antimicrobial resistomes · Linezolid resistance · optrA · cfrD · poxtA · Migratory birds · 
Livestock · Pets

Introduction

Enterococcus spp. are commensals and predominantly found 
in the intestinal habitat, but they might be translocated to 
other animal tissues or organs [1]. Among the over 50 differ-
ent enterococci species, Enterococcus faecium (E. faecium) 
and Enterococcus faecalis (E. faecalis) constitute most of 
the gastrointestinal tract (GI) enterococci communities in 
humans [2]. However, in livestock, E. faecium, E. cecorum, 
E. faecalis and, to some extent, E. hirae predominate [3]. 
In contrast, E. mundtii and E. casseliflavus are commonly 
found in plant and environmental samples [2, 4]. Moreover, 
the ecologic-epidemiology of E. faecalis and E. faecium has 
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shown animal food (such as pork) and the environment (sew-
age, soil, and water) as common colonized items [4, 5].

Enterococci are very hardy organisms; they can sustain 
various adverse conditions and survive for several months 
in the environment [2]. These attributes make enterococci 
challenging to control once established in a hospital, house-
hold, or pig-farm setting. Enterococci are also suitable as 
important key indicator bacteria for veterinary and human 
resistance surveillance systems [4, 6]. Enterococci can easily 
acquire antimicrobial resistance (AMR) through mutations 
or the acquisition of antimicrobial resistance genes (ARGs), 
included in plasmids and transposons [7].

The livestock industry plays an important role in the trans-
mission of multidrug-resistant (MDR) enterococci isolates due 
to the close interaction between farmers, livestock, and the 
farm environment [7, 8]. However, a new European Union law 
now prohibits the use of antimicrobial agents as prophylactics 
in feeds [9]. The pervasive selection of resistant bacteria in 
livestock facilitates the persistence and dissemination of MDR 
isolates to other animals and humans [7]. The spread of such 
MDR isolates can occur through direct (consumption/handling 
of contaminated food, direct contact with farmers/veterinar-
ians) or indirect routes (animal waste handling, contaminated 
groundwater or surfaces) [10].

Among antimicrobial resistance transmission, it is impor-
tant to remark that the widespread use of chloramphenicol 
in the past for farm animals has been able to select bacteria 
resistant to this agent and maybe to other clinically impor-
tant antibiotics (by co-selection) [11]. Linezolid is one of 
the most important treatment options for severe infections 
by enterococci, including vancomycin-resistant enterococci 
(VRE). Increasing reports on linezolid-resistant enterococci 
(LRE) detected throughout the agricultural sector includ-
ing poultry, pigs and cattle indicate that linezolid resist-
ance might be co-selected by the use of chloramphenicol in 
livestock, with potentially serious consequences for public 
health [12–14].

Interestingly, a study on farm animals found limited shar-
ing of isolates and resistance genes between livestock and 
humans, except for some pig isolates that were genetically 
related to hospital-associated isolates [15]. By contrast, dogs 
may be a reservoir of hospital-associated E. faecium clones 
and may form a higher risk for zoonotic transfer to humans 
[16]. Occupational contact with livestock plays a major role 
in certain professions, such as veterinarians, slaughterhouse 
workers or farmers [17, 18]. However, in the case of pets, 
not only veterinarians but also animal owners are at risk of 
acquiring MDR zoonotic bacterial pathogens [19]. It has 
been observed as enterococci, in particular E. faecalis and E. 
faecium, have zoonotic potential [20]. Dogs are companion 
animals that have been in close contact with humans since 
ancient times, which increases the likelihood of the transmis-
sion of bacteria between these animals and their owners [21].

Finally, wildlife has been considered key players in the 
carriage and transmission of AMR as many of them, espe-
cially the migratory birds (such as storks), could be dynamic 
and move along distance across a variety of natural envi-
ronments, landfills, and livestock farms [22]. Migratory 
birds occasionally come in contact with antibiotic residues 
in livestock carcasses or manure and they could carry and 
disseminate AMR bacteria such as Enterococcus of public 
health concerns [22].

Studies on LRE of animal origin are available in some 
European countries, including Spain. However, studies 
reported on nasal LRE carriage are very rare. Especially 
among Enterococcus species other than E. faecalis and E. 
faecium. This prospective comparative study sought to deter-
mine the prevalence of nasal carriage of Enterococcus sp. 
and the molecular characterization of isolates in a popula-
tion of healthy dogs, dog-owning households, pigs and pig-
farmers, and storks in Spain, with special focus on linezolid 
resistance characterization.

Material and methods

Study participants’ descriptions and samples 
analyses

Nasal samples were obtained during 2021–2022 from ani-
mals and humans of the following origins: (a) 27 dog-own-
ing households (34 dogs, 41 humans) in La Rioja region 
(Spain); (b) 40 pigs of 4 farms (A–D) comprising 10 pigs 
from each farm from the Aragon region (Spain), and 10 
workers of the pig-farms (2, 3, 2 and 3 humans in farms 
A–D, respectively). The nasal samples were obtained using 
sterile swabs with conservation media (Amies, City, Coun-
try), and were used for enterococci recovery as below indi-
cated. Moreover, a collection of 144 enterococci previously 
recovered from nasal and tracheal samples of 87 nestling 
white storks [23] were included in this study for phenotypic 
and genotypic characterization of antimicrobial resistance 
and molecular typing; these nestlings corresponded to four 
different colonies of Ciudad Real region (Center-South of 
Spain) with parent storks foraging on different habitats (col-
onies 1 and 2: located in natural habitat; colonies 3 and 4: 
foraging in landfills). The storks isolates were of the follow-
ing species (number of isolates): E. faecalis (78), E. faecium 
(44), E. cecorum (8), E. casseliflavus (5), E. gallinarum (2), 
E. durans (2), E. hirae (1) and E. canis (n = 1).

Collected nasal and tracheal samples were enriched in brain 
heart infusion broth (BHI; Condalab, Madrid, Spain) supple-
mented with 6.5% NaCl and incubated for 24 h at 37 °C. After 
overnight incubation, different dilutions of the broth culture 
were carefully dispensed onto blood agar (BioMerieux) and 
ChromAgar LIN (CHROMagar™ LIN, Paris, France) plates 
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and incubated for 24 h at 37 °C, for enterococci recovery. 
The CHROMAgar™ medium has been previously shown to 
have high sensitivity and specificity on pure linezolid resistant 
enterococci and staphylococci isolates [24]. After overnight 
growth, 2 to 5 different colonies per sample with the mor-
phology of enterococci were randomly selected and identified 
by matrix-assisted laser desorption/ionization time-of-flight 
(MALDI-TOF; Bruker Daltonics, Bremen, Germany) using 
the standard extraction protocol recommended by Bruker.

All sampling procedures were performed following all 
applicable international, national, and/or institutional guide-
lines for human samples experiments (as described in the 
revised Helsinki declaration) and for ethical use of animals, 
specifically directive 2010/63/EU and Spanish laws 9/2003 
and 32/2007, and RD 178/2004 and RD 1201/2005. All 
procedures were approved by the ethical committees of the 
University of La Rioja, the University of Zaragoza and the 
University of Castilla La Mancha of Spain.

Enterococci DNA extraction

The DNA extraction of enterococci isolates of all origins was 
performed using InstaGene Matrix (Bio-Rad Laboratories, 
Hercules, CA, USA), according to the manufacturer’s instruc-
tions. Briefly, pure and fresh isolated colonies were suspended 
in 1000 μL of sterile Milli-Q water, thoroughly mixed by vor-
tex, and centrifuged at 12,000 revolutions per minute for 3 min. 
The supernatant was carefully eliminated and 20 μL of Insta-
Gene matrix was added to the sediment, thoroughly mixed 
by vortex and incubated in a bath for 20 min at 56 °C. Later, 
reincubated for 8 min at 100 °C and centrifuged at 12,000 rev-
olutions per minute for 3 min. The DNA was stored at − 20 °C.

Antimicrobial susceptibility testing and detection 
of AMR genes

The antimicrobial susceptibility testing was conducted on 
all enterococci isolates following the recommendations and 
breakpoints of the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST, 2022). The antimicro-
bial agents tested were as follows (µg/disk): penicillin (10), 
erythromycin (15), gentamicin (120), streptomycin (300), 
tetracycline (30), ciprofloxacin (5), chloramphenicol (30), 
linezolid (10), vancomycin (30) and teicoplanin (30).

Based on the antimicrobial resistance phenotypes of all 
enterococci, isolates from different samples or the same 
sample but of different species and/or different AMR phe-
notypes were selected for further studies (considered as dis-
tinct isolates) (Supplementary Table S1). This collection 
was characterized to determine the AMR genes and genetic 
lineages. MDR was defined by phenotypic resistance to 
three or more families of antibiotics. The minimum inhibi-
tion concentration (MIC) of all isolates carrying linezolid 

resistance genes was tested using bioMérieux Linezolid 
Etest® strips (Marcy l’Étoile, France), and the results were 
interpreted following the EUCAST 2022 breakpoint.

The corresponding AMR genes for all antibiotics 
were tested by PCRs and selected according to the resist-
ance phenotype: erythromycin (ermA, ermB, ermC, and 
ermT), gentamicin (aac6’-aph2″), streptomycin (str and 
ant6’), tetracycline (tetL, tetM, and tetK), chloramphenicol 
(catpC221, catpC223, catpC194, catA, fexA, and fexB), 
linezolid (optrA, poxtA, cfr, cfrB, and cfrD), and vanco-
mycin (vanA and vanB). Specifically, all chloramphenicol-
resistant isolates were tested for the possible presence of 
linezolid resistance genes and mutations in the 23S rRNA, 
regardless of the linezolid zone of inhibition by antibio-
gram. All isolates positive for linezolid resistance genes 
were confirmed by sequencing.

Genetic characterization

Multilocus sequence typing (MLST) was performed for E. 
faecalis and E. faecium isolates carrying linezolid resistance 
genes. The 7 housekeeping genes (gdh, gyd, pstS, gki, aroE, xpt 
and yqiL of E. faecalis; adK, atpA, ddl, gdh, gyd, pstS and purK 
of E. faecium) were amplified and sequenced, and Sequenced 
Types (ST) were assigned from analyses on the MLST data-
base (https:// pubml st. org/ organ isms/ enter ococc us- faeca lis). 
Primers and conditions of PCRs for the AMR genes tested 
and for MLST typing are included in Supplementary Table S2.

Data management and analyses

Data collected were verified, entered and analysed with 
Statistical Package for Social Sciences (SPSS) Version 26 
(IBM, California, USA). Data were reported as numbers and 
percentages (for categorical variables). Tables and charts 
were plotted. Data were subjected to univariate logistics 
to compute Odds Ratio (OR) and chi-squared test at 95% 
confidence interval (95%CI) between the carriage rate of 
enterococci and some categorical variables (such as house-
hold densities, animal species and AMR phenotypes). A 
significant association was set < 0.05 probability value.

Results

Nasal enterococcal carriage rate in healthy pigs 
and pig‑farmers

Enterococci nasal carriage was found in all the farms. In 
total, 51 enterococci isolates (43 from pigs, and 8 from 
pig-farmers) were recovered. Of the pigs’ isolates, 34, 4, 
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2, 2, and 1 were E. faecalis, E. faecium, E. gallinarum, E. 
hirae and E. casseliflavus, respectively. However, among 
the enterococci isolates from the pig-farmers, they were 
only 4 E. faecium and 4 E. faecalis isolates (Fig. 1). Of 
the 40 pigs studied, 29 (72.5%) were enterococci nasal 
carriers. Of these, 4 (40%), 9 (90%), 8 (80%) and 8 (80%) 
were obtained in farms-A to D, respectively (Fig.  1). 
Specifically, nasal carriage of E. faecalis (n = 2), E. cas-
seliflavus (n = 1) and E. hirae (n = 1) were identified in 
pigs of farm-A; E. faecalis (n = 9) from pigs of farm-B; E. 
faecalis (n = 3), E. faecium (n = 2), E. hirae (n = 1), and E. 
gallinarum (n = 2) from farm-C; and E. faecalis (n = 6), 
E. faecalis/E. faecium co-carriage (n = 2) from farm-D 
(Fig. 1). Conversely, all the three farmers (100.0%) in 
farm-B were enterococci nasal carriers (66.7% E. faecalis 
and 33.3% E. faecium); 1 of the 2 farmers (50.0%) in farm-
C was a nasal carrier (E. faecium); 2 of the 3 farmers of 
farm-D (66.7%) were nasal carriers (50.0% E. faecalis and 
50.0% E. faecium), but none of the farmers in farm-A were 
enterococci nasal carriers (Fig. 1).

Antimicrobial resistomes of Enterococcus sp. isolates 
from pigs farms

In farms-A to -D, all the E. faecalis isolates from pigs and 
farmers were MDR (Table 1). Multiresistance was also 
detected in other species such as the E. casseliflavus (car-
rying fexA, optrA, cfrD, tetK, tetL, and ermB genes), E. 
hirae and E. gallinarum (carrying ermB, tetM, and ant6 
genes).

None of the enterococci showed resistance to linezolid 
by disk diffusion; however, most of the chloramphenicol 
resistant isolates carried some acquired linezolid resist-
ance genes (optrA and in some cases cfrD). Of special 
relevance was the detection of linezolid-resistance genes 
in enterococci of pigs: (a) in 33.3% of pigs tested (E. fae-
calis with optrA and/or cfrD; E. casseliflavus with optrA 

and cfrD); (b) in 10% of pig farmers (E. faecalis with 
optrA). The MLST of three E. faecalis isolates carrying 
the linezolid resistance genes from farms-A (pig) and B 
(pig and farmer) was performed and found to be of the 
genetic lineage ST330. However, the MLST of three of 
the linezolid resistant E. faecalis isolates from farm-D 
obtained from two pigs were ST330, ST474 and ST59 
(Table 1). The isolates that carried linezolid resistance 
genes showed an MIC for linezolid in the range 8–16 µg/
ml (Table 1).

Nasal enterococcal carriage rate in healthy dogs 
and human household members

Six out of the 27 households (22.2%) had nasal enterococci 
carriers. In total, 31 enterococci isolates (27 from dogs, 4 
from human household members) were recovered. Of the 
dogs’ isolates, 18, 7 and 2 were E. faecium, E. faecalis, 
and E. raffinosus, respectively. However, all the isolates of 
humans were E. faecalis (n = 4) (Fig. 2). The nasal carriage 
rate of enterococci among healthy dogs and dog-owning 
humans were 29.4% and 4.9%, respectively.

Antimicrobial resistomes of Enterococcus sp. 
isolates from healthy dogs and dog‑owning human 
household members

In one of the 6 households with enterococci carriage (house-
hold ID number 10), both humans and dogs were E. faecalis 
carriers and the isolates presented a similar AMR phenotype 
and genotype (tetM positive) (Table 2). Moreover, in another 
household (household ID number 18), enterococci were 
detected in both humans and dogs, but belonged to different 
species (E. faecalis in humans and E. faecium in dogs). One 
of the dogs analysed in this study (household ID number 18) 
carried linezolid-resistant E. faecalis isolates that contained 
the fexA, optrA, tetL, tetM, ermA, ermB, str, aac6'-aph2'', 
and ant6' genes, and were typed as ST585.

Fig. 1  Nasal enterococci 
carriage detected in pigs and 
farmers in the four pig-farms 
(A, B, C and D). The number of 
individuals sampled from pigs 
and farmers were 40 and 10, 
respectively
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Antimicrobial resistomes in the Enterococcus 
isolates from white stork nestlings

More than 70% of the 144 Enterococcus sp. from nasal 
and tracheal samples of stork origin studied were suscep-
tible to all antibiotics tested (Table 3). However, 13.2% of 
enterococci showed tetracycline resistance, all of them of 
the species E. faecalis and E. faecium, and they carried 
the tetM and/or tetK genes (except in one E. faecium iso-
late); moreover, between 4 and 5% of enterococci showed 
erythromycin resistance (with ermB and ermA genes) and 
high-level aminoglycoside resistance (with aac6'-aph2'' 
or str genes) (Table 3). In addition, and for the first time 
in this animal species, an E. faecium isolate was found 
carrying an acquired linezolid resistance gene (poxtA), 
in addition to fexB gene (associated to chloramphenicol 
resistance); this strain belonged to the lineage ST1736 and 
presented an MIC for linezolid of 8 µg/ml. None of the 
E. casseliflavus, E. hirae, E. durans, and E. gallinarum 
isolates of stork origin showed resistance to the antibiotics 
tested (Table 3).

Comparison of AMR phenotype frequencies 
among E. faecalis and E. faecium

To compare the AMR frequencies of distinct E. faeca-
lis and E. faecium isolates from dogs, pigs and storks’ 
nasal samples, individual chi-squared tests against every 
antimicrobial agent were computed. The prevalence of 
tetracycline, erythromycin, chloramphenicol, gentamicin, 
linezolid, and streptomycin resistances was significantly 
higher among E. faecalis of pigs than in the other two 
groups (p < 0.0001) (Table 4). All the enterococci car-
rying linezolid resistance genes were phenotypically 

susceptible by disc diffusion tests; however, upon LZD 
Etest for their MIC, all were found resistant (range: 8 
to 16 μg/ml) except six isolates (all of the same animal) 
with an MIC of 2–3 μg/ml (Tables 1, 2 and 3).

Concerning E. faecium isolates, penicillin resistance was 
significantly present among isolates of dogs than in the other 
two groups (p < 0.05) (Table 4). However, gentamicin, eryth-
romycin, ciprofloxacin, and streptomycin resistances were sig-
nificantly higher among E. faecium of pigs than in the other 
two groups (Table 4). In all cases, storks’ nasal E. faecalis and 
E. faecium isolates had the least AMR rates compared to the 
dogs’ and pigs’ isolates.

Among the chloramphenicol-resistant enterococci, notably 
many also harbouring linezolid resistance genes (optrA, poxtA, 
and cfrD) were detected in 16 pigs (33.3%), 1 dog (2.9%), 1 
stork (1.1%) and 1 pig-farmer (10.0%) (Fig. 3).

Risk factors associated with nasal enterococcal 
carriage and MDR phenotypes

After bivariate logistic analysis, nasal carriage (OR = 6.33, 
95% CI: 2.29–17.42, p = 0.004) and occurrence rate of MDR 
phenotype (OR = 8.57, 95% CI: 2.99–24.56, p = 0.0001) were 
significantly associated with the species of animal (Supple-
mentary Table S3). Although nasal enterococcal carriage in 
storks was double but not significantly different from that of 
dogs (OR = 2.4, 95% CI: 0.93–6.17, p = 0.069). Also, nasal 
enterococci carriage in humans was significantly associated 
with the species of animal contact (OR = 29.25, 95% CI: 
4.36–196.07, p = 0.0005). Dog-owning households with > 1 
dog & 1 human had relatively higher odds of nasal enterococci 
carriage than those with only 1 dog & 1 human; however, this 
was not statistically significant (OR = 3.75, 9% CI: 0.37–37.94, 
p = 0.268) (Supplementary Table S3).

Fig. 2  Nasal enterococcal 
carriage in healthy dogs and 
dog-owning human household 
members. The number of indi-
viduals sampled from dogs and 
human’s household members 
were 34 and 41 respectively 
from 27 households
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Discussion

We are not aware of any previous study that simultaneously 
investigated the nasal enterococci communities of food-
producing animals, pets and wild animals. Perhaps because 
they are frequent intestinal commensals, most studies focus 
on the GI enterococci carriage [5].

Over the last 2 decades, our research group has detected 
ARGs to critical antimicrobials used as the last resort 
chemotherapy against enterococci infections in isolates 

from Spain, Portugal and Tunisia (especially, conferring 
resistance to vancomycin and linezolid) in wild boars 
(vanA-carrying E. faecium), wild rodents (vanB2-carry-
ing E. faecalis and vanA-carrying E. faecium), wild birds 
(vanA- and vanB2-carrying E. faecalis), chickens (vanA-
carrying E. hirae), pig environment air (poxtA- and optrA-
carrying E. faecium) and clinical samples (vanA/vanB 
E. faecalis and E. faecium, optrA- and cfrD-carrying E. 
faecalis) [25–29]. However, none of them was on nasal 
samples.

Table 3  Antimicrobial resistomes of enterococci from nestlings based on foraging habit of parent storks

a CLO, chloramphenicol, CIP, ciprofloxacin; ERY, erythromycin; GEN, gentamicin; LZD, linezolid; PEN, penicillin; STR, streptomycin; TET, 
tetracycline
b Linezolid MIC was tested in the isolates that carried linezolid resistance genes
c NT, not tested

Sample type No. of storks Enterococcus species AMR  phenotypea AMR genes detected LZD
MIC (μg/ml)b

Foraging habitat Sequence type

Tracheal 30 E. faecalis Susceptible NTc NT Landfill NT
Tracheal 6 E. faecalis Susceptible NT NT Natural NT
Tracheal 2 E. faecalis TET tetM NT Landfill NT
Tracheal 1 E. faecalis TET tetM NT Natural NT
Tracheal 1 E. faecalis TET-ERY tetK, tetM, ermB NT Landfill NT
Tracheal 1 E. faecalis TET-ERY-STR tetM, ermB, str NT Landfill NT
Tracheal 1 E. faecalis TET-ERY tetM, ermA, ermB NT Landfill NT
Tracheal 1 E. faecalis ERY-GEN ermB, aac6'-aph2'' NT Landfill NT
Tracheal 1 E. faecalis TET-STR tetK, str NT Landfill NT
Tracheal 1 E. hirae Susceptible NT NT Natural NT
Tracheal 1 E. gallinarum Susceptible NT NT Landfill NT
Tracheal 1 E. cecorum Susceptible NT NT Natural NT
Tracheal 6 E. cecorum Susceptible NT NT Landfill NT
Tracheal 3 E. faecium Susceptible NT NT Natural NT
Tracheal 2 E. faecium Susceptible NT NT Landfill NT
Tracheal 1 E. faecium PEN-CLO fexB, poxtA 8 Landfill ST1736
Tracheal 1 E. faecium TET-CIP tetM NT Landfill NT
Tracheal 1 E. faecium TET-CIP ND NT Landfill NT
Tracheal 3 E. faecium CIP ND NT Landfill NT
Nasal 3 E. faecium CIP ND NT Landfill NT
Nasal 7 E. faecium Susceptible NT NT Landfill NT
Nasal 1 E. faecium TET tetM NT Landfill NT
Nasal 1 E. faecium TET tetM NT Landfill NT
Nasal 1 E. canis Susceptible NT NT Natural NT
Nasal 3 E. faecalis TET tetM NT Landfill NT
Nasal 3 E. faecalis TET-STR tetK, tetM, str NT Landfill NT
Nasal 1 E. faecalis TET-ERY tetK, tetM, ermB NT Landfill NT
Nasal 1 E. faecalis TET-ERY tetK, tetM, ermB NT Landfill NT
Nasal 23 E. faecalis Susceptible NT NT Landfill NT
Nasal 3 E. faecalis Susceptible NT NT Natural NT
Nasal 4 E. casseliflavus Susceptible NT NT Natural NT
Nasal 1 E. gallinarum Susceptible NT NT Landfill NT
Nasal 1 E. durans Susceptible NT NT Natural NT
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In all the three animal hosts studied, the nasal carriage 
rate was high (especially in pigs and storks). The high nasal 
enterococci rate detected in our study highlights their fre-
quent association of Enterococcus spp. with the respiratory 
tracts of the animals. Thus, it is essential to remark that ente-
rococci are not only found at high rates in the GI tract but 
also in nasal samples, as demonstrated in this study. On the 
other hand, healthy dogs were relatively fewer carriers of 
enterococci, and this might be due to host adaption differ-
ences to respiratory epithelia.

There is growing evidence that the use of chlorampheni-
col chemotherapy in animal husbandry can select for entero-
cocci harbouring optrA and poxtA genes which confer resist-
ance to the critically important antibiotic linezolid, posing 
a risk to human health via the food chain and contact with 
livestock.

In this study, the majority (over 90%) of the enterococci 
carrying oxazolidinone resistance genes belonged to E. 
faecalis or E. faecium, which are the predominant Ente-
rococcus species in humans and animals (including pets 
and pigs), but also belong to the most important Gram-
positive nosocomial pathogens worldwide [4]. We found 
a significantly higher frequency of LRE in pigs than what 
was reported in comparable studies on faecal samples from 
pigs in Switzerland (5%), Belgium (11%) and Italy (21%) 
[12, 13, 30]. Notably, comparative data are still scarce and 
variations between countries for which data are available 
should be interpreted with caution due to the differences 
in study designs, sample types and testing methodologies. 
Nevertheless, the present study indicates that the occurrence 
of chloramphenicol-resistant enterococci among our pigs 
are high. Worryingly, the use of antibiotics in pig farming 
in recent years has been very high in Spain, highlighting 
the need to raise awareness within the agricultural sector 
to mitigate the emergence and spread of linezolid-resistant 
enterococci in the future. Moreover, most of the entero-
cocci in this study were associated with the presence of 
tetracycline resistance genes. Tetracycline is the most fre-
quent veterinary antibiotic used for treating many swine 
bacterial diseases and is likely to promote the spread and 
persistence of LRE in pigs [31, 32]. The optrA-carrying-E. 
faecalis-ST330, -ST474 and -ST59 circulating in 3 of the 4 
studied farms have been previously reported in human and 
many animal hosts such as macaques, pigs, chickens, poul-
try meat, and vultures [13, 30, 33–40]. These optrA-positive 
lineages appear to be non-host specific.

The detection of LRE in pig farmers and a dog indicate poten-
tial risk of transmission to other humans and animals outside 
the pigs-farm environment and dog-owning households, respec-
tively. These put together with the several optrA-positive E. fae-
calis isolates reported in dogs fed with raw meat/vegetables in 
China [41] underscore relevance of the ‘One-Health’ approach 
for investigating LRE, as they can be shared by animals, humans Ta
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and environnment. However, the direction of transfer is often dif-
ficult to prove, especially as none of the humans in contact with 
the dogs were carriers of LRE. Currently, the knowledge of the 
LRE prevalence in companion animals is limited and therefore 
a joint approach to monitor the emergence and dissemination of 
resistance mechanisms of public health importance are needed. 
The MDR E. faecalis-ST585 isolate detected in a dog in our 
study was similar to previously reported LR-E. faecalis isolates 
from Spanish hospitals [42]. Moreover, this is the first descrip-
tion of ST585 carrying the optrA gene in dogs from Spain.

Plasmid-encoded optrA and poxtA in E. durans and E. hirae 
were previously reported in pigs in Switzerland, as well as 
poxtA-carrying E. hirae from China and Italy [13, 29, 31, 43] 
and optrA-carrying E. gallinarum from a fattening pig in Bel-
gium [12] were recently identified. Also, a cfrD-carrying E. cas-
seliflavus strain has recently been reported from pigs’ manure in 
Italy [44] and optrA/cfr-carrying E. casseliflavus from a faecal 
swab of a pig in China [45]. To the best of our knowledge, the 
detection of E. casseliflavus carrying optrA and cfrD in a pig in 
our study is the first report. These put together suggest that pigs 
could be potential reservoirs for the dissemination and persis-
tence of E. casseliflavus carrying various linezolid transferable 
resistance genes. As E. casseliflavus only occasionally causes 
opportunistic infections in humans [4], the presence of linezolid 
resistance genes in this species from pigs may not pose a direct 
threat to human health but could play an important role in trans-
ferring this resistance mechanism. It is worth mentioning that 
none of the isolates had mutation in their 23S rDNA.

Concerning the stork’s E. faecium-ST1736 carrying poxtA 
in our study, migratory birds may be an important link in the 
spread of LRE. This isolate was obtained from a nestling that 
was feed food foraged by its parents in the landfills; so, the 
exposure could be from human household residues, landfill 
discarded wastewater treatment plant slurry or animal remains. 
This is the first time that LR-E. faecium ST1736 has been 
reported in storks. The detection of linezolid resistance genes 

is highly relevant since these genes could be in plasmids and 
be transmitted to clinical settings, production animals or the 
environment.

It is of interest to remark that all the linezolid resistant ente-
rococci were recovered in the ChromAgar LIN agar plates in 
which isolates were grown as green colonies. Nevertheless, 
linezolid susceptible isolates were also recovered in this media, 
as also indicated by other authors [24].

In storks, a vast majority of the Enterococcus species were 
susceptible to all the antibiotics tested. This difference may 
reflect the level of selection pressure, particularly due to the 
extensive use of antibiotics in pig-farming as compared to 
antibiotic chemotherapy in dogs and humans [46]. Although 
vancomycin-resistant enterococci (VRE) are considered high-
priority pathogens of great public health concern resistance 
[47], none of the isolates carried the vanA and vanB genes. 
Notably, the detected AMR genes in E. faecium or faecalis 
isolates from storks were all from landfill-associated colo-
nies (except one). Most likely, the individuals were fed landfill 
foraged food by their parents.

Both acquired and intrinsic resistance properties drastically 
reduce the options for antimicrobial therapy. Bearing this in 
mind, the performance of antimicrobial susceptibility tests 
prior to the start of antimicrobial therapy is of particular sig-
nificance to guide the application of antimicrobial agents in 
pigs-farming and canine medicine.

Conclusion

Enterococcus casseliflavus carrying optrA and cfrD is described 
for the first time in pigs. This put together with the occurrence 
of cfrD and optrA in E. faecalis-ST585 and -ST330, poxtA in 
E. faecium-ST1736 in healthy dogs, pigs and storks emphasizes 
the potential risk to human health through the dissemination of 
LRE in the food chain and companion and wild animals. The 

Fig. 3  Distribution of acquired 
linezolid resistance genes 
among the four hosts
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poxtA gene is described for the first time in an E. faecium from 
a migratory bird that could facilitate its spread to other eco-
systems. Foraging of the parents of this stork in landfills could 
explain the acquisition of this multidrug-resistant strain. The 
presence of linezolid resistance genes with potential of horizon-
tal transfer may go unnoticed by disc diffusion phenotypic tests, 
unless they are detected by MIC determination. Nevertheless, 
the selective inclusion of chloramphenicol resistance phenotype 
as marker to screen for linezolid resistance genes in enterococci 
may be advantageous for their detection at a molecular level. 
Our results showed that the nasal cavity of pigs, dogs and the 
trachea of storks may represent an important source of LRE, 
possibly contributing to animal-to-human transmission and 
transmission to the environment or food by these colonized 
animals and people.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10096- 023- 04579-9.
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