
Received 8 December 2022, accepted 26 December 2022, date of publication 27 December 2022,
date of current version 30 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3232749

Hardware and RTOS Design of a Flight Controller
for Professional Applications
RAMÓN RICO , JAVIER RICO-AZAGRA , AND MONTSERRAT GIL-MARTÍNEZ
Control Engineering Research Group, University of La Rioja, 26004 Logroño, Spain

Corresponding author: Ramón Rico (javier.rico@unirioja.es)

This work was supported in part by the Economic Development Agency for La Rioja (ADER) under Grant 2017-I-IDD-00035, and in part
by the University of La Rioja under Grant REGI 22/40.

ABSTRACT Unmanned aerial vehicles (UAV) in the civil sector have recently evolved from being devices
for recreational uses to becoming aircraft for professional uses. Professional applications of these devices
require the aircraft to ship more and more complex sensors for reasons of safety in the event of failures.
However, controlling all these systems is a challenge for flight controllers at the hardware and software
levels. In this context, this work proposes a new aircraft real-time flight control system. The flight controller
hardware is made up of two systems: a core board houses common sensor and flight devices; a flexible
unit, isolated from body vibrations, houses redundant sensors to improve accuracy and reliability. The
application functions are driven by the microcontroller running a new real-time operating system (RTOS) to
better schedule works on limited computation power. To design a simplified RTOS for embedded systems,
a hybrid scheduler (first-come-first-serve scheduling and earliest-deadline-first scheduling) with dynamic
priority is proposed. The results obtained show the effectiveness of the system using schedulability tests for
uni-processor systems. A set of real data supports the performance of the flight controller.

INDEX TERMS Flight controller, real-time operating system, unmanned aerial vehicles.

I. INTRODUCTION
Multi-rotor type unmanned aerial vehicles (UAVs) have
increased in popularity in recent years, given their ability to
perform vertical take-offs and landings, their ability to hold
a fixed position and their ease of use. From the first devices
created in the first decade of the 21st century to the present,
there has been an important development in the flight capabil-
ities of this type of aircraft, together with a reduction in costs.
This evolution has led to its use in a multitude of applications.
However, there is still a very important gap between the
two types of users and products. On the one hand, devices
intended for the general public have seen their price reduced,
which has often been driven by the development of hardware
and open software, increasing competitiveness in the sector
and leading to price reductions. On the other hand, in the
professional sectors, very expensive equipment continues to
be used, which makes access difficult for sporadic users of
this equipment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

The scientific community has not been oblivious to the
rise of these devices. Since the creation of the first UAV,
numerous scientific papers have been published regularly.
Some propose new strategies to improve the capabilities of
UAVs, focusing either on state estimation [1], [2], or attitude
control [3], [4], [5], or autonomous navigation and guidance
[6], [7], [8], [9]. Others present UAV applications [10], [11],
highlighting new fields as in [12].

The success of previous developments in real UAVs
depends on implementing new software layers capable of
working with the flight controller and with the RTOS
(Real-Time Operating System) that manages it. Since the
development of new hardware devices is very expensive,
off-the-shelf flight controllers such as Pixhawk or Cuav are
traditionally used. The problem with them is that they are
generic and are not specifically designed for the control
of an aircraft. Furthermore, many RTOS are Linux-based,
making the software too complex for UAV developers. Under
the fact that new developments are usually implemented on
existing platforms, few works in the scientific literature focus
on the optimization of RTOS for UAVs [13], [14], [15], [16],
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[17], [18]. However, the importance of the RTOS in the oper-
ation of aircraft is maximum. It ensures that the planned tasks
are executed properly, on time, and following the established
order of priority. Consequently, the RTOS performance and
time optimization can lead to important advantages, such as
a higher refresh rate in the control loops and the ability to
perform a greater number of tasks on the same hardware.

In this context, this work develops the software and hard-
ware of a flight controller intended for use in professional
UAVs. This new development aims to be a cost-effective
solution closer to all types of users. The philosophy used
in the design of the hardware and software aims to obtain
a robust and simple system, in which ease of use and sim-
plicity prevail. The developed hardware uses an ARM M7
microcontroller together with a set of sensors adapted to the
control of UAVs. A modular architecture separates part of
the sensors from the control system; this feature gives the
design versatility and redundancy. The main innovation of
the new hardware-software set lies in the development of a
hard real-time operating system, easy to implement, flexible,
and with a level of optimization that allows it to be imple-
mented in any current embedded system. Three software
layers provide the typical functionalities: the upper one exe-
cutes the flight control, the middle one provides connectivity
and the deeper one with a RTOS supports the global sys-
tem. The new RTOS uses a hybrid Scheduler that combines
FCFS (First Come First Serve) scheduling and EDF (Earliest
Deadline First) scheduling. This hybridization ensures that
critical tasks, such as aircraft stabilization control, are not
interrupted, i.e. FCFS subsystem guarantees low latency. This
fact gives robustness to the system by prioritizing the integrity
of the equipment. The EDF subsystem is in charge of the
rest of the tasks, which make up the application layer and are
executed according to their priority.

In summary, themain contributions of the present work are:
(1) a novel flight controller hardware, competitive with the
best in the market, which additionally offers redundancy at
the sensor level and reduction of sensor noise by mechani-
cal damping; (2) a new hard real-time operating system for
embedded systems that implements a hybrid scheduler to
better manage tasks of different priority with limited time
and computing power; (3) the entire hardware-software set
is conceived for professional aircraft control.

The paper is organized in five sections. The second section
shows the hardware architecture that is used to develop the
flight controller. The third section presents the software archi-
tecture that is used to develop the RTOS. Next, the fourth
section corroborates the good work of the new proposal,
including results that are obtained in real tests. Finally, the
fifth section collects the conclusions.

II. HARDWARE ARCHITECTURE
The hardware design is crucial in a professional flight control
system. Figure 1 shows the developed system called URpilot.
This device has been fully developed to be used in multi-rotor

UAVs keeping in mind previous works [19], [20], [21], [22],
[23], [24], although it can be used in other devices.

FIGURE 1. Case and anti-vibration system.

The flight controller consists of two functional units inter-
connected to work together. The main unit, also known as
core, handles data processing and houses a set of common
sensors. The sensor unit, also known as flex integrates redun-
dant sensors to improve UAV status estimation. The use of
two separated boards provides amechanical decoupling to the
redundant sensor unit, so that the vibrations generated during
operation of the UAV do not affect the measurements of the
sensors on the flexible board. Additionally, the casing shown
in Figure 1 allows the two units to be fixed in their proper
position without using ties between them.

Table 1 shows a comparison of several flight controller
platforms in terms of the microcontroller unit (MCU), inter-
faces, built-in sensors, dimensions, and weight features. The
proposed flight controller hardware is among the best on the
market, with a superior microcontroller which is smaller than
on other platforms.

A. CORE BOARD
The main unit or core houses the fundamental elements for
UAV operation. It can work on its own, despite of the fact
that the connection of the flex sensor unit provides more
reliable status estimations and, consequently, more precise
UAV control.

Figure 2 shows a block diagram of the elements built into
the main unit. The core of the system is the STM32F767
microcontroller commercialized by STMicroelectronics R©.
This microcontroller offers the performance of the
Cortex-M7 core with the capacities of a digital signal pro-
cessor (DSP), incorporating a double-precision floating point
unit. It is a 32-bit microcontroller with a maximum process-
ing power of 462 DMIPS, which are executed from Flash
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TABLE 1. Comparison between flight controller platforms.

FIGURE 2. Hardware architecture used in the flight controller.

memory with 0-wait states thanks to ST’s ART Accelera-
tor. In addition, it has a working frequency of 216 MHz
and a large number of peripherals. Finally, it should be
noted that the microcontroller has 512 KBytes of SRAM,
128 KBytes of DCM RAM (for critical real-time data),
16 KBytes of instruction TCM RAM (for critical real-
time routines) and 4 KBytes of backup SRAM. As further
described in Section III-B, this type ofmemory is essential for
the proper functioning of the RTOS. All these characteristics
and a contained price make this device ideal for the current
application.

The microcontroller is connected to sensors, communica-
tion ports and other devices that give the system a series
of functionalities and capabilities on a par with the latest
of flight controller models available on the market. This
configuration is composed of:
• 2 Power module ports 5V.
• 1 IMU ICM20689 with a 3-axis gyroscope and a 3-axis
accelerometer.

• 1 Magnetometer IST8310.
• 1 Barometer MS5611.
• 1 SBUS/IBUS port and 1 PPM input.
• 1 Telemetry port.
• 12 PWM isolated outputs, four of which can also be
configured as inputs.

• 4 SPI, 3 I2C and 2 Can bus ports.
• 1 Micro-SD slot.
The core board is powered either through a USB Type-C

port or two connectors dedicated to the external power mod-
ules. This configuration provides energy redundancy to the
system and allows the voltage, current and energy of the
application to be monitored in real time, as well as the esti-
mation of remaining flight time. Communication ports have

over-current protection, and can deliver up to a maximum of
5A to the rest of the auxiliary circuits that can be connected to
the system, thus achieving extra protection in the power unit,
an aspect of great importance for professional applications
where maximum security is required.

B. FLEX BOARD
The flexible sensor unit or flex provides sensor redundancy to
the system to achieve more precise status estimation and con-
trol. It is a flexible PCBwhose sensors are arranged on the top
face and which connects to the �core� unit. Section IV-E
shows how themechanical flexibility of this unit improves the
performance of the sensors on board thanks to the fact that the
vibrations are mechanically damped. To achieve mechanical
decoupling, the design of the case shown in Figure 1 is pro-
posed. The case has a housing for the sensor unit composed
of two shock-absorbing elements at the top and bottom of the
PCB forming a sandwich. This system allows the PCB to be
sufficiently clamped and the vibrations to be absorbed by the
pads that make up the sandwich.

The electronic configuration is as follows:
• 1 IMU ICM20689 with a 3-axis gyroscope and a 3-axis
accelerometer.

• 1 IMU ICM20602 with a 3-axis gyroscope and a 3-axis
accelerometer.

• 1 IMU MPU6000 with a 3-axis gyroscope and a 3-axis
accelerometer.

• 1 Magnetometer IST8310.
• 1 Barometer MS5611.

III. SOFTWARE ARCHITECTURE
An RTOS is a low layer program that runs on a processor that
schedules processes and manages peripherals, guaranteeing

134872 VOLUME 10, 2022



R. Rico et al.: Hardware and RTOS Design of a Flight Controller for Professional Applications

stability and controllability. Traditional embedded systems
employ basic schedulers that handle critical tasks through
interrupts while low-level priority tasks are executed on a
main loop. However, the evolution of hardware has led to the
emergence of new RTOS for embedded systems applied to
UAVs [19]. Some issues associatedwith them are that they are
very complex to understand, especially those Linux-based,
and they are not designed ad hoc for an aircraft. The challenge
is to design a hard real-time operating system that is easy to
implement, flexible andwith an optimization level that allows
it to be implemented in any current embedded system.

The aim is for the scheduler to be as simple as possi-
ble, hence a time-sharing RTOS is used. These systems are
made simpler by not using the interrupts of the microcon-
troller. However, they have the weakness that critical tasks
are managed in the same way as the rest. A solution to this
problem is designing a hybrid scheduler with two distinctive
parts: first come first serve (FCFS) scheduling and earliest
deadline first (EDF) scheduling. FCFS scheduling handles
the highest priority critical tasks, which cannot be interrupted
because the system could crash; they include the aircraft
control by managing the actuators. As to EDF scheduling,
it is the subsystem that handles the rest of the tasks, based on
their priority. Within this part of the scheduler there are the
different subsystems that make up the application layer of a
flight controller, such as the navigation system, data storage,
and communications.

A. TASK MODEL
This work defines a task as the minimal function that can
be mapped on one core of the microcontroller. The proposed
operating system model is designed for a one-core embedded
system so that one task can never be interrupted by another,
but it is the RTOS itself that decides when they are exe-
cuted. The software is built according to the following five
premises:

1) All tasks run periodically on a single CPU.
2) There are no data dependencies between processes.
3) The execution time for a process is constant.
4) All deadlines are at the ends of their periods.
5) The highest-priority ready process is always selected

for execution.
The scheduler considers the software layer as a collection

of n tasks {τ1, τ2, . . . , τn}. Each task τi is characterized
by a static priority spi, a dynamic priority dpi, a period
Ti, a deadline dli equal to Ti, and a worst-case execution
time wi. The parameters spi, Ti, and dli are defined during
the programming stage while dpi and wi are defined during
run time.

The proposed flight controller operating system employs
the hybrid scheduler shown in Figure 3, where tasks are
classified as critical and non-critical. The critical tasks are
those in the FCFS scheduling; they must be executed very
fast, and their latency must be as low as possible. With this
type of tasks, the static priority is the maximum that the
scheduler supports while a dynamic priority is not necessary

in this framework because an FCFS scheduler does not use
the dynamic priority promotion system.

FIGURE 3. Scheduling architecture of the proposed flight controller RTOS.

The non-critical tasks are those that do not have a direct
impact on the final application layer or can have deviations
in the frequency of execution without jeopardizing software
stability. These tasks do not require low latency or a very
fast update time. These types of tasks are managed by EDF
scheduling with a dynamic priority system where dpi is cal-
culated in real time, so that a non-critical task can be finally
handled by the FCFS scheduler if its dynamic priority reaches
the maximum priority value.

Both types of tasks are stored in a single task queue. The
scheduler processes the jobs in the order in which they arrive
in the ready queue. This linear buffer can change dynamically
if the system decides to add or remove tasks from the queue
at run time. When a task is added, the first empty space in the
queue is searched and the buffer size index is increased. Con-
versely, when a task is deactivated, it is eliminated from the
queue; the algorithm looks for it in the buffer and eliminates
it. Subsequently, the tasks are moved one position up so that
there are no gaps within the task buffer, and the task queue
index is decreased. This feature provides flexibility when
programming applications that require system redundancy or
need to shut down program blocks.

B. FIRST COME FIRST SERVE SCHEDULING
FCFS scheduling automatically executes queued requests and
tasks in order of arrival. The works [25], [26] show that it is
the simplest and most intuitive technique for managing a set
of tasks stored in a FIFO queue. This methodology does not
support the pre-emption of tasks, so priority does not take
effect in this type of algorithm. In this case, the tasks to be
executedwithin this framework are those that have the highest
priority of the system, called real-time.

This framework is modeled as a pipe where tasks enter;
then, each task is checked to see if it must be executed, and the
corresponding function is called. The algorithm is made up of
a main loop that goes through all the tasks in the queue, dis-
carding the tasks that do not belong to the real-time category.

VOLUME 10, 2022 134873



R. Rico et al.: Hardware and RTOS Design of a Flight Controller for Professional Applications

Once a real-time task is found, the remaining execution time
tr is calculated as

tr = lei + Ti − t, (1)

where lei is the last time when this task was executed, Ti is the
task period, and t is the actual time. If tr > 0, the algorithm
discards the task because it does not have to be called yet,
and the system returns to the starting point to look for the
next task. On the other hand, if tr ≤ 0, the task is selected to
be executed.

Finally, when a task is selected, it is called, and, immedi-
ately afterwards, the statistics of maximum and average con-
sumed time are calculated. The whole process is illustrated in
Figure 4 for a system with three critical tasks.

This type of algorithm ensures that tasks can be executed
as quickly as possible, but has the disadvantage that it is
not possible to eliminate the latency generated when several
tasks must be called at the same time. Since the design of the
scheduler is oriented towards embedded systemswith a single
core, it is not possible to make simultaneous calls of several
functions. Therefore, when two or more tasks must be called
at the same time, there is a delay in the tasks equal to the time
it takes for the functions to be executed.

To improve the behavior of this framework, this algorithm
and the tasks that comprise it are housed within the ITCM and
DTCM memories of the microcontroller. The purpose of the
Instruction Tightly Coupled Memory (ITCM) is to provide
low-latency memory for instructions that the processor can
use without the unpredictability feature of caches; in other
words, access to this memory has zero delay clock cycles.
Additionally, Data Tightly Coupled Memory (DTCM) is a
memory with similar characteristics to the ITCM, whose
purpose, however, is to save the data used in critical tasks.

Both memories are directly connected to the processor,
whereas traditional memories are wired to the master bus,
just like the rest of themicrocontroller peripherals. Therefore,
these types of memories are perfect for this type of scheduler,
where latency is very important and a deterministic execution
time is required.

C. EARLIEST DEADLINE FIRST SCHEDULING
Works [27], [28], [29], [30], [31], [32] show that EDF
scheduling can control a multitude of tasks with great results,
by assigning static and dynamic priorities to the tasks; which
is the reason why this system is chosen to handle non-critical
tasks.

Earliest deadline first scheduling is an algorithm that uses
a priority queue. This queue is dynamically updated by look-
ing for the closest process to its deadline dli, thus ensuring
that all the tasks are executed within a specific time for each
function. This process is illustrated in Figure 5 for a system
with three non-critical tasks.

Before running this algorithm the general semaphore of the
scheduler comes into play, which is in charge of blocking the
operation of the EDF scheduling framework. This semaphore
is important because it allows to meet the requirements of dli

for critical tasks called by FCFS scheduling. Blocking occurs
when there is not enough time to run the algorithm (flowchart
of Figure 5), defined by:

W > tr , (2)

where W is the time required to execute the EDF algorithm
and tr is the task execution time, which is computed as in (1).

FIGURE 4. FCFS scheduling: flowchart and timing diagram.

When enough time is available to run the algorithm, the
system starts looking in the queue for non-real-time tasks.
As soon as a task is found, the dynamic priority calculation
process begins; the difference between the FCFS and EDF
algorithms is that, in the EDF case, the tasks are chosen based
on three parameters: available time, priority, and execution
time.

First, the dynamic priority of each task is defined by the
following equations:

dpi =

 1+
spi(t−lei)

Ti
tr ≥ wi

0 tr < wi
(3)

This process of calculating dpi is repeated for all the tasks
in the queue until the task with the highest dynamic priority is
found. After finding it, the algorithm proceeds by calculating
the execution statistics of the task and, finally, the function is
called.

This algorithm ensures that all tasks are run within the
target deadline dli regardless of priority or frequency of exe-
cution. As in FCFS scheduling, when two or more tasks must
be executed at the same time, there is a latency in the call
function. In addition, there is an increase in priority, thus
reducing the execution delays in the tasks with respect to
other types of algorithms.

134874 VOLUME 10, 2022



R. Rico et al.: Hardware and RTOS Design of a Flight Controller for Professional Applications

FIGURE 5. EDF scheduling: flowchart and timing diagram.

D. TASK TOPOLOGY
The source code is split into self-contained layers that
exchange information to perform their tasks. The flight con-
troller software is composed of three different layers:
• RTOS layer: the part of the software in charge of man-
aging the system tasks.

• Middleware layer: a general layer of software that pro-
vides the necessary libraries to manage sensors, actua-
tors and communications.

• Flight control layer: the highest-level layer of the appli-
cation. In this work, it is the software part in charge of
estimating and controlling the attitude and position of
the UAV.

Figure 6 shows the different layers of the software and the
data interconnections between them. A component in a layer
can consume or contribute data asynchronously. Furthermore,
this type of information exchange is totally parallel; which
means that there are no delays in internal communications
between modules.

1) MIDDLEWARE LAYER
This is the general library layer for any robot. It is made up
of three different modules: connectivity, storage, and drivers.

The connectivity module manages external bidirectional
communications with a ground station either with cable or
wireless. This module uses two types of communications:
UART and USB. Generally, telemetry modules work with

FIGURE 6. Task topology employed in a flight controller.

asynchronous serial protocols, while, when connecting the
controller to the ground station, the most common method
used is USB. Both protocols work in parallel, hoping to find
the interlocutor of the ground station to send and receive
information or changes in the application configuration. The
storagemodulemanages the blackbox and themodule config-
uration. The blackbox collects all the relevant data from the
modules that make up the software. These data are stored in
an SD card for later analysis. As to the module configuration,
it handles the parameters of all the modules. This system uses
the flash of the microcontroller or the SD card to store the
information. When the software starts, it loads the data stored
in RAM for functions to be used.
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A large percentage of the middleware layer is responsible
for sampling the sensor data to later make an accurate esti-
mation of the attitude and position. Oversampling increase
the resolution and signal-to-noise ratio. Then, a oversampling
factor of Nmeans a sampling rate of N times the Nyquist rate,
which causes the noise power to be reduced by a factor N.
This technique implies that there are two tasks for each sensor
with different update times and priorities. Figure 7 shows this
work methodology whose tasks are called foreground and
background.

FIGURE 7. Foreground/Background flowchart.

The background encompasses high-priority tasks that are
responsible for managing communications with the sensor,
and collecting and rotating data when necessary. These tasks
run at twice the foreground speed to achieve a oversampling
factor of two.

The foreground is the framework where lower-priority
tasks are encompassed. These tasks are in charge of calibrat-
ing, calculating, rotating and filtering the data obtained in the
background. In addition, a small analysis of the timing data
is done to show the operating status of the sensor in real time.

2) FLIGHT CONTROL LAYER
The flight control layer is a set of algorithms for the estima-
tion, guidance, and control of drones. The core of this layer is
the cascade control of the UAV. Figure 8 shows four different
chained PID controllers: two for attitude control and two for
position control.

The reference generator converts the positions of the sticks
of the RC transmitter into the set points that are entered in the
position and attitude control blocks. The flight mode causes
the activation or deactivation of the aircraft position control,
enabling the attitude control references to be changed, which
can come from the reference generator or the higher-level
position control.

FIGURE 8. Flight control diagram.

Each control block contains a PID controller with parallel
structure and a proportional feedforward. The control action
u(t) is obtained based on the reference r(t) and the tracking
error e(t) = r(t) − y(t) according to

u(t) = Kpe(t)+ Ki

∫ t

0
e(t)dt + Kd

ded (t)
dt
+ Kff r(t). (4)

The use of the derived term ed (t) corresponds to the track-
ing error after the application of a low pass filter. This filter is
two-pole and allows to select the cut-off frequency in Hertz.

Finally, there is a mixer block. This block transforms the
output of the three loops of the angular velocity control,
as well as the output of the altitude control loop, into the
motor command signals. Depending on the type of drone
configured, this block is capable of adapting the inputs to the
number of rotors available in the aircraft.

IV. EVALUATION
This section evaluates the proposed RTOS as part of the
URPilot flight controller whose hardware and software were
defined in previous sections. The results are based both on
the operating system efficiency and actual aircraft operation
using the proposed hardware.

The hardware-software proposed as flight controller and
specially its RTOS have been designed seeking greater flexi-
bility, simplicity, and optimization than other software pack-
ages on the market, although a complete analysis is necessary
to check its behavior.

A. SCHEDULING PARAMETRIZATION
One of the major issues is set the period of each task so
that the scheduler is able to meet its timing constraints. One
solution is End-To-End Design proposed by [15]. This period
selection methodology abandons the heuristic method of trial
and error and focuses on the numerical resolution of the
problem, minimizing the cost of the schedulability test and
without exceeding latency limits. The procedure relies on two
parameters: the retention time E and the freshness time F .
The reaction time is defined as the time it takes for a sample

of sensor data to traverse the program and produce a change of
the actuator. If the task path from sensor to actuator is framed
into two pipes, the worst-case reaction time associated to the
path is

EWCτp→πp|τc→πc =

{
TC + CP TC < T P

T P + CP otherwise;
(5)
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FIGURE 9. URpilot data flow.

where T andC denote the period and the budget time, respec-
tively, of a task associated to a pipe, and subscripts C and
P refer to the consumer and producer tasks in the two-pipe
chain. The notation τ → π designates the association of task
τ to pipe π ; can be in the side of consumer C or producer P.
If the chain has more than two pipes, the reaction time (5) is
increased by

↑ EWC =

{
TC TC < T P

T P − CP
+ CC otherwise.

(6)

On the other hand, the freshness time is the time it takes for
an actuator change sample to be detected by a sensor input,
and its worst case for a two-pipe chain is

FWCτp→πp|τc→πc =

{
2 T P TC < T P

T P + CC otherwise.
(7)

Figure 9 shows a case where the firmware has been sim-
plified into three data paths that start from the IMU, mag-
netometer and radio, respectively, to the actuator outputs.
The tasks labeled in the diagram are associated to pipes and
their periods and worst-case execution times are going to
be determined (the execution time is closely related to the
budget time). The rest of the system tasks will not be taken
into account in the analysis because they do not contribute to
flight stability, and their periods will be adjusted as multiples
of the periods calculated in the analysis. Table 2 collects
the whole set of tasks. Certain upper limits are established
for the worst case of the reaction and freshness times as in
[15]. Thus, EWC <= 10 and FWC <= 20 for the IMU
path, and EWC <= 25 ms and FWC <= 45 ms for both
the magnetometer and radio paths. Using the time limits
and formulation (5)-(7), the periods of tasks in Table 2 are
defined.

Figure 10 compares several reaction and freshness times:
‘‘Constraint’’ refers to their upper limits, ‘‘Predicted’’ refers
to the values obtained by (5)-(7), and ‘‘Observed’’ refers to
the current values obtained for the URpilot flight controller.
All this verifies the method for the scheduler parametriza-
tion and shows a good performance of the proposed
hardware-software.

FIGURE 10. URpilot reaction time (up) and freshness times (down).

B. SCHEDULABILITY TEST
Previous analysis show that the latency obtained is within
the established limits, but did not give any information on
whether the deadlines would actually be met. Works in
[33], [34], [35], and [36] propose the use of rate monotonic
scheduling (RMS). This algorithm performs an execution
modeling of all tasks in the system and determines the amount
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TABLE 2. Tasks that make up the flight controller.

of time it takes to comply with the guarantees for the set of
processes in question.

Each task is assumed to have the following characteristics:
1) Each task is a periodic task of period T , which repre-

sents the frequency with which it executes.
2) An execution time C , which is the CPU time required

during the T period.
3) A utilization U , which is the ratio C/T .
4) Only tasks consume time. The scheduler itself is treated

as if it executes instantaneously.
Liu and Layland [37] introduced static and dynamic prior-

ity scheduling algorithms. Their static priority algorithm was
called rate-monotonic scheduling (RMS), and their dynamic
priority algorithmwas known as earliest deadline first (EDF).
The proposed RTOS is a hybrid system that requires the
analysis of both solutions.

In the first place, the analysis of critical tasks is presented;
let us remember that these tasks are managed by the FCFS
scheduler of the RTOS layer of the flight controller and,
specifically, they are the tasks of Table 2 that have a real-
time priority. Liu and Layland [37] proved that for a set of
n periodic tasks with unique periods, any such task set is
schedulable using rate monotonic scheduling if:

n∑
i=1

Ci
Ti
≤ n(2

1
n − 1) (8)

where Ci
Ti

is the percentage of time that task i will occupy
the processor at each arrival, in the worst case. Thus, the test
states that the sum of these processor utilization percentages,
for all n tasks, must not exceed the utilization bound.
When the number of processes tends towards infinity, the

utilization bound is defined as:

lim
n→∞

n( n√2− 1) = ln 2 ≈ 0.69. (9)

Therefore, a rough estimate is that RMS can meet all the
deadlines if total CPU utilization, U , is less than 70%.
The EDF scheduler of our flight controller manages the

tasks in Table 2 that do not have real-time priority. Applying
the left part of Equation (8) to them results in a utilization
bound

UFCFS = 0.17 ≈ 18%, (10)

which is a very good result, since it only contemplates the
part of the critical tasks executed by the FCFS framework.

For the EDF framework, Liu and Layland [37] showed
that any task set is schedulable under this policy if processor
utilization by all tasks does not exceed 100%.A necessary test
for independent tasks using earliest deadline first schedul-
ing (EDF) is:

n∑
i=1

Ci
Ti
≤ 1 (11)

Applying the left part of Equation (11) to the rest of the
tasks involved in the EDF scheduler results in a utilization
bound:

UEDF = 0.1 = 10% (12)

Both tests result in the great performance of the proposed
RTOS and the hardware used for flight control. In total the
hybrid scheduler (FCFS + EDF) has an utilization factor of
28% compared to 70% for a pure FCFS system or 100% for
a pure EDF system.

Figure 11 shows a comparison of this factor with respect
to the best known firmwares on the market for flight control.
The proposed system (URpilot) shows a lower utilization
factor than the two Ardupilot options; the simplified Ardupi-
lot option is the most similar to the one proposed in this
paper due to the number of tasks that are included in the
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FIGURE 11. Comparison of utilization factors between different
firmwares.

firmware. In contrast, Betaflight shows two very different
results depending on the running frequency of the PID con-
trollers; the 1KHz version achieves slightly better results than
URPilot. Taking into account that Betaflight is a firmware ori-
ented to racing drones and whose functionalities are limited,
it can be said that the proposed RTOS has the properties of a
light and fast software but that it also has the characteristics
and functionalities of professional use software.

C. CPU UTILIZATION
Understanding the processor load in an embedded system is
important. It is one more mechanism that allows to know the
deadlines of the system and if they are being complied with
correctly. Incorrect use of the CPU can cause a system failure,
which in the case of an aircraft is usually lethal. For this
reason, it is very important that the system executes the tasks
loosely, bearing in mind that the final application may require
a greater workload. In this case, a 40% utilization target has
been defined, with a 30%margin for future functions required
in the final application. When it is close to 65%-75%, it is
advisable to replace the processor with a higher one or to limit
the amount of system tasks as this can cause a serious failure
in flight.

CPU utilization is represented by

UCPU = 100− I , (13)

where I is the percentage of time that the CPU is idle and is
expressed as

I =
Tnl
T

100. (14)

Tnl represents the time that the processor is without load,
while T is the time of the last calculation period.
Applying the previous formulation to the proposed system,

we obtain Tnl = 84 807µs, T = 100 000µs, I = 84.807%,

and, finally, UCPU = 15.193%. This result shows a great
performance, considering that the software is designed for
professional applications where external sensors or actuators
may be added, causing the need for greater number of tasks
to be executed, and therefore, forcing an increase in CPU
utilization.

D. PERIOD DEVIATION TEST
The deviation of the period task of a processor is an aspect
to take into account when assessing the effectiveness of a
scheduler.

Standard deviation of the period is defined as

σ =

√√√√ 1
N

n∑
i=1

(Ti − T ), (15)

where N is the number of samples, Ti is the period measured
in a sample and T is the target period.

Applying the previous equation to a set of 1 000 samples,
the results of Table 2 are obtained. Very small deviations are
observed as task priority increases, resulting in deviations of
less than 1% for high priority tasks where the execution times
of the tasks are more important.

On the other hand, a comparison of the deviations with
traditional schedulers is proposed, thus showing the superi-
ority of the proposed system. Figure 12 details a comparison
of standard deviations between the proposed system and a
pure EDF scheduler; the tasks are grouped by level of priority
(L: low, MH: medium-high, H: high, RT: real-time), which
gives σL , σMH , σH and σRT . The results show the superiority
of the proposed hybrid scheduler. This improvement is impor-
tant when executing higher-priority tasks where the latency
must be as low as possible to guarantee the stability of the
final application.

FIGURE 12. Comparison of standard deviation of task execution
frequency between hybrid and EDF schedulers.

E. HARDWARE TEST
Hardware is an aspect that also has to be analyzed in
the results of the proposed system. Flex board proposal
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FIGURE 13. FFT analysis of system IMUs.

in Section II-B provides more accurate readings with less
interference than core board sensors. To demonstrate this
statement, an experiment is carried out with the drone in sta-
tionary flight, which records 100 000 samples thrown by its
different IMUs. Figure 13 compares the Fast Fourier Trans-
form (FFT) of IMU accelerometer and gyroscope measure-
ments. It proves that the sensors located on the flexible board
(IMU 2, IMU 3, IMU 4) are less affected by the mechanical
vibrations of the aircraft. On the contrary, the IMU embedded
in the core board (IMU 1) provides noisier signals, causing a
worse estimation of the aircraft attitude.

The best way to merge information from multiple IMUs
is not a trivial task [38], [39]. Neither is fault-tolerant data
fusion [40], which allows the aircraft to continue in flight
despite an IMU suffering a critical failure. All this would
require a specific study outside of the present work. Never-
theless, a simple fault-tolerant data fusion system based on
approaches [40], [41] is described below. Then a real experi-
ment will prove its effectiveness, as well as the usefulness of
the featured hardware.

The current fault-tolerant arrangement contains two func-
tional units: the error detector and the recovery sys-
tem; the former warns of errors and the latter restores
a proper operating state. Error detection obeys to the
Duplication-Comparison method [41], which is one of the

most common routines when there are redundant sensors. The
algorithm works in parallel with the measurements of several
IMUs to compare the results and to make decisions under
the existence of inconsistencies. Here there are three IMUs
(i= 1, 2 and 3) and the measurement of each IMU i consists
of a vector xi = {xi,1, xi,2, . . . , xi,6} with accelerations and
velocities in the three axes of rotation from 3D accelerometers
and 3D gyroscopes. A raw data fusion will be performed
using the Weighted Average Voting system [40] to generate
a fault-tolerant virtual IMU. The voter output merges redun-
dant sensor data and certain internal parameters triggers the
error-detection and the recovery system routines. The voting
algorithm comprises the following three steps.

Firstly, the measurements of each (i,j)-pair of IMUs are
compared by calculating the distance vector d ij. Three dis-
tance vectors, d12 = |x1 − x2|, d13 = |x1 − x3| and d23 =
|x2− x3|, are calculated. A distance vector contains six com-
ponents that represent the distances between the homologous
components of xi and xj and evidence possible discrepancies
between sensors. Thus, a component of d ij that reaches a high
magnitude means a mismatch between the information from
sensor i and sensor j.

Secondly, a weight coefficient must be associated to each
sensor of each IMU; the result for IMU i will be ωi =

{ωi,1, ωi,2 . . . , ωi,6}, where ωi,k will weigh the measurement
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FIGURE 14. System behavior in the event of IMU failure.

of sensor k of IMU i according to its consistency with the
sensor k of redundant IMUs, i.e. weight coefficients will
determine the contribution of each sensor in the voting system
that yields the output of the virtual IMU. To find appropriated
weights ωi,k , agreement indicators sij,k are previously com-
puted taking into account distances dij,k as follows

sij,k =


1 if dij,k ≤ ak(

nk
nk−1

)(
1−

dij,k
nkak

)
if ak<dij,k<nkak

0 if dij,k ≥ nkak

(16)

where ak is a fixed threshold below which measurements are
considered eligible by the voting systems, and nk is another

positive tuneable thresholding parameter such that nkak is a
second threshold that allows a partial contribution to be con-
figured. Distances above nkak warns of serious discrepancies
between sensors that suggest the failure of one of them.

Considering the agreement indicators among IMUs for
sensor k , the weight coefficient of sensor k of IMU i is
calculated by means of

ωi,k = 0.5
3∑

j=1,j6=i

sij,k (17)

Finally, in the third step, the voting system combines the
measurements of each IMU. The voter output of sensor k is
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calculated as follows:

x̄k=1,...,6 =

∑3
i=1 xi,kωi,k∑3
i=1 ωi,k

(18)

Then, the output of the virtual IMU produces x̄ =

{x̄1, x̄2, . . . , x̄6}.
Beyond being a method of merging redundant informa-

tion, the Weighted Average Voting system warns of sensor
failure. Thus, an error detection algorithm watches when the
coefficients sij,k take null values during 100 consecutive time
instants. If this occurs for both sij,k of sensor k of IMU i, that
sensor is faulty. In such a case, the recovery system removes
the affected sensor from the estimation system, which starts
operating with the two remaining sensors.

Figure 14 demonstrates the sensor fault-tolerance of the
featured hardware. A loss of communication with IMU 3 is
simulated via software: constant measurements are received
from time t = 8s. The error detection and recovery systems
discard the six measurements of the faulty IMU and allow an
adequate estimation of the Roll and Pitch angles. The virtual
IMU turns out to be immune to sensor failure.

V. CONCLUSION
The proposed flight controller was designed in response to
the latest needs that have emerged in the professional drone
market. In recent years, professional applications that use
UAVs require aircrafts to be safer to protect the equipment
they carry on board. The proposed hardware provides the
necessary security for any application. On the one hand, the
input and output power supply is protected against failures
and, on the other hand, the system has redundancy in the
sensor unit, which provides better measurements for the esti-
mation of the orientation, opens the way to fault-tolerant data
fusion, and also behaves better against mechanical vibrations
generated in flight.

There are numerous RTOS on the market, but it is very
difficult to make a selection in terms of flexibility, speed
and ease of use. Therefore, this paper proposes the use of
a specific RTOS for this type of applications, seeking to
increase the task execution speed, minimizing latency, and
facilitating the programmer use. This is a hybrid scheduler
in which critical real-time tasks are controlled by an FCFS
framework. Non-critical tasks, by contrast, are driven by the
EDF framework with dynamic priority that causes functions
to be executed at the right time. The simplicity of this sys-
tem is in the use of a single task queue shared by the two
schedulers and in which a non-critical task can evolve into a
real-time task.

The results demonstrate good system performance
compared to other systems on the market in terms of CPU
utilization and different schedulability tests proposed in the
literature. These results open the way for future work on
aircraft estimation and control, seeking to improve the per-
formance of the current traditional control PID loops.
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