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In this paper, we obtain the explicit expression of the supersymmetric algebra associated with the 
recently proposed massive supermembrane including all surface terms. We formulate the theory as the 
limit of a supermembrane on a genus-two compact Riemann surface when one of the handles becomes 
a string attached to a torus. The formulation reduces to a supermembrane on a punctured torus with a 
“string spike” (in the sense of [1]), attached to it. In this limit, we identify all surface terms of the algebra 
and give the explicit expression of the Hamiltonian in agreement with the previous formulation of it. The 
symmetry under area preserving diffeomorphisms, connected and nonconnected to the identity, is also 
discussed. Only parabolic Sl(2, Z) discrete symmetries are preserved.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

Recently, new aspects of M2-brane theory in D=11 dimensions 
have been developed. In [2] using the Nicolai map, a perturba-
tive quantization approach has been proposed. In [3] the existence 
and uniqueness of the ground state of the theory on the valleys 
of the theory have been obtained, In [4–7] new sectors of the 
theory formulated on different backgrounds characterized by topo-
logical conditions have been analyzed. In contrast to the formula-
tions on a Minkowski target space, these supersymmetric sectors 
of the M2-brane have a discrete spectrum. They correspond to su-
permembranes with a topological condition associated with the 
presence of 2-form worldvolume fluxes induced by either the pres-
ence of a topological central charge condition [4], the presence of 
supergravity constant and quantized three-form [6], or either on 
a target space with G4 content, as the supermembrane on a pp-
wave [5] whose matrix model corresponds to [8], or more recently 
the formulation of a massive supermembrane [7]. This massive 
supermembrane corresponds to a supermembrane theory formu-
lated on a M9 × LC D background, where M9 is a nine dimensional 
Minkowski space and LC D is a Light Cone Diagram, a two dimen-
sional flat strip with identifications and with prescribed segments 
whose curvature becomes infinite at some points. This surface only 
has one (non-trivial) compact dimension, and therefore the super-
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membrane in this background exhibits ten non-compact dimen-
sions. Moreover, the theory has nontrivial mass terms not present 
in the supermembrane theory compactified on a circle that, to-
gether with the rest of the structure of the potential, render the 
spectrum of the regularized theory to be discrete. The goal of this 
paper is to characterize the susy algebra including all the boundary 
terms. This may shed light on the role of the singularities in the 
structure of the constraints that will be useful to obtain the string 
theory associated with this sector. Specifically, from the closure of 
the algebra, one can infer all the global constraints of the super-
membrane. In the approach we follow in this paper, the constraints 
arise directly from the geometrical construction in agreement with 
the consequences of the closure of the algebra. Also, in general, 
the algebra will determine the symmetries of the supermembrane 
theory and the inherited symmetries of the associated string the-
ory. Moreover, after a double-dimensional reduction, one of these 
constraints yields to the closed string level matching condition 
(see [9,10]). Furthermore, the analysis of the singularities allows 
to characterize the dimensions of the sources coupled to the M2 
-brane, as for the example the M9-brane discussed in [11]. The 
supermembrane only admits backgrounds that allow a consistent 
coupling to the 11D supergravity and its reductions. Hence, the 
algebra may give light to the supergravity background to which 
this massive supermembrane couples. This can be obtained by an-
alyzing the zero mode structure of the algebra [12]. The study of 
algebras and their deformations, and consequently their symme-
tries, have also been used in the literature to obtain kinetic terms 
of their associated supergravity Lagrangian densities in the con-
text of limits of GR gravity, see for example [13–15] as well as in 
the context of supergravity ones, see [16–18]. Although we will not 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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proceed in this direction, this is another possible application of the 
results of this work.

The paper is structured as follows: In section 2, we recall the 
basic aspects of the supermembrane theory formulation and its 
Hamiltonian in the case of a supermembrane with a topological 
central charge condition. In section 3, we summarize the main 
properties of the Light Cone Diagram formulation that will be 
needed for the computations. In section 3, we present a new for-
mulation of the massive supermembrane obtained in [7] which 
directly incorporates all the boundary terms of the formulation. 
In section 5, we obtain the supersymmetric transformation, and 
in section 6, we get the supersymmetric algebra of supercharges. 
In section 7, we discuss another fundamental symmetry, that is, 
the area preserving diffeomorphisms, in order to characterize com-
pletely the symmetries of the theory. In section 8, we present our 
conclusions.

2. The supermembrane action in the light cone gauge

The supermembrane was originally introduced in [19]. Its for-
mulation in the Light Cone Gauge (LCG) on a Minkowski target 
space was obtained [12]. In this section we will briefly review 
some of those results in [12] and we will present the superme-
mbrane action in the light cone gauge on M9 × T 2. The action of 
the supermembrane in a Minkowski space-time is given by

S = −T M2

∫
R×�

dξ3
[√−g + εuv w ¯̃

��μν∂w�̃

×
(

1

2
∂u X̃μ(∂v X̃ν + ¯̃

��ν∂v�̃) + 1

6
¯̃
��μ∂u�̃

¯̃
��ν∂v�̃

)]
, (1)

where T M2 is the M2-brane tension, �μ are the gamma matrix in 
eleven dimensions, X̃μ (μ, ν = 0, .., 10) are the embedding maps 
of the supermembrane, θ is a 32 component Majorana spinor and 
� is a compact Riemann surface. All the fields are functions of the 
world-volume coordinates ξu (u, v, w = 0, 1, 2) and guv are the 
components of the world-volume induced metric, this is

guv = (∂u X̃μ + ¯̃
��μ∂u�̃)(∂v X̃ν + ¯̃

��ν∂v�̃)ημν. (2)

Now we can use the light cone coordinates X̃μ = (X+, X−, X̃ M)

with M, N = 1, .., 9

X± = 1√
2
( X̃10 ± X̃0), �± = 1√

2
(�10 ± �0), (3)

and, decomposing ξu = (t, σ r) with r = 1, 2, one can fix the LCG 
as follows,

X+ = t, �+�̃ = 0. (4)

Thus, the Lagrangian density can be written as2

L = −T M2(
√

ḡ� + εrs∂r X̃ M ¯̃
��−�M∂s�̃), (5)

where

ḡrs = ∂r X̃ M∂s X̃M , ur = g0r = ∂r X̃− + ∂t X̃ M∂r X̃M ,

g00 = 2∂t X̃ M∂t X̃M + 2 ¯̃
��−∂0�̃,

and ḡ = det(ḡrs), � = −g00 + ur ḡrsus . Then, the conjugate mo-
menta can be written as

2 We are using ε0rs = −εrs .
2

P̃− = T M2

√
ḡ

�
, P̃ M = P̃−(∂0 X̃ M − ur grs∂s X̃ M),

S̃ = − P̃−�−�̃.

Thus, the Hamiltonian density is given by

H = P̃
2 + T 2

M2 ḡ

2 P̃−
− T M2ε

rs∂r X̃ M ¯̃
��−�M∂s�̃, (6)

subject to the following primary constraints

�r = P̃∂rX̃ + P̃−∂r X̃− + ¯̃S�−�̃ = 0, (7)

ϒ = S̃ + T M2

√
ḡ

�
�−�̃ = 0. (8)

The Dirac analysis of these constraints yields that �r is of first 
class while ϒ is of second class.

Now, we can use the area preserving diffeomorphims to set the 
gauge P̃− = P 0−

√
W , where 

√
W̃ is a scalar density satisfying∫

�

√
W̃ = 1. (9)

This allows us to introduce the Lie bracket

{·, ·} = εrs√
W̃

∂r · ∂s · . (10)

The supermembrane Lagrangian density can be written in a 
way that is explicitly invariant under area preserving diffeomor-
phism (see [12]). This requires the introduction of a gauge field 
ω related to time-dependent reparametrizations of the world-
volume. This is

L

P+
0

√
W̃

= 1

2
(D0 X̃ M)2 + ¯̃

��−�̃ − T 2
M2

4P+
0

{ X̃ M , X̃ N}2

+ T M2

P+
0

¯̃
��−�a{ X̃ M , �̃} + D0 X̃−, (11)

where

D0• = ∂t • −{ω,•}, {•,•} = εrs

√
W

∂r • ∂s • . (12)

Furthermore, we can now solve (7) for X̃− , this is

∂r X̃− = − 1

P 0−
√

W̃
(P̃∂rX̃ + ¯̃S�−∂r�̃). (13)

The integrability conditions for the existence of a single valued X̃−
solution of (13) are: first, since the left-hand side of (13) can be 
expressed as a closed form, then the same must happen for the 
right-hand side member. This condition yields a local constraint 
for the right-hand member that must be satisfied at each point of 
�, i.e.

φ = d(dX̃−) = d

[
1√
W̃

(P̃dX̃ + ¯̃S�−d�̃)

]
= 0. (14)

The second condition, since the left-hand member is an exact form 
( X̃− is single valued), then the right-hand member must also be 
exact. This restriction is imposed by taking the periods around the 
homology basis to be zero, i.e.

ϕk =
∫

dX̃− =
∫

1√
W̃

(P̃dX̃ + ¯̃S�−d�̃) = 0, (15)
Ck Ck
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where Ck (k = 1, .., 2g for g > 1) are the homology basis of one-
cycles over �. They correspond to the local and global first class 
constraints associated with the residual symmetry of Area Preserv-
ing Diffeomorphisms (APD).

Now it is possible to write the Hamiltonian of the theory as,

H = 1

2P 0−

∫
�

d2σ
√

W̃

[(
P̃√
W̃

)2

+ T 2
M2

2
{ X̃ M , X̃ N}2

− 2T M2 P 0−
¯̃
��−�M{ X̃ M , �̃}

]
. (16)

Now one can compactify the M2-brane Hamiltonian on M9 × T 2

and take as a base manifold a regular genus-two Riemann surface 
�2. Thus, due to the compact dimensions, the embedding maps 
can be decomposed as X̃ M = ( X̃m, X̃r), with m = 1, ..., 7 labeling 
the noncompact dimensions and r = 1, 2 the compact ones associ-
ated with the 2-torus. The X̃m maps �2 to the transverse subspace 
of M9 while X̃r maps �2 to the target T 2.

Hence, the Hamiltonian of the supermembrane can be written 
as

H = 1

2P 0−

∫
�2

d2σ
√

W̃

[(
P̃m√

W̃

)2

+
(

P̃r√
W̃

)2

+ T 2
M2

2
{ X̃m, X̃n}2

+ T 2
M2{ X̃m, X̃r}2 + T 2

M2

2
{ X̃r, X̃ s}2 − 2T M2 P 0−

¯̃
��−�m{ X̃m, �̃}

− 2T M2 P 0−
¯̃
��−�r{ X̃r, �̃}

]
, (17)

subject now to the following ive APD constraints

φ = d

[
1√
W̃

( P̃mdX̃m + P̃rd X̃r + ¯̃S�−d�̃)

]
= 0, (18)

ϕk =
∫
Ck

1√
W̃

( P̃mdX̃m + P̃rd X̃r + ¯̃S�−d�̃) = 0, (19)

where k = 1, ..., 4.
We will use these expressions in the subsequent sections of the 

paper.

3. Parametrization of the twice punctured torus

In this section, we recall some useful results about the rela-
tion between the Light Cone diagram (LCD) and the torus with 
two punctures �1,2 (see Fig. 1) needed to describe the massive 
supermembrane formulation. The Light Cone diagram is a two di-
mensional flat strip with identifications and prescribed segments 
whose curvature becomes infinite at some points. These results are 
the base of the massive supermembrane formulation [7] and they 
will be useful in the next sections. The relation between these two 
surfaces is given by the Mandelstam map (see [20,21])

F (z) = α ln

[
�1(z − Z1|τ )

�1(z − Z2|τ )

]
− 2π iα

Im(Z1 − Z2)

Imτ
(z − z0), (20)

where �1(z, τ ) are the Jacobi functions and Zr with r = 1, 2 are 
the positions of the punctures in a complex coordinates over the 
torus. The set of parameters necessary to characterize the torus 
with two punctures are the Teichmüller parameter, τ , and the po-
sitions of the Punctures, Zr . On the twice punctured torus the 
coordinate system z is defined in terms of the holomorphic one-
form dz satisfying

d

w

is
in
p
fo

2

It
a
v
T
o

G

H

O
t

G

H

w

D

F
w

H

H

4

s
[
a
t
M
w
s
o
s
d
o
w
k
r
w
(

3

z = dX̂1 + τdX̂2, with
∫
Ck

d X̂r = δr
k, (21)

here dX̂r is a set of real normalized forms over the regular torus.
On the other hand, the set of parameters that describe the LCD 

 given by the external momenta α, the internal momenta βr , the 
teraction time T , and the twist angles θr . Then in order to com-

lete the equivalence between the two surfaces, (see Fig. 1), the 
llowing relation between both sets of parameters is required

π i(Z1 − Z2) = (θ1 + θ2)β1 − αθ2 − 2π iβ1τ . (22)

 is useful to decompose the Mandelstam map in terms of its real 
nd imaginary parts, that is F = G + iH . The function G is single 
alued, but dG is harmonic, since it has poles at the punctures. 
he function H is multivalued and dH is harmonic. The behavior 
f each function near the punctures is given by

∼ (−1)r+1α ln |z − Zr |, (23)

∼ (−1)r+1αϕ, with ϕ ∈ (0,2π) (r = 1,2). (24)

n the other hand, near the zeros of dF , denoted as Pa , the func-
ions G and H can be written as

(z) − G(Pa) ∼ 1

2
Re(D(Pa)(z − Pa)

2), (25)

(z) − H(Pa) ∼ 1

2
Im(D(Pa)(z − Pa)

2), (26)

here

(Pa) =
2∑

r=1

(−1)r+1
[

∂2
z �1(Pa − zr, τ )

�1(Pa − zr, τ )

−
(

∂z�1(Pa − zr, τ )

�1(Pa − zr, τ )

)2]
.

inally, we recall some properties of the functions K and H that 
ill be useful in the next section,

G(z + 1) − G(z) = G(z + τ ) − G(z) = 0 (27)

(z + 1) − H(z) = 2πα
Im(Z2 − Z1)

Im(τ )
, (28)

(z + τ ) − H(z) = 2πα Im((Z2 − Z1)τ̄ )

Im(τ )
. (29)

. Massive supermembrane

In this section, we present a new formulation of the massive 
upermembrane and its connection with the formulation found in 
7]. Specifically, in order to make clearer the surface terms that 
ppear in the supersymmetric algebra, we use a different approach 
han [7]. Instead of considering the supermembrane formulated in 

9 × LC D on a twice punctured torus as the base manifold, we 
ill start with the M2-brane on a compact genus-two Riemann 

urface �2 as the base manifold in M9 × T 2 as the target space. In 
rder to establish a connection with the formulation of the massive 
upermembrane [7], we will take a specific limit to deform �2 as 
escribed in the Fig. 2. That is, we will assume that one of the radii 
f the handles of the genus two surface tends to zero. As a result, 
e can expand the maps Xm , Xr , and � in a Fourier series and 

eep only the order zero of the variable associated with the small 
adius. Thus, under these considerations, the supermembrane maps 
ill depend only on the coordinate along the handle (see Fig. 2-

b)). In this way, we get a string-like configuration like the ones 
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Fig. 1. The torus with two punctures and the one loop interaction string diagram with one incoming/outgoing string. The Mandelstam map send the punctures over the torus 
to ±∞ in the LCD.
Fig. 2. (a) The genus two regular Riemann surface �2. (b) A deformation of �2. (c) 
The surface �̃1,2 obtained by taking one of the radii of �2 tending to zero. This 
correspond to a singular T 2 with a string attached to it.

described in [22]. Thus, we will end up with a surface, that we 
will denote �̃1,2, which is a twice punctured torus �1,2 with a 
string attached to the punctures (see Fig. 2-(c)). Then we will also 
deform the target T 2 to a LC D surface. Thus, the metric that we 
shall define over the LC D on the target is given by

ds2 = l2dĜ2 + dH2 = dK 2 + α2dĤ2, (30)

where Ĥ = H/α, Ĝ = G/α and l is constant with length units.
Now we can describe the dependence of the M2-brane fields 

in two regions. The first one is the definition of the maps on �1,2

and the second one is the string attached to it that we shall denote 
as γ2. Then, given a coordinate system, z (given in the previous 
section), over �1,2 and defining as u the coordinate associated to 
γ2 we can write

( X̃m, �̃) =
{

(Xm(t, z, z̄),�(t, z, z̄)) over �1,2
(Y m(t, u),�(t, u)) over γ2

, (31)

and

X̃r =
{

X K (t, z, z̄)δr
1 + X H (t, z, z̄)δr

2 over �1,2
Y r(t, u) over γ2

. (32)

The maps X K and X H are defined as in [7], i.e.,

X K = K + AK , X H = H + AH , (33)

where m is an integer and the 1-forms dAK , dAH are exact over 
�1,2

Under all this consideration, as discussed in [22,1], the string 
we are considering does not change the supermembrane energy 
and therefore we can write

H =
∫

�2→�̃1,2

H =
∫

�1,2

H. (34)

The string-like configuration that we are considering here has 
no M2-brane dynamics associated with it. This is so because it 
does not have any contribution to the Hamiltonian of the theory. 
Thus, without losing generality, we can impose
4

Y m
s (u, t) = const, Y r

s (u, t) = const, �s(u, t) = const, (35)

which implies

Xm

∣∣∣∣
Z2

Z1

= �

∣∣∣∣
Z2

Z1

= 0. (36)

On the other hand, since the Y r
s (u, t) are single value functions, it 

is reasonable to consider that AK and AH are continuous functions 
of Y r . Consequently,

AK

∣∣∣∣
Z2

Z1

= AH

∣∣∣∣
Z2

Z1

= 0. (37)

At this point, we can follow the same steps presented in [7] to 
analyze the Hamiltonian over �1,2. Specifically, we shall define the 
world-volume metric, over �1,2, as

√
W = 1

4π
εrs∂r K̂∂s Ĥ, (38)

where K ≡ tanh Ĝ . Then we can fix the gauge

{K , AK } + m{H, AH } = 0. (39)

In order to deal with the singular behavior of the metric at the 
punctures and zeros we shall cut the fundamental region of �1,2, 
that we will call �1,2, through a closed curve that circumvents the 
two punctures, and the zeros with a radius ε and touch a point 
O  ∈ ∂�1,2, see Fig. 3 (see [23]). We shall denote as Cr the curves 
around the punctures, Dr the curves around the zeros, and as I j , 
with j = 1, .., 4, to all the curves in between. Following the discus-
sion presented in [7], it is clear that the curves I j can be chosen 
as curves H = cte. The we will denote as �′ the resulting region 
after cutting �1,2.

Under all these considerations, the Hamiltonian of the theory 
can be written as (see [7] for more details)

H = (lαT M2m)2

2P+
0

+ 1

2P+
0

lim
ε→0

∫
�′

dσ 2
√

W

[(
Pm√

W

)2

+
(

P K√
W

)2

+
(

P H√
W

)2

+ T 2
M2

(
1

2
{Xm, Xn}2 + 2{Xm, K }{Xm, AK }

+ m2{Xm, H}2 + {Xm, K }2 + {Xm, AK }2 + {Xm, AH }2

+ m2{H, AK }2 + 2m{Xm, H}{Xm, AH } + 2m{H, AK }{AH , AK }
+ {K , AK }2 + 2{AH , K }{AH , AK } + {AH , AK }2 + {K , AH }2

+ {H, AH }2
)

− 2P+
0 T M2(�̄�−�m{Xm,�} + �̄�−�K {AK ,�}

+ �̄�−�H {AH ,�} + �̄�−�K {K ,�} + �̄�−�H {H,�})
]
. (40)
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Fig. 3. The region �′ obtained by cutting �1,2 through the curves C1, C2 and I . The path obtained by the union of the curves C1, I , C2 and I−1 is denoted by c.
By defining

f ≡
(

P K√
W

dX K + P H√
W

dX H + Pm√
W

dXm + �̄�−d�

)
,

let us now discuss the constraints after deforming �2. First, we 
have the local APD constraint given by

df = 0. (41)

On the other hand, we have also four global constraints, the first 
two are associated with the homology basis of cycles defined over 
the regular torus (see Fig. 4-(a)), i.e.

ζ1 ≡
∫
a

f = 0, and, ζ2 ≡
∫
b

f = 0 (42)

We have another constraint associated to the singularities

ζ3 ≡
∫
C1

f = 0. (43)

This constraint arises from the homology curve of �2 around the 
handle, whose radius was sent to zero to get the string-like con-
figuration. The final constraint is the one associated with the ho-
mology curve along the deformed handle of �2, shown in Fig. 4, 
which is still present after deforming �2 into �̃1,2.

ζ4 ≡
∫
y

f = 0. (44)

Notice, that we could not write ζ4 directly in terms of K , H . This 
is because the curve γ is defined in both, �1,2 and in the string 
attached in the punctures. Thus, it is convenient to separate the 
curve γ into two pieces (see Fig. 4-(b)) and we will denote as γ1

and γ2. The curve γ1 is the part of γ defined over �1,2 and γ2

corresponds to the string with end points at the punctures. Now, 
because of (35), we can write

ζ4 =
∫
γ1

f = 0. (45)

In the following, we will list some of the features of the massive 
supermembrane Hamiltonian. From Eq. (40) it can be seen that it is 
very different from a standard compactification of the M2-brane on 
a S1. Firstly, it contains a mass term associated with the nontrivial 
topology of the LC D on the target space given by

lim
ε→0

∫
′

dK ∧ dĤ
α m2

4
{K , Ĥ}2 = 2παl m2 (46)
�

5

Fig. 4. (a) Nontrivial cycles over �̃1,2. (b) The curve γ and his decomposition into 
the curves γ1 and γ2.

This term can be interpreted as the uplift to ten non compact 
dimensions of the central charge condition proposed in [24]. In 
second place, it possesses non vanishing mass terms associated 
with the dynamics fields Xm , AK and AH , these are

(∂K Xm)2 + ( ∂Ĥ Xm)2 �= 0, (∂K AK )2 + (∂Ĥ AK )2 �= 0,

(∂K AH )2 + (∂Ĥ AH )2 �= 0.

Thus, the fermionic potential is dominated by the bosonic potential 
due to these non-vanishing quadratic contributions to the Hamil-
tonian. This fact, together with the structure of the rest of the 
potential, ensures that the Hamiltonian satisfies the discreteness 
sufficient condition found in [25], as formerly shown in [7].

Finally, we would like to mention that taking as a starting point 
a compact Riemann surface of genus two, is the simplest case, but 
it is not the only possibility to find massive terms in the Hamilto-
nian of the theory.

5. Supersymmetric transformations

In this section, we will analyze the supersymmetry of our for-
mulation of the massive supermembrane. Thus, we shall follow the 
same procedure presented in the previous section, that is, we will 
begin with the M2-brane over a regular compact genus two Rie-
mann surface. In general, the supermembrane action (in the light 
cone gauge) is invariant under the following supersymmetric trans-
formations originally found in [12],

δ X̃ M = −2η̄�M�, (47)

δ� = 1

2
�+(D0 X̃ M�M + �−)η + T M2

4P+
0

{ X̃ M , X N}�+�MNη (48)

δω = −2
T M2

P+
0

η̄�, (49)

provided the following boundary terms are equal to zero
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P+
0 δL

T M2
= −

∫
R

dt

∫
�

d

[
�̄�−�MdX̃ Mδ� + 2�̄�M�−η

+ 2�̄�MNη∂t X̃ MdX N − 2

3
(�̄�−d�η̄� − η̄�M��̄�−�Md�)

]

+ lim
ε→0

∫
�′

d2σ

∫
R

dt∂t

[√
W �̄�−∂� − 2

√
W �̄�−η

+ √
W �̄�MNη{ X̃ M , X N}

]
= 0, (50)

where η is a constant spinor.
Notice that, in this surface term, only the derivatives of the 

maps X are displayed, which are single-valued. Thus, since � is 
also a single-valued and we are considering a compact regular Rie-
mann surface as a base manifold, this surface term is identical to 
zero. Moreover, this allows us to conclude that, at least from this 
surface term, there are no restrictions to the supersymmetric pa-
rameter, η, when we take the limit �2 → �̃1,2.

On the other hand, in [7], it was shown that in order to pre-
serve the topological term given in equation (46) and the mass 
terms in the Hamiltonian that lead to the good spectral properties 
of the Hamiltonian, we need to impose the following condition

�+
(

�− + 1

2
�K H

)
η = 0, (51)

which implies that half of the supersymmetry is broken, in distinc-
tion with the case of a supermembrane on a torus.

6. Supersymmetric algebra

Following our analysis of the supersymmetric properties of 
the massive supermembrane, in this section we shall present the 
supersymmetric algebra of the massive supermembrane. Specifi-
cally, we will compute the supersymmetric charges and their Dirac 
brackets. As before, we will begin with the formation of the M2-
brane over �2. From (16) we can derive the supercharge density 
associated with the transformations (47)-(49)

J 0 = P+
0

√
W̃

[
2(∂0 X̃M�M + �−) + T M2

P+
0

{ X̃ M , X̃ N}�MN

]
�. (52)

Thus the supersymmetric charges, defined as

Q ± = 1

2
�±�∓ Q , Q =

∫
�2

dσ 2 J 0, (53)

can be written as

Q + =
∫
�2

dσ 2[2 P̃ M�M + T M2

√
W̃ { X̃ M , X̃ N}�MN ]�̃, (54)

Q − = 2P+
0 �−

∫
�2

dσ 2
√

W̃ �̃. (55)

The only non trivial Dirac’s brackets in our case (arising from 
the standard Dirac approach in the presence of second class con-
straints), are given by

{ X̃ M(σ ), P N(σ ′)}D.B = δM
N δ2(σ − σ ′), (56)

{�α(σ ),�β(σ ′)}D.B = 1

4
√

W̃ P+
0

(�+)αβ δ2(σ − σ ′), (57) �
6

where we are considering that σ and σ ′ are the coordinates of two 
points inside �2. With these expressions and using the Gamma 
matrices properties (see [26]) we get

{Q −
α , Q −

β }D.B = −2P+
0 (�+)αβ, (58)

{Q +
α , Q −

β }D.B = −(�M�+�−)αβ P M
0

− T M2

2
(�MN�+�−)αβ

∫
�2

dσ 2
√

W̃ { X̃ M , X̃ N}, (59)

{Q +
α , Q +

β }D.B

= 2(�+)αβ H − 2T M2(�
+�M)αβ

∫
�2

dσ 2
√

W̃ { X̃−, X̃ M}. (60)

Notice that this is the most general form of the supersymmetric 
algebra for the supermembrane found in [27,28]. Now we can ana-
lyze the surface terms in detail. However, since we are considering 
the limit �2 → �̃1,2, the surface term in the last two terms leads 
to several differences. This is due to the two singular points result-
ing from the deformation of �2. From the general superalgebra in 
eleven dimensions (see for example [29,30]) it can be seem that 
the surface terms can be interpreted in terms of tensorial charges. 
Specifically, the surface term in (59) and (60) are related to the 
charges Z MN and Z+M , respectively. As is discussed in [31], the 2-
form Z MN gives a 2-brane charge, and it has been conjectured that 
the dual of the from Z+M gives a 9-brane charge.

Now, let us analyze in detail the surface terms beginning with 
the one in (59). In the limit �2 → �̃1,2 it can be shown that∫
�2

dσ 2
√

W̃ { X̃ M , X̃ N} →
∫

�̃1,2

dσ 2
√

W {X M , X N}. (61)

Thus, following the same arguments of section I V , we can also 
write∫
�̃1,2

dσ 2
√

W {X M , X N} =
∫

�1,2

dσ 2
√

W {X M , X N}

= lim
ε→0

∫
�′

dσ 2
√

W {X M , X N}.

The only non-trivial contributions of this term are given by

lim
ε→0

∫
�′

dσ 2
√

W {X M , X N} = lα

4π
lim
ε→0

∫
�′

[δM
K (

1

2
dK̂ ∧ dĤ

+ dÂK ∧ dĤ) + δM
m dX̂m ∧ dĤ]δN

H − (M → N).

This can be simplified to obtain

lim
ε→0

∫
�′

dσ 2
√

W {X M , X N}

= lα

[
1

2
δM

K +
(

δM
m

∫
γ1

dXm + δM
K

∫
γ1

dAK
)]

δN
H − (M → N). (62)

Now, we can a analyze the surface term in (60). Following the 
same idea of the previous case, we can write (in the limit �2 →
�̃1,2)∫
˜ 1,2

dσ 2
√

W {X−, X M} =
∫

�1,2

dσ 2
√

W {X−, X M},

which leads to
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∫
�′

dσ 2
√

W {X−, X M} =
(

lim
ε→0

∫
�′

X Mφ + ζ2

∫
a

dX M − ζ1

∫
b

dX M

+ lα

4π
lim
ε→0

[∑
r

(∫
Cr

+
∫
Dr

)
+

∑
u

(∫
Iu

+
∫

Iu−1

)]
X MdX−

)
. (63)

Since X MdX− is well defined at Pr , the limit ε → 0 of the integral 
over Dr is equal to zero. The integrals around the punctures lead 
to

lim
ε→0

∑
r

∫
Cr

X MdX− = −
∫
γ1

dX M
∫
C1

dX− = −
∫
γ1

dX Mζ3.

Moreover, it can be proved that∑
u

(∫
Iu

+
∫

Iu−1

)]
X MdX− = −2παδM

H

∫
γ1

dX−.

Thus, the final form of the massive supermembrane algebra is 
given by

{Q −
α , Q −

β }D.B = −2P+
0 (�+)αβ, (64)

{Q +
α , Q −

β }D.B = −(�M�+�−)αβ P M
0 − Tαl

2
(�M H�+�−)αβδM

K ,

(65)

{Q +
α , Q +

β }D.B = 2(�+)αβ H − 2T (�+�M)αβ

[
lim
ε→0

∫
�′

X Mφ1

+ 2παδM
H

Im(τ )

(
Im(Z2 − Z1)ζ2 − Im((Z2 − Z1)τ̄ )ζ1

)

− 2

(
lδM

K ζ3 + παδM
H ζ4

)]
. (66)

At this point, the following comments are in order:

• In [7], the massive supermembrane is interpreted as the uplift 
to ten non compact dimensions of the supermembrane with 
C± fluxes and parabolic monodromy. Then, we can interpret 
(64)-(66) as the generalization of the M2-brane super algebra 
when the world volume of the theory is a twice punctured 
torus.

• In (65), we get a constant term that is analogous to the 
fluxes/central charge contribution to the super algebra pre-
sented in [32]. However, in the present case, this term is not 
proportional to an integer.

• We showed that the surface term in (66), can be written in 
terms of the constraints of the theory. The terms related to 
the constraints are analogous to the case without punctures 
(see [32]). However, in our case, we have two extra global con-
straints related to the punctures. Moreover, the multiplicative 
factors of each are related to the moduli of the twice punc-
tured torus, while in [32] are the winding numbers of the 
theory.

7. Area preserving diffeomorphisms

Another relevant symmetry of the supermembrane theory is the 
invariance under APD. In this section, we will discuss the realiza-
tion of this symmetry in the massive supermembrane formulation. 
As discussed in previous sections, the Hamiltonian of the super-
membrane on �̃1,2 is the same as in �1,2. Thus we will restrict 
ourselves to the analysis of the APD for the Hamiltonian given by 
(40). Under APD connected to the identity, any functional O of the 
canonical variables transforms as
7

δξ O =
{

O ,< dξ ∧
(

P M√
W

dX M + �̄�−d�

)
>

}
P .B.

, (67)

where, in this case corresponds to

< dξ ∧
(

P M√
W

dX M + �̄�−d�

)
>

= lim
ε→0

∫
�′

(
P M√

W
dX M + �̄�−d�

)
. (68)

In these expressions, ξ , is the infinitesimal parameter of the trans-
formation. This parameter defines globally a closed 1-form dξ . 
Thus, ξ is globally defined over �′ , that is, the dξ is an exact form. 
If ξ is not globally defined, then dξ is a closed but not exact form. 
It can be verified that the following APD transformations hold for 
the massive supermembrane

δξ X M = {ξ, X M}, δξ P M = √
W

{
ξ,

P M√
W

}
, δξ� = {ξ,�}.

(69)

They are the same as the ones found in [12] and [33] describing 
the case of the supermembrane on a flat Minkowski spacetime. 
They also hold for the supermembrane with central charge [4]. 
Now, in order to determine the symmetries of the massive super-
membrane under area preserving diffeomorphims non connected 
to the identity, we shall start by recalling the non punctured case. 
For these transformations, the homology basis defined over a two 
torus without punctures transforms as

dX̂ i → Si
jd X̂ j, S ∈ Sl(2,Z), (70)

while

τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ Sl(2,Z). (71)

Thus, from (20), it can be found that, under these transformations, 
the Mandelstam map transforms as

F

(
z

cτ + d
,

Z1

cτ + d
,

Z2

cτ + d
,

aτ + b

cτ + d

)

= F (z, Z1, Z2, τ ) + iπc

cτ + d
(Z 1

1 − Z 2
2), (72)

implying that dF (and therefore dG and dH) is invariant under 
APD connected and non connected to the identity. However, the 1-
form dK is invariant under the APD connected to the identity but 
it may not be invariant under the not connected to the identity 
transformations. Indeed, we get

dK → 1 − K 2
0

(1 + K0 K )2
dK , K0 = tanh

[
Re

(
iπc

cτ + d
(Z 1

1 − Z 2
2)

)]
.

(73)

It is clear that the massive supermembrane action will be invariant 
under APD non connected to the identity as long as dK is invari-
ant under these transformations. Thus, the only possible transfor-
mation in Sl(2, Z) that satisfy this requirement is when c = 0. 
In other words, the massive supermembrane is invariant under 
APD connected to the identity, but it is only invariant under the 
parabolic subgroup of Sl(2, Z), transforming isotopy classes of not 
connected to the identity APD. The massive supermembrane dis-
cussed in this work (see also [7]), represents an explicit realization 
of Hull’s conjecture about the origin, in M-theory, of Roman’s su-
pergravity in terms of torus bundles with parabolic Sl(2, Z) mon-
odromy.
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In [7], it was presented the relation between the monodromies 
defined over a twice punctured torus and the nontrivial (1,1)-
Knots. This relation is based on an epimorphism � between the 
mapping class group of the twice punctured torus (MC G(�1,2)) 
and the mapping class group of the regular torus (MC G(�))

� : MC G(�1,2) → MC G(�) ∼= Sl(2,Z). (74)

Now, since our M2-brane formulation is only invariant under 
the Sl(2, Z) parabolic subgroup, the monodromies are also re-
stricted to this subgroup as shown in [7]. Furthermore, this could 
be classified by all the non trivial (1,1)-Knots that, under �, are 
mapped into the parabolic subgroup of Sl(2, Z).

8. Conclusions

We obtained the supersymmetric algebra of the massive Super-
membrane with target space M9 X LC D and base manifold a punc-
tured torus. The LC D is taken to be conformally equivalent to a 
punctured torus. The target space has ten non-compactified dimen-
sions and a nontrivial compactification on the 11th one. The com-
pactified dimension is not homeomorphic to a circle. The worldvol-
ume considered corresponds to a 2-genus Riemann surface where 
a zero limit radius has been imposed on one homology cycle. The 
Hamiltonian of this construction shows in an explicit way the role 
of surface terms generated by the singularities. The surface terms 
are expressed in terms of the local and four global APD constraints. 
The construction can be generalized to more punctures, although 
the explicit construction will become more cumbersome. We also 
discuss the invariance of the massive M2-brane under APD. We 
also show, using a different argument than the one in [7], that only 
parabolic Sl(2, Z) symmetry among isotopy classes is preserved, in 
agreement with Hull’s conjecture about the M-theory origin of 10D 
massive Romans supergravity.
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