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Abstract: The determination of bunch features that are relevant for bunch weight estimation is an
important step in automatic vineyard yield estimation using image analysis. The conversion of 2D
image features into mass can be highly dependent on grapevine cultivar, as the bunch morphology
varies greatly. This paper aims to explore the relationships between bunch weight and bunch features
obtained from image analysis considering a multicultivar approach. A set of 192 bunches from four
cultivars, collected at sites located in Portugal and South Africa, were imaged using a conventional
digital RGB camera, followed by image analysis, where several bunch features were extracted, along
with physical measurements performed in laboratory conditions. Image data features were explored
as predictors of bunch weight, individually and in a multiple stepwise regression analysis, which
were then tested on 37% of the data. The results show that the variables bunch area and visible
berries are good predictors of bunch weight (R2 ranging from 0.72 to 0.90); however, the simple
regression lines fitted between these predictors and the response variable presented significantly
different slopes among cultivars, indicating cultivar dependency. The elected multiple regression
model used a combination of four variables: bunch area, bunch perimeter, visible berry number, and
average berry area. The regression analysis between the actual and estimated bunch weight yielded a
R2 = 0.91 on the test set. Our results are an important step towards automatic yield estimation in the
vineyard, as they increase the possibility of applying image-based approaches using a generalized
model, independent of the cultivar.

Keywords: visible berries; bunch area; grape pixels; bunch morphology; yield estimation;
Vitis vinifera L.

1. Introduction

Grapevine yield estimation is a subject of utmost importance for the wine and vine
business [1]. Accurately estimating the amount of fruit in the vineyard can provide advan-
tages to the farmer regarding harvest logistics, cellar management, wine stock management,
and even marketing strategies [2]. However, spatial and temporal variability in vineyard
blocks [3–5] make this task extremely challenging [6]. Current commercial methods are
based on manual bunch sampling, which is destructive, laborious, and time-consuming. In
general, all standard methods are dependent on bunch weight, either measured or histori-
cal, and are then extrapolated for the entire vineyard or plot. Conventional methods usually
present errors close to 30%, depending on sampling methods and vineyard variability [7].

Recently, sensor-based technology has been developed to address the challenge of
bunch weight estimation [8]. In particular, image analysis has shown the most promis-
ing results regarding this topic. If used thoroughly, it has the potential of inspecting a
great number of bunches or vines in a short period of time, resorting less to the extrapo-
lation of data, thus being less prone to errors caused by spatial and temporal variability.
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Victorino et al. [9] showed that several bunch features are highly correlated with bunch
weight, highlighting bunch volume, bunch projected area, and visible berry number in a
two-dimensional image. These yield components have also been discussed in other works
such as Dunn and Martin [2] and Diago et al. [10].

Bunch area (or pixels) has been explored to estimate bunch or vine yield by Lopes
et al. [11] and Milella et al. [12]. In the last case, the authors proposed an automatic
bunch segmentation using convolutional neural networks for pixel classification. Three-
dimensional data (RGB-D images) have also been used to estimated bunch weight and
compared to two-dimensional imaging, on cv. Syrah [13]. The authors concluded that
although 3D data outperformed 2D in a controlled lab environment (R2 = 0.89 with RGB,
compared to 0.95 with RGB-D, observed vs. estimated data), in field conditions, at a vine
level, 3D data were not as reliable (R2 = 0.88 with RGB, compared to 0.59 with RGB-D,
observed vs. estimated data).

An automatic berry counting algorithm was developed by Aquino et al. [14], where
the number of visible berries in two-dimensional vine images was used to estimate bunch
weight and vine yield on several cultivars, by multiplying the berry number by historical
berry weight data. In this case, the images were collected at night using artificial lighting
and the method achieved a R2 value of 0.78 between the observed and estimated yield. Liu
et al. [15] developed a fast, calibration-free algorithm for berry counting. The algorithm
uses two-dimensional bunch images taken in field conditions with an artificial background
and attempts to reconstruct the bunch in three-dimensions, estimating the occluded berries.
The authors used this reconstruction to estimate bunch weight, obtaining an accuracy of
92% in two cultivars [15]. Other works used similar approaches, most including machine
learning techniques, to achieve the same goal in different cultivars and conditions [1,15–18].
However, the relationship between bunch area or visible berries and bunch weight pre-
sented different results in multivariate scenarios (e.g., [1,16]), the first being mentioned to be
cultivar-dependent in previous research [10,19]. Furthermore, in a 2D bunch image, as only
a fraction of berries is visible, and an intermediate step (estimation of total berry number)
is needed before estimating bunch weight. The relationship between visible berries and
total berries is also cultivar dependent, as it depends on the shape of the bunch [20].

OIV [21] describes different ways to characterize grape bunch morphologic traits
through code descriptors. Some of these codes describe the following traits (e.g.,):

• Code 202: bunch length;
• Code 203: bunch width;
• Code 204: bunch compactness;
• Code 208: bunch shape;
• Code 220: berry length;
• Code 221: berry width;
• Code 222: berry size uniformity;

All these traits can vary among cultivars and even within bunches of the same cultivar,
and can have an impact when trying to convert bunch image features into bunch weight.
Even though several studies have successfully estimated bunch weight using image analy-
sis [22–24], this task still poses several challenges. The main challenges are linked to the
following: (i) image background noise and need for using complex algorithms or artificial
backgrounds to avoid or remove it [10]; (ii) 2D imaging of a 3D object, which neglects
berries that are occluded by other berries or vegetation [25]; and (iii) cultivar dependency,
as most relationships between bunch weight and other bunch features changes with the
cultivar mainly due to differences in bunch architecture [26,27]. Bunch features like bunch
size or bunch compactness can also vary when subject to different management practices
or edaphoclimatic conditions [28].

Considering the above-mentioned challenges, in this study, we do not intend to
develop a ready-to-use yield estimation protocol. Our main objective is to explore the
relationships between bunch weight and bunch features obtained from 2D image analysis
in four different cultivars (multicultivar approach). To address the challenge of cultivar
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dependency, a simplified protocol is proposed, which focuses on using features that have
already been proven to be able to be automatically extracted from images, and attempting
to reach the best performing model for multicultivar bunch weight estimation.

2. Materials and Methods
2.1. Site Characterization and Trial Description

The experiment was performed in two vineyards located in different countries from
different hemispheres: Portugal (Site PT) and South Africa (Site SA).

The PT site is an experimental vineyard located in the Lisbon winegrowing region, at
Instituto Superior de Agronomia campus, Lisbon, Portugal (38◦42′24.61′′ N, 9◦11′05.53′′ W).
It is located 70 m above sea level and includes two different plots with spur pruned vines
trained on a vertical shoot positioning trellis system with two pairs of movable wires.
In the PT site, the season presented a dry spring (119 mm of precipitation from March
to June) and a very dry and warm summer (17 mm of precipitation and average mean
temperature of 20.6 ◦C, from June to September). The first plot included two drip-irrigated
white Portuguese autochthonous cultivars (Encruzado and Arinto) grafted onto 1103 Paulsen
rootstock, planted in 2006. Both cultivars were trained on a unilateral Royat cordon and
were spaced 1.0 m within and 2.5 m between north−south oriented rows. Water was
supplied with a drip irrigation system, which was managed using a soil water probe.
Readily available water was maintained until veraison, at which point stress was applied
by allowing the soil water to reach values below the refill point. The refill point was
defined using predawn leaf water potential thresholds established for white wines at our
site (~−0.3 MPa). The second plot was rainfed and consisted of the cultivar Syrah (grafted
onto 140 Ruggeri rootstock) planted in 1999. Plants were trained on a bilateral Royat cordon
and spaced 1.2 m within and 2.5 m between north−south oriented rows. In both plots, the
soil was a clay loam with 1.6% organic matter and a pH of 7.8 [29].

The SA site is a commercial Cabernet Sauvignon vineyard located at Stellenbosch wine
region in the Western Cape, South Africa (33◦54′10.4′′ S, 18◦55′12.9′′ E), 430 m above
sea level. Plants were grafted onto 101-14 MGt (101-14 Millardet et de Grasset) rootstock,
spur-pruned, and trained on a vertical shoot positioning trellis system with two pairs
of movable wires. Vines were planted in 2003 on a bilateral Royat cordon and spaced
2.0 m within and 2.5 m between north−south oriented rows. Water was supplied with a
drip irrigation system and irrigation was managed within commercial standards using
the midday stem water potential with a threshold for water stress conditions of −0.9 MPa
as an indicator. At the SA site, the season presented a spring with an average rainfall
(205 mm of precipitation from September until December 2020) and a warm summer with
some precipitation (~100 mm of precipitation and an average temperature of 21 ◦C from
December until April).

2.2. Data Set

The PT site data were collected during the 2019 season, near harvest (August 2019).
Samples of 48, 71, and 60 bunches of cvs. Arinto, Encruzado, and Syrah, respectively, were
collected from four different plants per cultivar, located randomly across the vineyard
(Figure 1A–C).

As shown in the example of Figure 1C, the bunches from cultivar Syrah were uncom-
monly loose compared to the typical Syrah bunch as a result of a lower fruit set caused by
unfavorable weather conditions during flowering. A black metal spring was used as scale
(5 cm wide) on images collected at the PT site (Figure 1A–C), while a black square (3 cm2)
was used at the SA site (Figure 1D).
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Figure 1. Bunch images collected in lab conditions from cultivars Arinto (A), Encruzado (B), and
Syrah (C) at the PT site in 2019 and cultivar Cabernet Sauvignon (D) at the SA site in 2021.

The SA site data were collected during the 2020–2021 season, near harvest (March
2021). A sample of 96 bunches from 16 different vines of the cultivar Cabernet Sauvignon
(hereinafter referred to as Cabernet) located across the vineyard was collected and taken to
lab conditions.

Different numbers of bunches were analyzed for different cultivars and sites. However,
to prevent possible modelling bias from different sample sizes, each sample was reduced
to the lowest number of bunches, 48 from cv. Arinto, using a randomized selection process.
A complete description of the collected data set is presented in Table 1.

Table 1. Description of the data set collected for the four studied cultivars.

Cultivar Vine Age Site N◦ of
Bunches

Vine Spacing
Row × Interrow; m)

Training
System Pruning System Irrigation

Arinto 13 PT 48 1.0 × 2.5 VSP Unilateral Royat Deficit drip
Cabernet 18 SA 48 2.0 × 2.5 VSP Bilateral Royat Drip

Encruzado 13 PT 48 1.0 × 2.5 VSP Unilateral Royat Deficit drip
Syrah 20 PT 48 1.3 × 2.5 VSP Bilateral Royat Rainfed

VSP: vertical shoot positioning.

2.3. Data Collection and Image Analysis

At the PT site, bunch images were collected, in lab conditions, using a commercial
camera (Nikkon D5200, Nikon Inc., Melville, NY, USA) mounted on a tripod, approximately
50 cm away from the hanging bunches. A blue background was used to prevent noise
caused by surrounding objects and to improve color thresholding for bunch segmentation.
At the SA site, the image collection methods were similar, except for the background
color, which was white, in order to improve the color contrast, particularly with red grape
cultivars. In the lab, at both sites, all bunches were weighed (Bw), imaged (hung by
the peduncle, in a random position), and the total number of berries per bunch were
counted (Tb).

Image analysis was performed using a customized script written in Matlab (R2020a,
The Mathworks, Natick, MA, USA) and using ImageJ (version 1.44p, National Institutes
of Health, USA). From each bunch image, the following variables were extracted: bunch
projected area (BA; cm2), bunch perimeter (BP; cm), average berry area (bA, cm2), and
visible berry number (Vb). BA and BP were estimated using a color threshold tool in the
L*a*b color space, adapted to each image type (e.g., different cultivars, background, or
lighting conditions). This process was performed in a loop for all cases, and all images
were inspected individually after processing. bA was estimated from a subsample of three
full berries (fully visible) of each bunch that were selected manually in the image. This
number of berries was used in order to keep the methodology simplified, so as to possibly
automate it in the future, and was representative of each bunch. The bA was then computed
using Matlab’s Hough transform function (hough function), which is designed to detect
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lines (or curves) in an image [30]. Vb was obtained manually from the images, by clicking
each berry in the image and marking the berries already counted. In all cases where it
made sense, pixels were converted into cm2 using references in the image with known
dimensions (black spring in PT images and black square in SA images; Figure 1). The
description of the image analysis sequence is presented in Figure 2. Bunch compactness
was visually evaluated from the images, with a panel of eight judges, according to OIV
descriptor n◦204 [21], which classifies bunches into five categories, based on the mobility
of the berries and the visibility of the pedicels, namely: very loose (class 1), loose (class 3),
medium (class 5), dense (class 7), and very dense (class 9).

Figure 2. Flowchart describing the work’s methodology from data collection to modelling.

2.4. Data Analysis

In addition to the original variables obtained from the bunches and bunch images (BA,
BP, bA, and Vb), three other derived variables were calculated:

i ratio between bunch area and visible berries (BA_Vb), which represents the average
area occupied by each visible berry;

ii ratio between bunch area and bunch perimeter (BA_BP), which represents the rela-
tionship between the area that berries occupy and their perimeter, and;

iii ratio between bunch area and the average bA of each variety (BA_avg(bA)), which
represents the average number of berries per unit of bunch area.
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The original data set was divided into a training set (with 63% of the data) and test
set (with 37% of the data) in a full random mode, for each cultivar, using a customized
code in RStudio (ver. 1.2.5, RStudio team). This splitting process was compared with a
cross-validation procedure, providing the same results in terms of the selection of variables
and similar regression coefficients. The training set was used to establish the relationship be-
tween the analyzed variables (described above) and to train the regression model (Figure 2).
A simple linear regression analysis was used to evaluate the relationships between bunch
weight and the remaining bunch features. This analysis was performed separately per
cultivar in order to explore the potential differences among them. A Student’s t-test was
used to compare the slope between each regression line.

The general multiple model was obtained by a stepwise regression procedure using
the R® function stepAIC from the package MASS [31], which selects the best model based
on its Akaike information criterion (AIC) value. The coefficient of determination (R2), root
mean squared percentage error (RMSPE), bias, and modelling efficiency (EF), were the
deviance measures used to evaluate the model performance.

3. Results
3.1. Characterization of Bunch Features

Table 2 presents the average values of the main bunch features obtained during data
collection for all of the studied cultivars. All parameters were obtained via image analysis,
except for Bw and Tb, which were obtained manually, in lab conditions.

Table 2. Average ± standard error for the main variables analyzed in the full data set (n = 48 per
cultivar). Bunch compactness notations (CI) are the mode of the observations based on the OIV
descriptor n◦204 [21].

Cultivar Bw (g) Tb (n◦) BA (cm2) BP (cm) Vb (n◦) bA (cm2) CI

Arinto 423.5 ± 26.9 293.6 ± 18.9 107.8 ± 5.5 62.3 ± 2.3 108.0 ± 5.4 1.6 ± 0.1 7
Cabernet 160.6 ± 10.4 152.5 ± 9.2 85.7 ± 4.2 84.8 ± 4.5 81.2 ± 3.7 1.3 ± 0.1 7

Encruzado 173.0 ± 15.4 82.3 ± 7.1 60.0 ± 3.9 43.2 ± 1.7 46.5 ± 2.7 2.3 ± 0.1 7
Syrah 72.7 ± 6.5 71.4 ± 5.9 50.6 ± 4.2 68.7 ± 4.1 46.8 ± 2.9 1.2 ± 0.1 3

Bw: bunch weight; Tb: total berry number; BA: bunch area; BP: bunch perimeter; Vb: visible berry number; bA:
average berry area. CI = 7: dense bunch; CI = 3: loose bunch. n = 48 per cultivar.

cv. Arinto presented the heaviest bunches, by far, while cv. Syrah presented the lowest
ones. Cultivars Cabernet and Encruzado presented similar weights among them. Similar
results were observed for the total berry number (Tb), except for Encruzado, which showed
lower Tb values than Cabernet. Bunch area followed the same trend as Tb, also with cv.
Encruzado presenting values nearly as low as cv. Syrah. Bunch perimeter did not follow the
same trend, with the highest values being observed on cv. Cabernet and the lowest on cv.
Encruzado, while cv. Arinto and Syrah presented similar values. The Arinto cultivar showed
the highest number of visible berries, followed by Cabernet, while Encruzado and Syrah
presented the lowest values. The largest berries were observed on the cultivar Encruzado,
followed by Arinto, while Syrah and Cabernet presented the smallest values. Regarding
bunch compactness notations, cvs. Arinto, Cabernet, and Encruzado presented the same
mode (7—dense bunch), while cv. Syrah presented a mode of 3 (loose bunch). All of the
analyzed variables showed high coefficients of variation within the same cultivar, between
30% and 62%, with the lowest being for BP and the highest for Bw and Tb.

3.2. Relationships between Image Features and Bunch Weight

Figure 3 presents the linear regressions between all image-based features (predictors)
and bunch weight, while Table 3 presents the respective regression equations, for R2

and RMSPE. The average berry area did not have a significant relationship with bunch
weight (R2 = 0.02 on the combined data set) and thus was not showcased in Table 3.
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However, bA is still an important feature for the objective of this work, as shown in the
Discussion section.

Figure 3. Scatter plots showing the fitted linear relationships between bunch weight (predictor)
and bunch area (A), visible berry number (B), bunch perimeter (C), and average berry area (D) on
the training data set. Marker colors: green squares = Arinto; purple diamonds = Cabernet; blue
circles = Encruzado; red triangles = Syrah. Different letters near the regression lines indicate significant
differences among slopes according to Student’s T-test at p ≤ 0.05. When R2 is not significant,
regression lines are not shown on the plot.
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Table 3. Fitted models resulting from the linear regression between bunch weight (Bw; g; predictor)
over bunch area (BA; cm2), visible berry number (Vb), total berry number (Tb), and bunch perimeter
(BP; cm), and respective statistical deviance measures for each of the four cultivars (n = 30) and for
the combined data (n = 120) on the training set.

Predictor Cultivar Equation R2 RMSPE (%)

BA

Arinto Bw = 4.388 × BA − 56.059 0.81 *** 18.2
Cabernet Bw = 2.238 × BA − 34.308 0.90 *** 12.7

Encruzado Bw = 3.632 × BA − 44.300 0.74 *** 31.3
Syrah Bw = 1.222 × BA + 9.493 0.86 *** 19.7

Combined Bw = 3.897 × BA − 91.060 0.71 *** 45.0

Vb

Arinto Bw = 4.427 × Vb − 65.395 0.86 *** 15.4
Cabernet Bw = 2.085 × Vb − 12.593 0.72 *** 21.1

Encruzado Bw = 5.257 × Vb − 77.639 0.86 *** 23.0
Syrah Bw = 2.055 × Vb − 18.919 0.73 *** 27.6

Combined Bw = 4.066 × Vb − 81.125 0.77 *** 39.8

BP

Arinto Bw = 8.838 × BP − 143.440 0.55 *** 28.0
Cabernet Bw = 1.220 × BP + 53.987 0.25 *** 34.8

Encruzado Bw = 6.603 × BP − 105.400 0.19 * 54.7
Syrah Bw = 1.215 × BP − 7.857 0.56 *** 35.1

Combined Bw = 1.524 × BP + 111.900 0.04 * 81.6
*, *** p < 0.05 and 0.001, respectively.

The results show that linear regressions between bunch weight and bunch area pre-
sented high and significant R2 for all cultivars and combined data, with the highest R2 being
observed for cv. Cabernet. The same cultivar also presented the lowest RMSPE (Table 3).
However, the regression lines between cvs. for this relationship presented significantly
different slopes among each other (Figure 3A), except between cvs. Encruzado and Arinto.
The same trends were true for the visible berries and bunch weight regression models,
in this case with cvs. Syrah and Cabernet also presenting an equal slope between their
regression lines (Figure 3B). The regression lines for the relationship between Bw and BP
presented slope differences among cultivars that mirrored the ones mentioned for visible
berries, in this case even more clearly (Figure 3C), with the slopes from cvs. Encruzado and
Arinto being approximately six to eight times larger than the slopes from the cvs. Syrah and
Cabernet regression lines.

3.3. Multiple Regression Model

In order to test the hypothesis that bunch weight can be estimated, regardless of
cultivar and bunch shape, all the assessed variables were included in a forward stepwise
regression analysis. In sum, for this analysis, all image-based features, both original and
computed ratios, were considered. Table 4 shows the variable selection summary of the
forward stepwise regression analysis. The first variable selected was Vb with a high partial
R2, followed by BA_BP, which contributed an additional 10% to the model R2. The variables
BA_avg(bA), BA, and BP were also added to the model, but with a lower contribution, with
3% in total. In the last step, the function excluded BA_BP to avoid collinearity issues, with
the final model retaining the same R2 and a lower AIC. The final multiple regression model
is presented in Equation (1).

Bw = −31.451 + 4.008 × BA − 1.596 × BP + 3.055 × Vb − 3.644 × BA_avg(bA) (1)
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Table 4. Variable selection summary of the forward stepwise regression analysis, on the training set;
between bunch weight (predictor) and bunch area (BA); bunch perimeter (BP); visible berry number
(Vb); average berry area (bA); and the ratios between BA and BP (BA_BP), BA and Vb (BA_Vb), and
BA and average berry area (BA_avg(bA)).

Step Variable Selection AIC R2 Adj-R2

1 Vb Added 1394.5 0.78 0.77
2 BA_BP Added 1319.8 0.88 0.88
3 BA_avg(bA) Added 1308.0 0.90 0.89
4 BA Added 1294.6 0.91 0.91
5 BP Added 1286.6 0.92 0.91
6 BA_BP Removed 1285.1 0.92 0.91

AIC = Akaike information criteria. All R2 and Adj–R2 are statistically significant (p < 0.001).

Figure 4 presents the relationship between the observed and estimated values of bunch
weight using the model described in Equation (1) on the training and test sets, with all of
the cultivars combined. Visual observation showed a good agreement between the data
on both sets, which were corroborated by the statistical measures of validation shown in
Table 5.

Figure 4. Regression analysis between estimated bunch weight (predictor) and observed bunch
weight for the training and test sets. Marker colors: green squares = Arinto; purple diamonds = Caber-
net; blue circles = Encruzado; red triangles = Syrah.

Table 5. Linear regression models between estimated bunch weight (predictor) and actual bunch
weight (response) on the test set, respective statistical measures of validation, and t-test for slope and
intercept analysis.

Data Set
Linear Regression

R2 RMSPE (%) Bias (%) EF1 Slope 2 Intercept

Arinto 1.202 * −30.520 n.s. 0.91 *** 19.0 10.6 0.83
Cabernet 0.996 n.s. −15.577 n.s. 0.72 *** 27.8 −9.6 0.69

Encruzado 0.924 n.s. −8.719 n.s. 0.92 *** 18.3 −2.4 0.91
Syrah 0.599 *** −39.822 *** 0.70 *** 60.5 23.0 0.28

Combined 1.073 n.s. −4.184 n.s. 0.91 *** 25.9 4.9 0.91
1 t-test for slope = 1; 2 t-test for intercept = 0; n.s. = not significant; *, *** p < 0.05 and 0.001, respectively. R2:
coefficient of determination; RMSPE: root mean square percentage error; EF: modelling efficiency.

Table 5 shows the results of the linear regressions between the actual and estimated
bunch weight in the test set using the model described in Equation (1), separated for each
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cultivar and for all of the cultivars combined. All cases presented a high and significant R2,
with the highest coefficient being shown for the cvs. Encruzado, Arinto, and combined data
sets. These two cultivars also presented a regression model with an RMSPE below 20%,
while the combined data presented a slightly higher RMSPE value, but still below 30%. The
Cabernet cultivar regression model achieved a lower R2, which was still high and significant,
and higher than the one shown by cv. Syrah. The elected model (Equation (1)) showed the
lowest absolute bias on the data set for cv. Encruzado, while the highest bias was observed
for cv. Syrah, with a tendency to overestimate Bw for cvs. Arinto and Syrah and for the
combined data. The data sets of cvs. Arinto, Encruzado, and the combined data presented the
highest EF values (all above 0.80), followed by cv. Cabernet. All regression lines presented
slope and intercept values not significantly different from 1 and 0, respectively, except for
cv. Syrah. The cv. Syrah presented a high RMSPE, which, along with its lower R2, low
EF, and high bias (>20%) indicated that this data set was where the model described in
Equation (1) achieved the worst results.

4. Discussion

To date, several works have focused on developing accurate and automatic ways to
identify grapevine yield components such as berries and grape bunches in 2D images for
yield estimation purposes [2,24,32]. However, past research has not focused on optimizing
the intermediate step for converting what is identified in the image into mass (bunch
weight or total plant weight). This task can be challenging to generalize considering the
morphological variability of the fruit within and between different cultivars [26,33].

In our study, when comparing the performance of the predictors Vb and BA when
estimating the bunch weight, we found that, despite the similar range of values of R2 and
RMSPE, the highest and lowest R2 of the regression models were not always found on
the same cv. Data set. Indeed, while the models based on the predictor BA showed the
highest R2 in the cv. Cabernet data set and the lowest in the combined data set, the models
based on the predictor Vb had the highest R2 in the cvs. Arinto and Encruzado data sets and
the lowest in the cv. Syrah. The good agreement between these bunch features and bunch
weight was similar to the results presented in previous research [1,34], but, to the best of
our knowledge, have never been used together in the same estimation model.

A visual observation of the scatter plot (Figure 3) shows that BW presents a linear
trend with BA (Figure 3A) and BP (Figure 3C), where power relationships would be
expected. The geometrical differences from the relationship between the weight and area
or perimeter of a sphere might be caused by occluded berries and irregular depth along the
bunch (e.g., varying bunch compactness). On a single berry, regression lines with power
equations would probably have the best modeling performance, however, with a whole
bunch, the same perimeter or area might be associated with a portion of the bunch that
has an indefinite number of berries behind the visible ones, resulting in a changing depth.
Regarding the use of BP to predict BW, we observed a lower fit when compared to the
models based on BA and Vb. This can be explained by the fact that BP can vary greatly
even in cases of similar bunch weight (Table 2), possibly due to different bunch shapes.
However, by providing information on bunch morphology, BP can be an important variable
to be included in a multiple regression model and, hence, add accuracy to a generalized
weight estimation model.

Bunch features assessed in our work (Table 2) present many interactions between each
other and among cultivars, that might hint towards indicators of bunch morphology. For
example, cv. Encruzado presents a higher average berry area and a much heavier average
bunch than cv. Syrah. At the same time, both cvs. had almost the same total berry number,
showing the importance of berry size when estimating bunch weight using berry number
as an estimator. This has been previously explored in [15], either by using historical data
or through direct measurements of the average berry weight. Berry weight automatic
estimation was explored in Mirbod et al. [35] and Roscher et al. [36] using the automatically
obtained average berry area. Another example that reinforces the need to use more than one
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bunch feature in the models for BW estimation is, again, in the case of cv. Encruzado, where
the average BA was almost as low as for cv. Syrah, even though the cv. Syrah bunches were
much lighter. Further examples can be given, like the case of the average BP of cv. Syrah,
which presented the second-highest value, even though, again, this cultivar presented
much smaller bunches than the other cultivars. A final example that hints at the possible
bunch morphology differences that can be obtained by comparing berry attributes of cv.
Encruzado and cv. Syrah is that both cvs. presented a similar average number of visible
berries, but cv. Encruzado showed an average berry size that was almost twice that of cv.
Syrah. Most of these observations can be corroborated visually, by inspecting the bunch
images. These observations indicate that many of these bunch features can help differentiate
bunch shapes and architectural traits when analyzed together and, in return, add accuracy
to the bunch weight estimation models, as was briefly mentioned by Di Gennaro et al. [24]
and Ivorra et al. [33]. Furthermore, because the mentioned bunch features (bunch area,
bunch perimeter, and average berry area) were all possible to be obtained automatically
from images, it was considered relevant to use such features as predictors of bunch weight,
even though they might not always show high correlations between them. This was the
reason behind the computing of the derived features of BA_BP, BA_Vb, and BA_avg(bA).
In addition, in this way, the shape differences could even be automatically identified on
different bunches of the same cultivar in cases of internal variability, and would not require
any previous context for the algorithm to be effective for different cultivars.

In our results, BA_BP and BA_avg(bA) presented high and significant Pearson cor-
relation coefficients with OIV bunch compactness indexes (code 204) of 0.73 and 0.60,
respectively. As this is a complex trait by itself and goes beyond the scope of this work, it
was not further explored. However, this correlation shows that the ratios between these
variables can indeed be interesting to classify bunch architectural traits, as mentioned
above. In sum, and to further elucidate on the rationale behind these ratios, for BA_BP, if an
example is considered for two bunches with the same area, one loose and the other compact,
it is possible to understand that the loose one would have a higher perimeter. This would
happen as more cases of whole berries would be considered instead of clustered ones,
thus having a lower BA_BP ratio, just as it would have a lower OIV bunch compactness
index (code 204). On the other hand, BA_avg(bA) relates to the average amount of berries
per unit of area, which also increases or decreases, depending on bunch compactness.
These relationships, to the best of our knowledge, have never been explored for the bunch
weight estimation. Their variables are key in a multiple regression analysis that attempts
to estimate the weight for several bunch shapes. A similar approach was explored in [20],
where the authors explored several bunch features and achieved a multicultivar method
to estimate bunch compactness. However, most of the features used in this work were
difficult to achieve through automatic image analysis.

The stepwise regression analysis computed in this study (Table 4) selected all original
features (BA, BP, and Vb), except bA, which was included within the ratio of BA_avg(bA).
The variable Vb was the first to be selected with a very high partial R2, reinforcing what
was observed in the simple linear regressions analyzed above, and in accordance with
what has previously been reported in other works for different cultivars [1,22]. The ratio
for BA_BP also presented a high contribution to the stepwise regression model, possibly
because it includes the other main bunch trait that explain Bw (BA), and also because of
what this ratio represents regarding bunch morphology, as mentioned above. In the end,
this ratio was removed from the model (last step of the stepwise regression model), but
the two variables remained, indicating the importance of their interaction, even when BP
showed a low R2 with Bw. It is important to highlight that all studied variables were not
extracted at the cost of any extra labor, as they were all features that could be obtained
automatically from images [12,15,33,37].

The selected model (Equation (1)) presented a very good fit, with the test set (Table 5)
being effective at estimating the bunch weight of different cultivars with a very distinct
bunch morphology, presenting an increase in R2 of 20%, 14%, and 35% compared to models



Horticulturae 2022, 8, 233 12 of 15

that used the single predictors BA, Vb, or BP, respectively, on the combined data set (Table 3).
In cvs. Arinto and Syrah, the model overestimated Bw, possibly for different reasons. In
the case of cv. Arinto, the differences in bunch shape might be the main issue. With
bigger and wider bunches, this cultivar presents a higher portion of extremities that have
different berry occlusion rates than the center of the bunch, which was not considered by
the model. The overestimation of Bw for cv. Syrah was possibly related to the fact that this
cultivar presented much lighter bunches than the other cultivars. With the model being
fitted with three other cultivars that present an average bunch between 161g and 424 g, an
overestimation was expected for bunches with less than half the average weight, probably
because of the same reasons mentioned for cv. Arinto. The model did not achieve higher R2

values for the cvs. Cabernet or Syrah than the ones presented by a cultivar-specific model
based only on BA (Table 3). Furthermore, especially in the case of cv. Syrah, the resulting
RMSPE was above 60%. Despite the good overall model performance, when working
with cv. Syrah, better results could still be obtained with the simpler approaches, using a
cultivar-specific model. However, as explained above, in this study, the cv. Syrah showed
abnormal bunch feature values. For this reason, it is relevant to continue this research and
study this approach with more cultivars from different sites and different seasons.

The best bunch weight estimation results were obtained for cultivars that presented
higher slopes on all single relationships, as shown in Figure 3 (cvs. Arinto and Encruzado).
This behavior might be explained by the fact that cvs. Encruzado and Arinto bunches
presented a lower bunch area, visible berry number, and bunch perimeter per unit of bunch
weight, which might indicate that there was a higher bunch density and consequent more
berry by berry occlusion. In fact, cv. Arinto showe an average of 37% of visible berries per
bunch, while cvs. Cabernet, Encruzado, and Syrah presented 53%, 57%, and 66%, respectively.
This makes sense, as the Arinto bunches were very large and had increased dimensions
in all axes. On the other hand, even though cv. Encruzado did not present the same trend
in berry visibility, this cultivar presented the largest average berry area, which could also
cause a higher percentage of berry occlusion by other berries, and in return, could be
the reason behind the higher slopes of the relationships shown in Figure 3. Furthermore,
heavier bunches presented a slightly higher weight estimation error on both the training
and test sets (Figure 4), which, again, could be caused by the fact that on bigger bunches,
there was a higher fraction of berry-by-berry occlusion (63.2%, 46.8%, 43.5% and 34.5%
of the average occluded berries on bunches of cvs. Arinto, Cabernet, Encruzado, and Syrah,
respectively). The elected model presented a final RMSPE = 25.9%, which is very promising
considering the great variability in average bunch weight among the cvs. Arinto (434 g)
and Syrah (72 g).

In our work, differences among years and sites were not explored, as our data were
limited in this regard. However, both spatial and temporal variability are caused by
differences in the number and/or weight of the bunches [38]. Hence, bunch weight
estimation methods that achieve accurate results on varying bunch shapes and sizes, such
as the ones presented in this work (Table 2), are likely to also be accurate between sites and
at different years.

As mentioned before, all of the analyzed features could be collected from a vine image
of a realistic, vineyard scenario [12,15,34,37]. However, we predict that the application of
the studied approach in such conditions would be subject to several challenges/adaptations,
such as (i) image resolution, which would be particularly important to extract features
such as bunch perimeter and visible berries, as these require more detail and, thus, higher
resolution if images are to be taken from a larger distance; (ii) bunch occlusion by leaves,
where recent works have explored ways to estimate the occluded bunches [39,40], but
this challenge still remains unsolved; (iii) extracting features from occluded bunches, as
even if occluded bunches are estimated, it will be impossible to have their corresponding
exact area, visible berries or perimeter, and ratios between these features on the visible
portion of the bunches can be a better option; and (iv) robust segmentation methods, as this
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challenge lies in the step before the weight estimation (segmentation step), being crucial for
a vineyard scenario.

5. Conclusions

To obtain a generalized, accurate model for grape bunch weight, this paper compared
the explanatory potential of several image-based bunch features for estimating bunch
weight of four grapevine cultivars. Several simple linear regression models between the
studied bunch features and bunch weight presented a strong goodness of fit, showing that
bunch weight could be estimated based on single image-based variables, corroborating
what has been reported in recent research. However, the resulting regression models were
significantly different from each other, depending on the grapevine cultivar. Along with
the original image features, other derived features were computed to attempt to explain
the bunch morphological differences. The resulting model used a combination of bunch
area, bunch perimeter, visible berry number, and average berry area, and presented strong
goodness of fit when estimating bunch weight on the test set, which included cultivars with
very different bunch shapes. The generalized model did not achieve satisfactory results
for cv. Syrah, which, in this study, showcased unusual small bunches. Our results are an
important step towards automatic yield estimation in the vineyard, as the possibility of ap-
plying image-based approaches in a generalized way that is independent of grape cultivar
is increased. Further research needs to confirm the outputs with other cultivars, different
sites, and seasons. From a practical point of view, the application of this methodology in
field conditions should be explored.

Author Contributions: Conceptualization, G.V., C.P.-E. and C.M.L.; methodology, G.V., C.P.-E. and
C.M.L.; software, G.V and C.P.-E.; writing—original draft preparation, G.V.; writing—review and
editing, G.V., C.P.-E. and C.M.L.; visualization, G.V., C.P.-E. and C.M.L.; supervision, C.P.-E. and
C.M.L.; project administration, C.P.-E. and C.M.L. All authors have read and agreed to the published
version of the manuscript.

Funding: G.V. was supported by PhD grant SFRH/BD/132305/2017, sponsored by FCT—Fundação
para a Ciência e a Tecnologia. His mobility to the University of Stellenbosch was supported by the
Rise vWise project, grant agreement ID: 872394, sponsored by the European Community’s Horizon
2020 Program. The field experiment in South Africa was supported by WINETECH through the
research program “Grapevine production with limited water resources”, project Fship Water 1.

Data Availability Statement: Not applicable.

Acknowledgments: We gratefully acknowledge the valuable contributions of Beatrice Carmignani,
Giuseppe Samà, Luigi Mauro, Ruben Bonaria, Jaco Luus, Sally Duncan, Someleze Mbiza, Anke Berry
and Stenford Matsikidze, who helped with data collection and overall teamwork, which made this
research possible.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nuske, S.; Achar, S.; Bates, T.; Narasimhan, S.; Singh, S. Yield Estimation in Vineyards by Visual Grape Detection. In Proceedings

of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September
2011; pp. 2352–2358.

2. Dunn, G.M.; Martin, S.R. Yield prediction from digital image analysis: A technique with potential for vineyard assessments prior
to harvest. Aust. J. Grape Wine Res. 2008, 10, 196–198. [CrossRef]

3. Bramley, R.; Ouzman, J.; Boss, P. Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation
in the chemical composition of grapes, wine and wine sensory attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229. [CrossRef]

4. Victorino, G.; Braga, R.; Lopes, C.M. The effect of topography on the spatial variability of grapevine vegetative and repro-
ductive components. In Proceedings of the I Congresso Luso-Brasileiro de Horticultura, Lisbon, Portugal, 1–4 November 2017;
pp. 510–516. Available online: https://aph.aphorticultura.pt/wp-content/uploads/2019/10/the_effect_of_topography_on.pdf
(accessed on 6 March 2022).

5. Jasse, A.; Berry, A.; Aleixandre-Tudo, J.L.; Poblete-Echeverría, C. Intra-block spatial and temporal variability of plant water status
and its effect on grape and wine parameters. Agric. Water Manag. 2020, 246, 106696. [CrossRef]

http://doi.org/10.1111/j.1755-0238.2004.tb00022.x
http://doi.org/10.1111/j.1755-0238.2011.00136.x
https://aph.aphorticultura.pt/wp-content/uploads/2019/10/the_effect_of_topography_on.pdf
http://doi.org/10.1016/j.agwat.2020.106696


Horticulturae 2022, 8, 233 14 of 15

6. Taylor, J.; Dresser, J.; Hickey, C.; Nuske, S.; Bates, T. Considerations on spatial crop load mapping. Aust. J. Grape Wine Res. 2018,
25, 144–155. [CrossRef]

7. Carrillo, E.; Matese, A.; Rousseau, J.; Tisseyre, B. Use of multi-spectral airborne imagery to improve yield sampling in viticulture.
Precis. Agric. 2015, 17, 74–92. [CrossRef]

8. Seng, K.P.; Ang, L.-M.; Schmidtke, L.M.; Rogiers, S.Y. Computer Vision and Machine Learning for Viticulture Technology. IEEE
Access 2018, 6, 67494–67510. [CrossRef]

9. Victorino, G.F.; Braga, R.; Santos-Victor, J.; Lopes, C.M. Yield components detection and image-based indicators for non-invasive
grapevine yield prediction at different phenological phases. OENO One 2020, 54, 833–848. [CrossRef]

10. Diago, M.P.; Tardáguila, J.; Aleixos, N.; Millán, B.; Prats-Montalban, J.M.; Cubero, S.; Blasco, J. Assessment of cluster yield
components by image analysis. J. Sci. Food Agric. 2014, 95, 1274–1282. [CrossRef]

11. Lopes, C.M.; Graça, J.; Sastre, J.; Reyes, M.; Guzmán, R.; Braga, R.; Monteiro, A.; Pinto, P.A. Vineyard Yeld Estimation by VINBOT
Robot—Preliminary Results with the White Variety Viosinho. In Proceedings 11th International Terroir Congres; Jones, G., Doran, N.,
Eds.; Southern Oregon University: Ashland, OR, USA, 2016; pp. 458–463.

12. Milella, A.; Marani, R.; Petitti, A.; Reina, G. In-field high throughput grapevine phenotyping with a consumer-grade depth
camera. Comput. Electron. Agric. 2018, 156, 293–306. [CrossRef]

13. Hacking, C.; Poona, N.; Manzan, N.; Poblete-Echeverría, C. Investigating 2-D and 3-D Proximal Remote Sensing Techniques for
Vineyard Yield Estimation. Sensors 2019, 19, 3652. [CrossRef]

14. Aquino, A.; Barrio, I.; Diago, M.-P.; Millan, B.; Tardaguila, J. vitisBerry: An Android-smartphone application to early evaluate the
number of grapevine berries by means of image analysis. Comput. Electron. Agric. 2018, 148, 19–28. [CrossRef]

15. Liu, S.; Zeng, X.; Whitty, M. A vision-based robust grape berry counting algorithm for fast calibration-free bunch weight
estimation in the field. Comput. Electron. Agric. 2020, 173, 105360. [CrossRef]

16. Aquino, A.; Millan, B.; Diago, M.-P.; Tardaguila, J. Automated early yield prediction in vineyards from on-the-go image acquisition.
Comput. Electron. Agric. 2018, 144, 26–36. [CrossRef]

17. Maimaitiyiming, M.; Sagan, V.; Sidike, P.; Kwasniewski, M.T. Dual Activation Function-Based Extreme Learning Machine (ELM)
for Estimating Grapevine Berry Yield and Quality. Remote Sens. 2019, 11, 740. [CrossRef]

18. Zabawa, L.; Kicherer, A.; Klingbeil, L.; Milioto, A.; Topfer, R.; Kuhlmann, H.; Roscher, R. Detection of Single Grapevine Berries in
Images Using Fully Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; 2019; pp. 2571–2579. [CrossRef]

19. Zhang, Z.; Zou, L.; Ren, C.; Ren, F.; Wang, Y.; Fan, P.; Li, S.; Liang, Z. VvSWEET10 mediates sugar accumulation in grapes. Genes
2019, 10, 255. [CrossRef]

20. Tello, J.; Aguirrezábal, R.; Hernáiz, S.; Larreina, B.; Montemayor, M.; Vaquero, E.; Ibáñez, J. Multicultivar and multivariate study
of the natural variation for grapevine bunch compactness. Aust. J. Grape Wine Res. 2015, 21, 277–289. [CrossRef]

21. OIV Descriptor List for Grape Varieties and Vitis Species (2nd Edition). Available online: http://www.oiv.int/en/technical-
standards-and-documents/description-of-grape-varieties/oiv-descriptor-list-for-grape-varieties-and-vitis-species-2nd-
edition (accessed on 6 March 2022).

22. Font, D.; Tresanchez, M.; Martínez, D.; Moreno, J.; Clotet, E.; Palacín, J. Vineyard Yield Estimation Based on the Analysis of High
Resolution Images Obtained with Artificial Illumination at Night. Sensors 2015, 15, 8284–8301. [CrossRef]

23. Herrero-Huerta, M.; González-Aguilera, D.; Rodríguez-Gonzálvez, P.; Hernández-López, D. Vineyard yield estimation by
automatic 3D bunch modelling in field conditions. Comput. Electron. Agric. 2015, 110, 17–26. [CrossRef]

24. Di Gennaro, S.F.; Toscano, P.; Cinat, P.; Berton, A.; Matese, A. A Low-Cost and Unsupervised Image Recognition Methodology for
Yield Estimation in a Vineyard. Front. Plant Sci. 2019, 10, 559. [CrossRef]

25. Nuske, S.; Gupta, K.; Narasimhan, S.; Singh, S. Modeling and calibrating visual yield estimates in vineyards. In Field and Service
Robotics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 92, pp. 343–356. [CrossRef]

26. Tello, J.; Cubero, S.; Blasco, J.; Tardáguila, J.; Aleixos, N.; Ibáñez, J. Application of 2D and 3D image technologies to characterise
morphological attributes of grapevine clusters. J. Sci. Food Agric. 2016, 96, 4575–4583. [CrossRef]

27. Cubero, S.; Diago, M.; Blasco, J.; Tardaguila, J.; Prats-Montalbán, J.; Ibáñez, J.; Tello, J.; Aleixos, N. A new method for assessment
of bunch compactness using automated image analysis. Aust. J. Grape Wine Res. 2015, 21, 101–109. [CrossRef]

28. Smart, R.E.; Turkington, C.R.; Evans, J.C. Grapevine Response to Furrow and Trickle Irrigation. Am. J. Enol. Vitic. 1974, 25, 62–66.
29. Teixeira, G.; Monteiro, A.; Santos, C.; Lopes, C. Leaf morphoanatomy traits in white grapevine cultivars with distinct geographical

origin. Ciência Técnica Vitivinícola 2018, 33, 90–101. [CrossRef]
30. Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15.

[CrossRef]
31. Venables, W.N.; Ripley, B.D. Tree-based Methods. In Modern Applied Statistics with S-Plus; Springer: New York, NY, USA, 1997;

pp. 413–430. [CrossRef]
32. Nuske, S.; Achar, S.; Gupta, K.; Narasimhan, S.; Singh, S. Visual Yield Estimation in Vineyards: Experiments with Different Varietals

and Calibration Procedures; CMURI-TR-11-39; Carnegie Mellon University: Pittsburgh, PA, USA, 2011; p. 27.
33. Ivorra, E.; Sánchez, A.; Camarasa, J.; Diago, M.; Tardaguila, J. Assessment of grape cluster yield components based on 3D

descriptors using stereo vision. Food Control 2015, 50, 273–282. [CrossRef]

http://doi.org/10.1111/ajgw.12378
http://doi.org/10.1007/s11119-015-9407-8
http://doi.org/10.1109/ACCESS.2018.2875862
http://doi.org/10.20870/oeno-one.2020.54.4.3616
http://doi.org/10.1002/jsfa.6819
http://doi.org/10.1016/j.compag.2018.11.026
http://doi.org/10.3390/s19173652
http://doi.org/10.1016/j.compag.2018.02.021
http://doi.org/10.1016/j.compag.2020.105360
http://doi.org/10.1016/j.compag.2017.11.026
http://doi.org/10.3390/rs11070740
http://doi.org/10.1109/cvprw.2019.00313
http://doi.org/10.3390/genes10040255
http://doi.org/10.1111/ajgw.12121
http://www.oiv.int/en/technical-standards-and-documents/description-of-grape-varieties/oiv-descriptor-list-for-grape-varieties-and-vitis-species-2nd-edition
http://www.oiv.int/en/technical-standards-and-documents/description-of-grape-varieties/oiv-descriptor-list-for-grape-varieties-and-vitis-species-2nd-edition
http://www.oiv.int/en/technical-standards-and-documents/description-of-grape-varieties/oiv-descriptor-list-for-grape-varieties-and-vitis-species-2nd-edition
http://doi.org/10.3390/s150408284
http://doi.org/10.1016/j.compag.2014.10.003
http://doi.org/10.3389/fpls.2019.00559
http://doi.org/10.1007/978-3-642-40686-7_23
http://doi.org/10.1002/jsfa.7675
http://doi.org/10.1111/ajgw.12118
http://doi.org/10.1051/ctv/20183301090
http://doi.org/10.1145/361237.361242
http://doi.org/10.1007/978-1-4757-2719-7_14
http://doi.org/10.1016/j.foodcont.2014.09.004


Horticulturae 2022, 8, 233 15 of 15

34. Hacking, C.; Poona, N.; Poblete-Echeverria, C. Vineyard yield estimation using 2-D proximal sensing: A multitemporal approach.
OENO One 2020, 54, 793–812. [CrossRef]

35. Mirbod, O.; Yoder, L.; Nuske, S. Automated measurement of berry size in images. IFAC-Pap. OnLine 2016, 49, 79–84. [CrossRef]
36. Roscher, R.; Herzog, K.; Kunkel, A.; Kicherer, A.; Töpfer, R.; Förstner, W. Automated image analysis framework for high-

throughput determination of grapevine berry sizes using conditional random fields. Comput. Electron. Agric. 2014, 100, 148–158.
[CrossRef]

37. Aquino, A.; Diago, M.P.; Millán, B.; Tardaguila, J. A new methodology for estimating the grapevine-berry number per cluster
using image analysis. Biosyst. Eng. 2017, 156, 80–95. [CrossRef]

38. Clingeleffer, P. Crop Development, Crop Estimation and Crop Control to Secure Quality and Production of Major Wine Grape
Varieties: A National Approach. Final Rep. Grape Wine Res. Dev. Corp. 2001, 148. Available online: http://hdl.handle.net/102.100.
100/201731?index=1 (accessed on 6 March 2022).

39. Kierdorf, J.; Weber, I.; Kicherer, A.; Zabawa, L.; Drees, L.; Roscher, R. Behind the Leaves—Estimation of Occluded Grapevine
Berries with Conditional Generative Adversarial Networks. arXiv 2021, arXiv:2105.10325. Available online: http://rs.ipb.uni-
bonn.de/wp-content/papercite-data/pdf/kierdorf2021behind.pdf (accessed on 6 March 2022).

40. Parr, B.; Legg, M.; Bradley, S.; Alam, F. Occluded Grape Cluster Detection and Vine Canopy Visualisation Using an Ultrasonic
Phased Array. Sensors 2021, 21, 2182. [CrossRef] [PubMed]

http://doi.org/10.20870/oeno-one.2020.54.4.3361
http://doi.org/10.1016/j.ifacol.2016.10.015
http://doi.org/10.1016/j.compag.2013.11.008
http://doi.org/10.1016/j.biosystemseng.2016.12.011
http://hdl.handle.net/102.100.100/201731?index=1
http://hdl.handle.net/102.100.100/201731?index=1
http://rs.ipb.uni-bonn.de/wp-content/papercite-data/pdf/kierdorf2021behind.pdf
http://rs.ipb.uni-bonn.de/wp-content/papercite-data/pdf/kierdorf2021behind.pdf
http://doi.org/10.3390/s21062182
http://www.ncbi.nlm.nih.gov/pubmed/33804742

	Introduction 
	Materials and Methods 
	Site Characterization and Trial Description 
	Data Set 
	Data Collection and Image Analysis 
	Data Analysis 

	Results 
	Characterization of Bunch Features 
	Relationships between Image Features and Bunch Weight 
	Multiple Regression Model 

	Discussion 
	Conclusions 
	References

