
Citation: García-Vela, S.; Ben Said, L.;

Soltani, S.; Guerbaa, R.;

Fernández-Fernández, R.; Ben Yahia,

H.; Ben Slama, K.; Torres, C.; Fliss, I.

Targeting Enterococci with

Antimicrobial Activity against

Clostridium perfringens from Poultry.

Antibiotics 2023, 12, 231. https://

doi.org/10.3390/antibiotics12020231

Academic Editor: Jesus

Simal-Gandara

Received: 31 December 2022

Revised: 17 January 2023

Accepted: 18 January 2023

Published: 21 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Article

Targeting Enterococci with Antimicrobial Activity against
Clostridium perfringens from Poultry
Sara García-Vela 1,2, Laila Ben Said 1 , Samira Soltani 1, Ramzi Guerbaa 1,3, Rosa Fernández-Fernández 2,
Houssem Ben Yahia 3, Karim Ben Slama 3 , Carmen Torres 2,* and Ismail Fliss 1,*

1 Department of Food Science, University of Laval, Quebec, QC G1V 0A6, Canada
2 Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja,

26006 Logroño, Spain
3 Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences

Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia
* Correspondence: carmen.torres@unirioja.es (C.T.); ismail.fliss@fsaa.ulaval.ca (I.F.)

Abstract: Necrotic enteritis (NE), caused by Clostridium perfringens, is an emerging issue in poultry
farming. New approaches, other than antibiotics, are necessary to prevent NE development and
the emergence of multidrug-resistant bacteria. Enterococci are commensal microorganisms that can
produce enterocins, antimicrobial peptides with activities against pathogens, and could be excellent
candidates for protective cultures. This study aimed to screen and characterize Enterococcus strains of
poultry origin for their inhibitory activity against C. perfringens. In total, 251 Enterococcus strains of
poultry origin plus five bacteriocin-producing (BP+) E. durans strains of other origins were screened
for antimicrobial activity against the indicator C. perfringens X2967 strain using the “spot on the lawn”
method. We detected thirty-two BP+ strains (eleven Enterococcus faecium, nine E. gallinarum, eight
E. faecalis, three E. durans, and one E. casseliflavus). We further studied the antimicrobial activity
of the supernatants of these 32 BP+ strains using agar well diffusion and microtitration against a
collection of 20 C. perfringens strains. Twelve BP+ enterococci that were found to exhibit antimicrobial
activity against C. perfringens were characterized using whole genome sequencing. Among these,
E. faecium X2893 and X2906 were the most promising candidates for further studies as protective
cultures for poultry farming. Both strains belong to the sequence type ST722, harbor the genes
encoding for enterocin A and enterocin B, do not possess acquired resistance genes, do not carry
plasmids, and present the acm gene, which is implicated in host colonization. Further research is
needed to determine the utility of these strains as protective cultures.

Keywords: Clostridium perfringens; enterococci; enterocins; protective cultures; necrotic enteritis;
whole genome sequencing

1. Introduction

Antibiotic resistance is a serious public health concern that compromises the treatment
of infections in humans and animals and is associated with the unnecessary prescription
and/or misuse of antibiotics. Besides their clinical use in humans, antibiotics are also
used in veterinary and animal farming. Antibiotics have also been extensively used as
growth promoters in food-producing animals; however, even though this practice has been
banned in Europe since 2006 [1] and also in several other countries, it is still allowed in
some others [2]. This contributes to the increase and spread of antibiotic resistance, not
only among pathogenic bacteria but also among commensal bacteria of the intestinal tract
of humans and animals, which can lead to contamination via feces. Therefore, resistant
bacteria can reach humans via the food chain and water or by contact with animals. For
this reason, the World Health Organization (WHO) proposed to address this issue from a
“One Health” perspective, establishing new alternatives to the use of antibiotics in livestock
and agriculture [3].
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Clostridium perfringens is associated with necrotic enteritis (NE) in poultry, and its
prevalence has been increasing in countries that no longer use antibiotic growth promoters,
which suggests that the same trend could also originate among other relevant pathogens [4].
NE caused by C. perfringens is one of the most common poultry diseases that cause sub-
stantial economic losses to the industry [5]. A prominent characteristic of NE is acute
death, with mortality rates reaching 50%. Clinical signs include depression, dehydration,
somnolence, ruffled feathers, diarrhea, and decreased feed consumption [6]. The subclinical
form of this disease causes chronic damage to the intestinal mucosa of the chickens, leading
to impaired nutrient absorption, reduced weight gain, and decreased overall performance.
Clostridium perfringens is present in the intestines of healthy chickens but in a small propor-
tion (less than 105 CFU/g of the intestinal content); when its count increases, hen birds
become susceptible to NE [1].

Antibiotic-resistant bacteria are prevalent in different environments and can be intro-
duced into the food chain at various points. Poultry is a reservoir for antibiotic-resistant bac-
teria that can be transmitted to humans. The continuous and widespread use of antibiotics
in farm animals may lead to changes in the bacterial environment, eliminating susceptible
strains and allowing antimicrobial-resistant bacteria to survive and predominate. Fur-
thermore, the continuous administration of antibiotics in feed may cause cross-resistance
to therapeutic antimicrobial agents. Antimicrobial resistance and a gradual decrease in
antibiotic sensitivity to anticoccidials in some strains of Eimeria spp. (a predisposing factor
for NE) can exacerbate the presence of C. perfringens strains [7].

Protective cultures essentially consist of bacteria specifically selected for their ability to
inhibit the growth of other pathogenic organisms or microbiological spoilage agents, having
the status of GRAS (Generally Recognized as Safe). These bacterial species are entirely
natural. Therefore, they provide a useful “green” benefit to food product labeling [8].
Bacteriocin-producing strains have gained considerable interest in recent years. They are
considered one of the most promising alternatives to antibiotics for use as protective cultures.

Enterococci are ubiquitous microorganisms found in the gastrointestinal tracts of
humans and animals and in water, soil, plants, and food. These microorganisms produce
bacteriocins known as enterocins [9], which exhibit an inhibition spectrum against tax-
onomically close bacteria and even those with a broad spectrum of action, inhibiting a
wide range of bacteria, including the emergent C. perfringens [10,11]. Using enterococci as
potential probiotic strains or protective cultures can be an excellent alternative to antibiotic
use in poultry farming [12].

However, in recent years, the use of enterococci in the food industry has been debated
because of their implications for opportunistic infections and their potential acquisition of
antimicrobial resistance and virulence genes [9]. Therefore, developing new enterococcal
probiotics requires a strict safety assessment to select the truly harmless enterococcal strains
for safe applications [13].

This study aimed to isolate and characterize Enterococcus strains of poultry origin that
might exhibit antimicrobial activity against C. perfringens and other relevant microorganisms.

2. Results
2.1. Enterococcus Sampling and Identification

Sixty enterococcus strains were isolated from poultry meat samples collected from
local markets in La Rioja, Spain. These strains were identified using MALDI-TOF mass
spectrometry as E. faecium (n = 33), E. faecalis (n = 19), E. gallinarum (n = 5), E. casseliflavus
(n = 1), E. durans (n = 1), and E. avium (n = 1). These isolates were combined with another
191 Enterococcus, previously obtained from poultry (in Spain and Tunisia), and with five
bacteriocin-producing (BP+) Enterococcus from other origins, to develop the entire collection
of 256 Enterococcus used to detect and characterize the BP+ isolates.
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2.2. Screening of Enterococci for Antimicrobial, Specifically Anti-C. perfringens Activity

In total, 32 of the 256 enterococci tested (12.84%) demonstrated antimicrobial activity
against C. perfringens X2967 using the “spot on the lawn” method. These strains belonged
to the species E. faecium (n = 11), E. gallinarum (n = 9), E. faecalis (n = 8), E. durans (n = 3), and
E. casseliflavus (n = 1). Among them, 27 (84,37%) were active against Listeria monocytogenes,
Micrococcus luteus, and Streptococcus suis (Table 1). One Enterococcus strain alone showed
antimicrobial activity against methicillin-susceptible Staphylococcus aureus (MSSA) and
methicillin-resistant S. aureus (MRSA). None of the tested strains showed inhibitory activity
against gram-negative bacteria (Escherichia coli, Salmonella enterica, Yersinia enterocolitica,
and Pseudomonas aeruginosa). Figure 1 shows the inhibition halo against C. perfringens X2967
produced by two of the thirty-two BP+ strains.

Table 1. Antimicrobial activity of the 32 bacteriocin producer (BP+) enterococci against C. perfringens
X2967 and other relevant indicator bacteriaa, as detected by the “spot on the lawn” assay.

Number of BP+ Strains with Activity against the Indicator Strain

E. faecium
(n = 11)

E. gallinarum
(n = 9)

E. faecalis
(n = 8)

E. durans
(n = 3)

E. casseliflavus
(n = 1) Total

Indicator
strains a

C. perfringens (X2967) 11 9 8 3 1 32

E. hirae (C1436) 11 1 7 3 1 23

E. durans (C1433) 11 5 2 3 1 22

E. casseliflavus (C1232) 8 3 6 3 - 20

E. faecium (C2321) 10 3 3 3 - 19

E. faecalis (C410) 11 1 3 3 - 18

E. gallinarum (C2310) 9 3 3 3 - 18

L. monocytogenes (C137) 8 4 4 3 - 19

M. luteus (C157) 1 1 7 3 1 13

S. suis (C2058) 2 - 6 3 1 7

MRSA b (C411) - 1 - - - 1

MSSA b (C1570) - 1 - - - 1
a None of the isolates showed antimicrobial activity against E. coli (C408), S. enterica (C660), Y. enterocolitica (X3080),
or P. aeruginosa (X3282). b Abbreviation: MRSA: methicillin-resistant S. aureus; MSSA: methicillin-susceptible
S. aureus.
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2.3. Effects of the Supernatants of BP+ Enterococci on C. perfringens Isolates

The supernatants of the 32 BP+ enterococci were tested against a collection of 20 C.
perfringens isolates of poultry origin. The antimicrobial activity was detected in 18 con-
centrated supernatants against at least one of the C. perfringens strains. Nevertheless,
antimicrobial activity was observed in six of the heated supernatants (HS) and non-heated
supernatants (NHS) (Figure 2, Table 2), corresponding to four E. faecium and two E. durans
isolates. In general, the inhibitory activities of the HS and NHS were similar; both inhibited
the growth of 2–8 strains of the 20 C. perfringens tested. The concentrated supernatants
showed a broad spectrum of inhibition against 2–20 C. perfringens isolates (Table 2). The
remaining 14 supernatants, either HS, NHS, or concentrated supernatants, did not show
any inhibitory activity.
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Table 2. The number of C. perfringens isolates to which the supernatants of 18 BP+ enterococci present
antimicrobial activity in their supernatants.

BP+ Strain Origin Species

Number of C. perfringens (of 20 Tested) Inhibited by the Antimicrobial
Activity of the Extracts of BP+ Strains

Non-Heated
Supernatant Heated Supernatant Concentrated

Supernatant

C1446 Poultry E. gallinarum -a - 11

X2829 Poultry E. faecium 2 2 12

X3036 Poultry E. gallinarum - - 2

X3179 Poultry E. faecium 4 4 18

X2903 Poultry E. faecium - - 8

X2947 Poultry E. faecium - - 4

X2956 Poultry E. faecium - - 3

X2960 Poultry E. faecium - - 4

X3187 Poultry E. faecalis - - 1
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Table 2. Cont.

BP+ Strain Origin Species

Number of C. perfringens (of 20 Tested) Inhibited by the Antimicrobial
Activity of the Extracts of BP+ Strains

Non-Heated
Supernatant Heated Supernatant Concentrated

Supernatant

X3220 Poultry E. faecium - - 1

X3198 Poultry E. faecalis - - 1

X3204 Poultry E. faecium 2 2 16

X2906 Poultry E. faecium 2 2 8

61A Cow milk E. durans 4 3 20

42G Cow milk E. durans 8 5 18

LCW03 Camel milk E. durans - - 18

LCW44 Camel milk E. durans - - 16

LCW06 Camel milk E. durans - - 16
a The symbol -: no antimicrobial activity was detected against any of the 20 C. perfringens isolates tested as the
indicator bacteria.

Supernatant activity could only be quantified for the E. faecalis X3198 and E. faecium
X3179 strains (16 AU/mL).

2.4. Phenotypic and Genotypic Characterization of the Selected BP+ Enterococci

For a complete genome analysis, 12 BP+ enterococci were selected based on their
antimicrobial activity detected using the previously described methods. Five E. faecium and
two E. faecalis of poultry origin were selected, as well as five E. durans of milk and camel
milk origin, chosen as the BP+ controls.

2.4.1. Bacteriocinome

Structural genes encoding for bacteriocins were detected in 12 BP+ strains (Table 3).
The structural genes for enterocins P and Enterocin L50 A/B were detected in all five
E. durans isolates, and the genes for bac 32 were also observed in three of them. Genes
encoding enterocin A and enterocin B were detected in all the E. faecium strains; two of these
strains carried the genes encoding enterocin NKR-5-3-A/D/Z. Moreover, the genes encod-
ing enterocin SE-K4 and staphylococcin C55a/b were identified in two E. faecalis strains.

Table 3. Putative enterocins detected by WGS in the 12 selected BP+ enterococci.

Strain Species Putative Enterocins

42G E. durans Enterocin P, Enterocin L50 A/B

61A E. durans Enterocin P, Enterocin L50 A/B

LCW03 E. durans Enterocin P, Enterocin L50 A/B, Bacteriocin 32

LCW06 E. durans Enterocin P, Enterocin L50 A/B, Bacteriocin 32

LCW44 E. durans Enterocin P, Enterocin L50 A/B, Bacteriocin 32

X2893 E. faecium Enterocin A, Enterocin B

X2903 E. faecium Enterocins NKR-5-3A; Enterocin NKR-5-3D, Enterocin NKR-3-5-3-Z

X2906 E. faecium Enterocin A, Enterocin B

X3179 E. faecium Enterocin A, Enterocin B, Enterocin NKR-5-3A, Enterocin NKR-5-3D, Enterocin NKR-5-3-Z

X3204 E. faecium Enterocin A, Enterocin B

X3198 E. faecalis Ent SE-K4, Staphylococcin C55a/b

X3187 E. faecalis Ent SE-K4, Staphylococcin C55a/b
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2.4.2. Antibiotic Resistance phenotype and resistome

Five of the twelve selected BP+ enterococci (41.7%) were susceptible to the nine
antibiotics tested, all of them from the species E. durans. The remaining strains were
resistant to at least one of the antibiotics tested. The most frequent resistance was against
ciprofloxacin (58.3%), followed by tetracycline (25.0%), erythromycin (25.0%), penicillin
(16.7%), chloramphenicol (8.3%), high-level streptomycin (8.3%), and high-level gentamicin
(8.3%). In addition, all the isolates showed susceptibility to vancomycin and linezolid.

Genes encoding antibiotic resistance were detected in all 12 BP+ strains (Table 4),
although only five (three E. faecium and two E. faecalis isolates) had genes for acquired-
type resistance. The mutations associated with resistance phenotypes for beta-lactams
(pbp5) and fluoroquinolones (gyrA and parC) were detected only in E. faecium isolates
(Supplementary Material).

Table 4. Antibiotic resistance phenotype and genotype of the BP+ enterococci.

Strain Species Origin Antibiotic Resistance
Phenotype

Antibiotic Resistance Genotype

Intrinsic Mechanisms Acquired Mechanisms

X2893 E. faecium

Poultry

CIP msr(C), aac(6′)-Ii -

X3179 E. faecium CIP, E msr(C), aac(6′)-Ii erm(B)

X2903 E. faecium CIP, E, P, C msr(C), aac(6′)-Ii erm(B), fexB, poxtA

X3187 E. faecalis CIP, E, P, TE, CN, S Isa(A) erm(B), aac(6′)-aph(2”), tet(M)

X3198 E. faecalis CIP, TE Isa(A) erm(B), aac(6′)-aph(2”), tet(M)

X3204 E. faecium CIP, TE msr(C), aac(6′)-Ii str, tet(M), tet(L), cat

X2906 E. faecium CIP msr(C), aac(6′)-Ii -

61A E. durans

Other

Susceptible aac(6′)-Iih -

42G E. durans Susceptible aac(6′)-Iih -

LCW03 E. durans Susceptible aac(6′)-Iih -

LCW44 E. durans Susceptible aac(6′)-Iih -

LCW06 E. durans Susceptible aac(6′)-Iih -

2.4.3. Virulence

• Gelatinase activity and hemolysis

Among the 12 selected BP+ enterococci, only E. faecalis X3198 was positive for gelati-
nase activity, and all the strains showed gamma hemolysis.

• Virulome

Among the 12 BP+ enterococcal strains, virulence genes were detected in E. faecium
and E. faecalis but not in E. durans (Table 5).

Table 5. Virulence genes and sequence types detected in the BP+ E. faecalis and E. faecium isolates of
poultry origin by WGS.

Strain Species Virulence Genes Sequence Type

X3187 E. faecalis
ElrA, SrtA, ace, cCF10, cOB1,
cad, camE, ebpC, efaAfs, fsrB,

gelE, hylA, hylB, and tpx
ST397

X3198 E. faecalis
ElrA, SrtA, ace, cCF10, cOB1,
cad, camE, ebpC, efaAfs, fsrB,

gelE, hylA, hylB, and tpx
ST397
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Table 5. Cont.

Strain Species Virulence Genes Sequence Type

X2893 E. faecium acm ST722

X2903 E. faecium acm
New allelic combination: adk-1,

atpA-2, ddl-7, gdh-57, gyd-1,
pstS-80, purK-6

X2906 E. faecium acm ST722

X3179 E. faecium acm
New allelic combination: adk-1,

atpA-2, ddl-7, gdh-76, gdh-2,
gyd-1, pstS-1, purK-3

X3204 E. faecium acm ST784

2.4.4. Plasmidome

The replicon plasmids identified in the selected enterococci are listed in Table 6. All of
the E. durans strains carried RepA_N, Inc18, and Rep3 or Rep1 plasmidic replicons. Both E.
faecalis strains carried the type Rep trans. Moreover, most of the faecium strains carried at
least three different types of plasmidic replicons.

Table 6. Plasmidome of the 12 BP+ enterococci detected by WGS.

Strain Species Type Replicon Plasmid

X2893 E. faecium - -

X3179 E. faecium
Rep3 rep29

Inc18 rep1, rep2

RepA_N repUS15

X2903 E. faecium

Rep3 rep29

Rep1 repUS58

Inc18 rep1

Rep_trans rep14a

RepA_N repUS15

X3187 E. faecalis Rep_trans repUS43

X3198 E. faecalis Rep_trans repUS43

X3204 E. faecium
RepA_N repUS15

Inc18 rep1

Rep1 rep22

X2906 E. faecium - -

61A E. durans

RepA_N repUS15

Rep1 repUS64

Inc18 rep1, rep2

42G E. durans

RepA_N repUS15

Rep1 repUS64

Inc18 rep1, rep2
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Table 6. Cont.

Strain Species Type Replicon Plasmid

LCW03 E. durans

Rep3 rep18a

Inc18 rep1, rep2

RepA_N repUS15

LCW44 E. durans

Inc18 rep1, rep2

Rep3 rep18a

RepA_N repUS15

LCW06 E. durans

Inc18 rep1, rep2

Rep3 rep18a

RepA_N repUS15

2.4.5. Genetic Lineages

Multi-locus sequence typing (MLST) of the two E. faecalis and five E. faecium strains
yielded the following results: (a) the two E. faecalis strains were typed as ST397; (b) the five
E. faecium strains showed four different sequence types, with two isolates typed as ST722,
one isolate typed as ST784, and the remaining two with an unknown ST (Table 5, Figure 3).
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3. Discussion
3.1. Screening for BP+ Enterococci

A total of 32 of the 256 enterococci tested (12.84%) showed antimicrobial activity
against the C. perfringens X2967 strain, as determined using the “spot on the lawn” method;
however, among these, only 18 supernatants of the BP+ strains were active against the
collection of 20 C. perfringens isolates used as indicators. The inhibitory activities of these
supernatants were attributed to the Enterococcus-derived enterocins [14]. The absence of
inhibitory activity in the supernatants obtained from the strains showing inhibition using
the spot-on-the-lawn method may be explained by the fact that bacteriocins sometimes
remain attached to the cell wall and are not released in the supernatant. Furthermore,
the production of bacteriocins is commonly mediated by quorum sensing [15]; hence, we
detected 14 strains as BP+ via the spot-on-the-lawn method (in which the producer and
the indicator strains are confronted) but without activity in their supernatants (the extract
produced without previous exposure to the indicator bacteria) [16].
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3.2. Phenotypic and Genotypic Characteristics of the BP+ Enterococci

According to their antimicrobial activity, 12 BP+ enterococci were selected for further
characterization.

3.2.1. Bacteriocinome

The structural genes for enterocins P and Enterocin L50A/B were detected in all five
E. durans isolates. Enterocin P (entP) was first detected in an E. faecium strain isolated from
a dry-fermented sausage [17], showing activity against gram-positive pathogenic bacteria
such as C. perfringens, L. monocytogenes, and S. aureus. Enterocin P is chromosomally en-
coded [18,19]; however, other studies have detected entP genes in the plasmid location [20].
Enterocin P and L50A/B have been detected in different enterococcal species [21]. This
study is the first study to detect Enterocin P in E. durans.

Enterocin L50A/B was first detected in an E. faecium L50 strain isolated from Spanish
fermented sausage [22]. Enterocin L50A/B consists of two peptides, L50A and L50B, which
synergistically promote their antimicrobial activity. The strain E. faecium L50 has also been
shown to produce enterocins Q and P at different temperatures [18,23]. Enterocin L50 A/B
exhibits a broad spectrum of antimicrobial activities, including inhibition of Enterococcus
spp., Lactobacillus spp., Lactococcus lactis, Pediococcus pentosaceus, L. monocytogenes, S. aureus,
B. cereus, C. botulinum, Streptococcus pneumoniae, S. mitis, S. oralis, S. parasanguis, S. agalactiae,
and C. perfringens. Other enterocins, such as enterocins 7A/7B and MR10A/10B, share a
strong homology with enterocin L50 A/B [21].

Enterocin bac 32 was identified in three of our five E. durans strains. This peptide
was firstly detected in a vancomycin-resistant clinical E. faecium VRE200 strain, exhibiting
activity against Enterococcus spp [24]. Although this bacteriocin has not been extensively
studied, it seems to be identical to enterocin IT [25].

The strain E. durans 61A has been previously described, and durancin 61A and en-
terocins L50A and L50B were identified using mass spectrometry [26,27]. However, the
genetic determinants for these bacteriocins were not detected in strain 61A using whole
genome sequencing (WGS) in our study; instead, enterocin P was detected. Duracin 61A is
not in the anti-SMASH and BAGEL4 databases (we used data from the NCBI and NCBI plus
UniProt, respectively), whose genetic determinants have yet to be described. In contrast,
enterocin P might not have been detected in other studies, as it is a temperature-regulated
bacteriocin that is synthesized optimally at 37–47 ◦C [23].

Genes encoding enterocin A and enterocin B were detected in all of our five E. faecium
strains, two of which also carried the genes encoding Enterocin NKR-5-3-A/D/Z.

Enterocin A was first identified in 1996 [28] and is produced by several strains of
E. faecium—CTC492, T136, and P21—isolated from Spanish sausage; BFE900 from black
olives; DPC 1146, WHE 81, and EFM01 from dairy products; and the N5 strain of “nuka”,
a Japanese rice paste. Enterocin A shows activity against Enterococcus spp., Lactobacillus
spp., Pediococcus spp., and L. monocytogenes [10]. However, its activity has not been tested
against clostridial species. Enterocin A is usually co-produced with enterocin B, which
is produced by E. faecium T136 isolated from Spanish fermented sausages [29]. Enterocin
B shows antimicrobial activity against gram-positive bacteria, such as L. monocytogenes,
Propionibacterium spp., C. sporogens, and C. tyrobutyricum [29]. When enterocin A and
enterocin B are co-produced, they form a heterodimer, and studies have demonstrated its
potential anti-bacterial and anti-biofilm activities against S. aureus, Acinetobacter baumannii,
L. monocytogenes, and E. coli [30].

The genetic determinants for enterocin NKR-5-3-A/B/C/D/Z were detected in two
of our E. faecium strains. These enterocins have been purified and studied previously [31].
NKR-5-3-A (identical to brochocin A) and NKR-5-3-Z are class IIb bacteriocins and exhibit
synergistic antimicrobial activity. NKR-3-5-B is a novel circular bacteriocin belonging to
class IIc bacteriocins with a broad spectrum of antimicrobial activities against Bacillus spp.,
Enterococcus spp., and gram-negative bacteria (E. coli and Salmonella). NKR-5-3-C is a class
IIa bacteriocin with strong antimicrobial activity against L. monocytogenes. NKR-5-3-D, a
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class IId bacteriocin, has a weak antimicrobial activity but can be produced even under
unfavorable conditions [32,33]. NKR-5-3-A, D, and Z variant genes were detected in the
two E. faecium strains. The genetic determinants of enterocins NKR-5-3-A/C/D/Z are
closely located in a gene cluster (13 kb long) and include specific bacteriocin biosynthetic
genes, such as an ABC transporter gene (enkT), two immunity-related genes (enkIaz and
enkIc), a response regulator (enkR), and a histidine protein kinase (enkK). This gene cluster
is essential for the biosynthesis and regulation of NKR-5-3 enterocins [34].

Genes encoding enterocin SE-K4 and staphylococcin C55a/b were identified in the
two E. faecalis strains in this study. Enterocin SE-K4 was first identified in E. faecalis K-4
isolated from grass silage [35]; it grows at 43–45 ◦C and exhibits antimicrobial activities
against E. faecium, E. faecalis, B. subtilis, C. beijerinckii, and L. monocytogenes. This enterocin
has a high degree of homology to bacteriocin 31 and T8/43 [10]. Staphylococcin C55a/b
was originally found to be produced by S. aureus C55 [36], consisting of three distinct
peptide components termed staphylococcins C55a, C55b, and C55g. Staphylococcins C55a
and C55b (lantibiotic components) acted synergistically against S. aureus and M. luteus [36].
It is a plasmid-encoded bacteriocin [37]; thus, the plasmid transfer between the producer,
Staphylococcus, and the E. faecalis strains could account for the presence of the genetic
determinants of this bacteriocin.

3.2.2. BP+ Enterococcus Resistance Phenotype and Resistome

Five of the twelve BP+ enterococci, all from E. durans isolates, were susceptible to
the nine antibiotics tested. The remaining strains showed resistance to at least one of
the antibiotics. Generally, the enterococci of poultry origin have more resistance genes
than those of other origins (camel and camel milk). The only gene discovered in the E.
durans strains of milk origin was aac(6′)-Iih, which is intrinsically present in E durans [38,39].
Antibiotics are commonly used in poultry farming, leading to the development of acquired
resistance mechanisms in poultry-derived strains.

The genus Enterococcus is characterized by its intrinsic resistance to several antibiotics
and ability to acquire new resistance mechanisms [40]. Enterococci are naturally resistant
to semisynthetic penicillins (a reduced susceptibility), aminoglycosides (in low levels), van-
comycin (at a low level and only in the species E. gallinarum and E. casseliflavus/E. flavescens,
which are carriers of vanC genes), to lincosamides, polymyxins, and streptogramins (the
species E. faecalis) [41]. In addition, E. faecium carries some intrinsic genes, such as msrC
and aac(6′)-Ii, whereas E. durans harbors the gene aac(6′)-Iih [38,39]. Antibiotic resistance
can occur either through the acquisition of genetic elements containing the resistance genes
or via DNA mutations (mostly in genes encoding antibiotic targets), which are favored
when there is a selective antibiotic pressure [40].

Among the acquired resistance genes detected in the E. faecium and E. faecalis strains,
the genes associated with erythromycin [erm(B)], chloramphenicol [fexB and cat], tetracy-
cline [tet(M) and tet(L)], streptomycin [str], gentamicin and tobramycin [aac(6′)-aph(2”)],
and linezolid resistance (poxtA) have been reported. Vancomycin resistance genes have not
been reported [42].

E. faecium strains X2893 and X2906 carry only chromosomal and intrinsic resistance
genes (msr(C) and aac(6′)-Ii), which are non-transferable; therefore, these strains are excellent
candidates for use as potential protective cultures.

Specific mutations in the pbp5 and gyrA/parC genes are associated with resistance to
beta-lactams and fluoroquinolones, respectively [43–45]. Different mutations in the pbp5,
gyrA, and parC genes have been detected in our strains, although, in most cases, with an
unknown resistance phenotype associated.

3.2.3. Virulence of BP+ Enterococci

Different virulence factors are involved in the attachment to host cells and extracellular
matrix proteins (AS, Esp, Hyl, and EfaA), macrophage resistance (AS), and cell and tissue
damage (Cyl and GelE) [46,47]. Thus, although enterococci are commensal bacteria found
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in the intestine, they can still cause infections. Therefore, the Food and Drug Administration
(FDA) has not yet assigned them to the GRAS category. Genes encoding these virulence
factors are located in conjugative plasmids (agg, cyl, or hyl), in the chromosome (gelE or fsr),
or in regions of the chromosome called pathogenic islands (esp and cyl) [48,49].

In the 12 enterococcal strains, virulence genes were detected in E. faecium and E. faecalis
but not in E. durans. E. faecalis has already been described as more virulent than other
species [50]. Fifteen virulence genes were detected in both E. faecalis strains. However,
the presence of these genes is not always related to the virulence potential, as they are
sometimes silenced and not associated with the phenotype [49]. Both strains carried the
gelE gene, which is associated with gelatinase activity, but only strain X3198 was positive
for gelatinase activity.

All the E. faecium strains carried the functional collagen adhesin gene, acm, which
plays an essential role in colonization by binding to collagen type I, with less affinity to
collagen type IV [51]. As these E. faecium strains did not carry other virulence factors, the
presence of acm might be positive, as it could facilitate the colonization of this beneficial
strain. Nevertheless, as mentioned before, the presence of a virulence gene does not always
indicate that it is being expressed [49]. Therefore, further studies must uncover whether
acm is, in fact, expressed as a virulence factor.

3.2.4. Plasmidome of the BP+ Enterococci

Ten of the BP+ enterococci harbored at least one plasmid. Interestingly, strains X2893
and X2906 did not present any mobile genetic elements, which, along with the other
characteristics, makes them good candidates for potential protective cultures [52].

4. Materials and Methods
4.1. Enterococcus Sampling and Identification

In total, 251 enterococcal isolates of poultry origin were used in this study: (a) 60 iso-
lates were collected during this study from poultry carcass samples obtained from different
supermarkets and butchers in the La Rioja Region (Spain), the isolates recovered in the
Slanetz–Bartley agar (OXOID); (b) 166 isolates were previously obtained from poultry
carcasses at the slaughterhouses’ level in Tunisia; (c) 25 poultry isolates were obtained from
the University of La Rioja’s collection (Spain). Additionally, 5 BP+ enterococci of other
origins (2 isolates from cow milk and 3 from camel milk) were obtained from the University
of LAVAL’s strain collection (Canada).

4.2. Screening for Anti-C. perfringens Activity Using the “Spot on the Lawn” Method

The antimicrobial activity of the 256 Enterococcus isolates against the indicator strain,
C. perfringens X2967 (a clinical strain obtained from the Hospital San Pedro, Logroño, Spain),
was analyzed using the “spot-on-the-lawn” method [53]. The active isolates were identified
as BP+. Briefly, a fresh culture of C. perfringens strain X2967 was suspended in brain–heart
infusion broth (BHI) (turbidity 0.5 MacFarland). Subsequently, 10 µL of this indicator
microorganism solution was added to tubes containing 5 mL of semi-solid melted tryptic
soy broth (TSB) and supplemented with 0.7% agar and 0.3% yeast extract. Finally, the
semi-solid TSB medium with the indicator microorganism was poured onto tryptic soy
agar plates (TSA). Once the plates were dried, the enterococcal microorganisms were sting-
seeded, and the plates were incubated at 37 ◦C for 24 h under strict, anaerobic conditions.

Strains that showed inhibitory activity against C. perfringens strain X2967 were tested
against other relevant pathogens and multidrug-resistant (MDR) bacteria using the same
test. This panel included E. casseliflavus C1232, E. gallinarum C2310, E. faecium C2321, E.
faecalis C410, E. durans C1433, E. hirae C1436, MSSA C411, MRSA C1570, M. luteus C157,
L. monocytogenes C137, S. suis C2058, E. coli C408, S. enterica C660, Y. enterocolitica X3080,
and P. aeruginosa X3282. A blood agar plate was used for S. suis testing. All strains used as
indicator bacteria came from the University of La Rioja’s collection.
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4.3. Screening for Anti-C. perfringens Activity Using the Agar Diffusion Method

NHS and HS extracts were prepared from Enterococcus isolates showing inhibitory
activity in the spot-on-the-lawn assay. These supernatants were tested against a collection
of 20 C. perfringens isolates using the previously described agar diffusion method [54], with
nisin as a positive control. The C. perfringens isolates were collected from the NE of poultry
origin (University of Laval, Quebec, QC, Canada).

To prepare the NHS, enterococci were inoculated in 10 mL of TSB in sterile tubes and
were incubated overnight at 37 ◦C. Then, the culture medium was centrifuged at 5000× g
rpm for 5 min and filtrated using 0.20 µm filters. Next, a fraction of this supernatant was
heated at 100 ◦C for 15 min and used as the HS. For the concentrated supernatants, the
culture cell media were concentrated 10 times using a Speed Vac (Thermo Scientific Savant,
Asheville, NC, United States) after centrifugation.

For the agar well-diffusion method, C. perfringens was cultured in a reinforced clostridial
medium (RCM) (Himedia, Kennett Square, PA, USA) supplemented with 10% agar. The
plates were incubated overnight at 37 ºC under strict, anaerobic conditions.

4.4. Anti-C. perfringens Activity Determination Using Microtitration Assay

A microtitration assay was performed to determine the total activity (AU/mL) of
the active supernatant of BP+ enterococci against the C. perfringens ATCC 13124 strain, as
described previously [55,56]. The BHI was used as the growth medium for C. perfringens
and was added to the wells, with a final bacterial concentration of ~105 CFU/well. The mi-
croplate was incubated for 24 h at 37 ◦C under strict, anaerobic conditions. After incubation,
the optical density was measured at 595 nm using a microplate reader (Infinite M200, Tecan,
Männedorf, Switzerland) to determine the number of wells in which inhibition occurred.

The following formula was used to calculate the total arbitrary activity:

Activity
(

AU
mL

)
= 2n∗ 1000

25 = 2(n+3)

where 2 is the dilution factor, n is the number of inhibition wells, 1000 is the factor for
reporting the result per mL, and 125 is the volume of the solution tested in microliters.

4.5. Characterization of BP+ Enterococci

Twelve BP+ enterococci were chosen for further characterization based on their an-
timicrobial activity against C. perfringens strains.

4.5.1. Susceptibility to Antibiotics

The susceptibility of BP+ enterococci to nine antibiotics was tested using the disk
diffusion method according to the Clinical and Laboratory Standard Institute (CLSI) guide-
lines (2020) [57]. The antibiotics tested were as follows (disk charge): penicillin (10 units),
tetracycline (30 µg), erythromycin (15 µg), chloramphenicol (30 µg), linezolid (30 µg),
high-level gentamicin (120 µg), high-level streptomycin (300 µg), vancomycin (30 µg),
and ciprofloxacin (5 µg). Strains were then identified as susceptible (S), resistant (R), or
intermediate (I) using the protocol interpretation guidelines [57].

4.5.2. Gelatinase Activity and Hemolysis

The gelatinase activity and hemolytic capacity of BP+ enterococci strains were deter-
mined as reported previously [58], using TSA supplemented with 3% skim milk and blood
agar, respectively.

4.5.3. Whole Genome Sequencing (WGS) Analysis

DNA from BP+ enterococci was extracted using a DNeasy Blood & Tissue Kit (QI-
AGEN, Hilden, Germany), following the manufacturer’s instructions for gram-positive
bacteria. The DNA was subjected to WGS using an Illumina sequencing system at the
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Hospital Center of University Laval (CHUL). Data were analyzed using the following
programs; fastp for trimming and quality check of the trimming [59], SPAdes for the as-
sembly [60], QUAS for checking the assembled quality [61], and prokka for annotation [62].
Anti-SMASH 6.0 [63] and BAGEL4 [64] were used to detect genes encoding bacteriocins.
ResFinder 4.1 [65–67] was used to detect genes associated with antibiotic resistance and
mutations in the pbps, parC, and gyrA genes. VirulenceFinder 2.0 was used to detect vir-
ulence factors [67–69] and PlasmidFinder 2.1 for plasmid detection [67,70]. Multi-locus
sequence typing (MLST) was performed using MLST 2.0 [71–76]. Representation in the
phylogenetic tree was performed using R version 4.2.1 [77], and the phylogenetic distances
were calculated using the average nucleotide identity (ANI) method.

5. Conclusions

Among the 12 enterococci that showed inhibitory activity against C. perfringens, the
strains E. faecium X2893 and X2906 seem to be the most promising candidates for use as
protective cultures in poultry farming. Both strains belong to the sequence type ST722 and
harbor enterocin A and Enterocin B genetic determinants. These strains also do not have
acquired resistance genes, do not carry plasmids, and only carry the acm gene, which is
implicated in host colonization and might be a desirable feature for protective strains. Both
are gelatinase-negative and gamma-hemolytic.

The strains derived from other origins (milk and camel milk) and belonging to the
species E. durans might be also good candidates as protective cultures, as they do not harbor
any virulence factors or resistance genes, and they produce bacteriocins. However, these
strains carry more than one plasmid and have not been isolated from poultry.

Concluding, E. faecium X2893 and X2906 showed potential to be considered in further
studies as protective cultures in poultry farming, a promising alternative to antibiotic use
in this sector.

Supplementary Materials: The following supporting information can be downloaded at: https://
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