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Abstract

In recent years there has been a strong expansion of photovoltaic (PV) distributed generation systems. A high PV penetration
evel can cause uncertainty in the operation and management processes carried out by electric utilities, since most meters register
he net load, i.e., the actual load minus the power generated by the PV systems behind the meter. The goal of this paper was to
nalyze the difference in the net load forecasting error achieved by models using or not using behind-the-meter PV generation
ata. The PV plant is connected to the lower voltage side of the power substation, representing a penetration level of more
han 35% of the total load. The study shows that the best forecasting results are obtained with an indirect approach using
wo forecasting models, one for the total load and the other for the PV generation. However, the difference with respect to
he results obtained with a unique net load forecasting model is almost negligible, which may be of special interest for power
ystem distributors or other agents who do not have access to behind-the-meter generation data.

2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Distributed renewable energy generation, especially local photovoltaic (PV) generation, has expanded in recent
ears and is expected to increase its expansion in the near future [1]. A high PV penetration level can cause
ncertainty in the operation and management processes carried out by electric utilities, since most meters register
he net load, i.e., the actual load minus the power generated by the PV systems behind the meter. This situation

akes difficult the forecast of the net load [2], necessary to properly operate the power distribution system, due to
wo fundamental causes: The invisibility of PV generation for distribution system operators (DSOs), which prevents
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it from being quantified when it is produced, and the stochastic nature of PV generation, which makes it difficult
to find stable generation patterns (solar irradiance, cloud cover, cell temperature, etc.).

Therefore, it is crucial for DSOs to have tools at their disposal that allow them to forecast with a certain degree of
eliability the load demanded at any given time of the day. Many methods for net load forecast with PV penetration
ehind the meter (BTM) have been proposed in the international literature. These methods can be classified into
tatistical methods (linear regression, ARMA, exponential smoothing, etc.) and methods based on Machine Learning
ML) techniques such as artificial neural networks (ANNs), deep learning, random forest (RF), etc. There are also
ybrid methods that combine or integrate more than one technique. The selection of the method or technique to be
pplied to obtain the net load forecast depends on the available data and the characteristics of the solution sought
granularity, accuracy, etc.). Based on the available data, short-term net load forecasting (STNLF) can be addressed
y two approaches: direct and indirect. The indirect approach determines the net load forecast as the difference
f load and PV generation forecasts, while the direct approach directly predicts the net load without any further
ntermediate steps.

In the international literature related to STNLF, most authors propose models using the techniques described
bove. Further analysis shows that some authors use estimated data for their models [3–7], other use real load or
eneration data in their approaches [8–15]. Only some of them compare the results of their models with those
btained with other reference models [3,8,10–14]. While the literature on STNLF models is growing, there are
imited works available about the search of the adequate technique to obtain the best forecast with different PV
enetration levels.

Among the works that describe STNLF models by the direct approach, the following can be highlighted: Zhang
t al. [8] establish a comparison between 3 different hourly STNLF models with a horizon of one day, specifically
odels based on Linear Regression (LR), RF and Gradient Boosting. The main handicap of their method is that they

se as explanatory variable the PV installed capacity and not an estimation of the PV generation; this affects the
ccuracy of the forecast. Shaker et al. [9] propose a method based on Fuzzy Arithmetic Wavelet Neural Networks
FAWNN) that enables to forecast the net load in a region with high PV penetration level. The proposed model uses
istorical PV power generation data from a limited number of representative locations in the region and forecasts
f weather variables obtained by a Numerical Weather Prediction (NWP) model. Although the forecasting error
s low, they do not compare their results with those obtained by any other method. Razavi et al. [12] propose an
d-hoc model based on a recurrent neural network that allows to obtain accurate net load forecasts from various
oad profiles. They do not carry out any comparison of the forecasting results achieved by the proposed model.

There are several published works that describe STNLF models developed with the indirect approach, among
hem the following can be highlighted: Saeedi et al. [10] use weather data, minimal PV generation data, and PV
lant location to estimate the PV power generation. Then, they use the estimated PV generation and measured net
oad to estimate the total actual load at each instant of time. They apply several techniques, obtaining RF the best
esults. Sun et al. [6] determine the impact of PV penetration level on the performance of STNLF models for a
istribution system. They estimate PV power generation using weather data and calculate the total load; afterwards
hey decompose load and weather data using wavelets and forecast both individually; finally, they add both partial
orecasts to get the final forecast. Aponte et al. [11] address a methodology based on ML to forecast peak loads
ith and without renewable energy generation BTM. They separately predict load and PV generation calculating

fterwards net load. Landelius et al. [13] evaluate direct and indirect approaches to predict net load. In the direct
pproach, they apply ML techniques (LR and ANNs) to forecast the net load without any data on the total load. In
he indirect approach, they use a load forecasting model based on the open-source software PVLIB to subsequently
orecast the net load. Mejı́a et al. [14] introduce an interesting novelty in the forecast of net load: they use the
olar distributed generation as a regressor variable, that is, as another explanatory variable to be included in the
TNLF models. In [15] the authors propose a method based on online load and PV generation forecasts to predict

he residual load in a building. They choose the persistent model to evaluate the accuracy of their proposed model.
As mentioned above, in published works related to STNLF models we can find models based on the direct

pproach [8,9,12,13] and models based on the indirect approach [6,10,11,13–15]. However, the results of these
odels, in general, are compared with the ones obtained with other models developed with the same approach, but

ot with those obtained with models developed with the opposite approach. It should be noted that, in most cases,
he authors do not have the data to develop models using both approaches (PV generation is unknown), but the

uestion remains: which approach would provide the best STNLF results?
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This paper presents a comparative study of the forecasting results obtained by STNLF models developed with
popular ML techniques using the two approaches. For the development of the models, we used data from a real

ower substation that include all the hourly electric load of a small town and the hourly generation data of a PV plant
onnected to the substation and whose generation represents a penetration level of 35.6%. Three possible scenarios
ave been considered in the comparisons of the obtained results, corresponding to penetration levels of 0, 17.8 and
5.6%. The forecasts provided by the models are the 24 hourly expected values for the output variable, which can
e total load, PV generation or net load, for the following day (the prediction is carried out in the first hours of the
revious day), which means that the forecasting horizon ranges from 24 to 48 h. A wide set of explanatory variables
ave been used for the development of the models. The tests carried out show that the best forecasting results are
btained with the indirect approach. However, the difference with respect to the results obtained by applying the
irect approach are relatively small, which may be of particular interest for agents in the electric sector interested
n net load forecasting, but who do not have access to data of PV generation behind the meter.

The paper is structured as follows: Section 2 presents the four techniques selected to develop the STNLF models.
ection 3 presents a case study with the results obtained in the forecast of the net load corresponding to a power
ubstation with PV generation behind the meter. Finally, Section 4 presents the conclusions.

. Selected techniques

Four ML techniques were selected to develop all the short-term forecasting models needed in our study. These
echniques included: RF, Extreme Gradient Boosting (XGB), Support Vector Regression with Radial Basis function
ernel (SVR), and Cubist (CUB).

RF is a ML algorithm based on an ensemble method, which creates a series of small decision trees from
andomly selected data samples. The model combines the forecast obtained by each tree to obtain an accurate
nal forecast [16].

XGB is a fast implementation of the gradient boosting technique. The basis is to generate multiple “simple”
ecision trees sequentially to achieve a final model. This is done by iteratively adding the new trees and fitting the
esiduals of the prior model so that more accurate results are obtained in each iteration [17].

SVR is the support vector machine adaptation for regression tasks [18]. The Radial Basis Function Kernel [19]
s used to transform the original input space (n-dimensional) into an m-dimensional input space, where m is much

higher than n, and then applies the dot product efficiently. The goal is to obtain a linear regression curve in the
higher dimensional space that converts to a nonlinear regression curve in the lower dimensional space.

Cubist [20] is a rule-based model with added instance-based corrections, as an extension of the M5 model tree.
The tree is reduced to a set of rules. The rules are simplified by pruning or combining. CUB is a suitable algorithm
for creating rule-based models that provide accurate forecasts with clarity requirements.

In order to establish comparisons according to different PV penetration levels, three scenarios were considered:

• Scenario 1. This scenario corresponds to a PV penetration level of 0%. It is considered that there is no PV
generation, so the net load coincides with the total load.

• Scenario 2. This scenario corresponds to a PV penetration level of 17.8%. Half of the PV generation
is considered. With each of the selected techniques, two other short-term forecasting models need to be
developed: one for PV generation and another for net load.

• Scenario 3: This scenario corresponds to a PV penetration level of 35.6%. The total PV generation is
considered. As in scenario 3, two short-term forecasting models must be developed with each of the 4 selected
techniques.

The forecasting models for the total load in scenarios 2 and 3 are the same that the ones developed for scenario 1
since the total load does not change in the three scenarios. A total of 20 models has to be developed: 4 short-term
total load forecasting models, one with each technique; 4 STNLF models for scenario 2 and other 4 for scenario 3;
4 short-term PV generation forecasting models for scenario 2 and other 4 for scenario 3. All models were developed
following an optimization process by choosing the most appropriate values of their parameters (hyperparameters)
to avoid overfitting and to increase the generalization of the models. This optimization was performed by a grid
search procedure on a set of possible candidate values for the parameters, selecting those that offered a lower

average forecasting error (mean square error) with the 5-fold cross-validation procedure.
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The objective of the model development is the forecast of the net load in the three scenarios. This value is
irectly provided by 4 models in each scenario, one for each of the techniques used. The outputs of these 4 models
orrespond to the forecasts of net load using the direct approach. A second possibility is the forecast of net load
sing the indirect approach. In this case, the net load forecast for hour t, L̂net−ind (t), can be determined as the

difference between the values provided by a total load forecasting model for hour t, L̂ total (t), and a PV generation
orecasting model for hour t, P̂PV (t), as shown in (1).

L̂net−ind (t) = L̂ total (t) − P̂PV (t) (1)

Thus, for each of the three scenarios and for each of the 4 selected techniques, two STNLF models are available,
ne using the direct approach and the other using the indirect approach. The comparison of the results obtained by
odels of one approach or another, can give us an answer to the question raised in the introduction and related to
hich approach would provide the best forecasting results for the net load.
Three indexes were used to evaluate the forecasting performance of the models. They are the Root Mean Square

rror (RMSE), defined in (2), the Mean Absolute Error (MAE), defined in (3) and the Mean Absolute Percentage
rror (MAPE), defined in (4),

RM SE =

√ 1
N

h2∑
t=h1

(
ŷ (t) − y(t)

)2 (2)

M AE =
1
N

h2∑
t=h1

⏐⏐ŷ (t) − y(t)
⏐⏐ (3)

M AP E =
1
N

h2∑
t=h1

⏐⏐y (t) − ŷ (t)
⏐⏐

y (t)
(4)

where ŷ (t) represents the output of the forecasting model for hour t, y(t) represents the actual value for hour t, h1
and h2 the first and the last hour, and N the total number of hours in the testing period.

Since each of the techniques selected for the development of the prediction models had parameters whose values
could be tuned or optimized to avoid overfitting to the training data and to increase the generalization of the models,
the parameter tuning with repeated grid-search cross-validation technique was used [21]. This technique consists
of evaluating the forecasting results achieved by a set of models defined by the values of the parameters contained
in a search grid applying k-fold cross-validation procedure a specified number of times. The technique tests all
ombinations of parameters and selects the set that achieves the lowest average RMSE with all the repeated k-folds.

. Case study

The load and PV generation data needed for this study were obtained from the metering records of a 66/13.2
V power substation located in the north of Spain, which feeds a small town of about 5000 inhabitants. The entire
own electric grid is connected to the low voltage side of the substation, so the 66 kV grid operator only records
ata corresponding to the substation’s net load. The 13.2 kV network, operated by another distribution operator,
upports around 3000 consumers, mainly residential ones, although the largest share of consumption corresponds to
ndustrial consumers. A PV plant with an installed capacity of 2 MW is connected to the 13.2 kV grid and is located
ust 4 km from the town, and close to the substation. The data available from the power substation correspond to
ourly records of the total load supplied to the 13.2 kV grid and the hourly generation records of the PV plant
easured at the connection point in the substation. The data covers the period between October 1, 2008 and March

1, 2011 (30 months). For the development of the forecasting models, the data set was completed with the following
ariables:

• Forecasts of weather variables. The weather forecasts for the period considered corresponded to the values
predicted in the early hours of the day for the 24 h of the next day. The forecasts were downloaded from the
web server of a regional weather forecast service that provides hourly forecasts, from a NWP model, of a set
of weather variables for a grid of points on the Earth’s surface located about 12 km apart from each other. The
forecast of each weather variable for the town location was calculated as the weighted average of the values

for the four nearest points of the grid, using as weighting factor the inverse of the square distance.

118



A. Falces, C. Capellan-Villacian, M. Mendoza-Villena et al. Energy Reports 9 (2023) 115–122

o
f
h
P
m
f
n
e
(
t
c
t
g
o

v
s

• Dummy variables. They are related to the hour for which the forecast is carried out: hour of the day, day of
the week, month of the year, holidays and European summer time.

• Load values in the previous days. It is well known that one of the most relevant explanatory variables in
short-term load forecasting is the hourly load in the previous days, so the database was extended with the
values of total and net load values 48, 72, 96, 120, 144 and 168 h before the forecasting horizon. The forecast
is carried out the previous day, so the last known value of the load for any hour of the day is the one 48 h
before.

• Finally, the data set was completed with three more variables related to the position of the sun with respect
to the PV plant (practically the same as that of the town).

The variables contained in the database are listed in Table 1. The most appropriate variables for the development
f each of the three types of models were selected from the database. Thus, for the development of the total load
orecasting models, the explanatory variables were seven of the weather forecasts, all the dummy variables and the
ourly total load values lagged 48 to 168 h. For the development of the forecasting model of the generation in the
V plant, all the weather forecasts and the three variables related to the sun position were used. For the STNLF
odel, all the explanatory variables used in the forecast of the PV generation were used together with those used

or the total load forecast, although instead of using the lagged values of this total load, the lagged values of the
et load from 48 to 168 h were included as explanatory variables. Thus, the total load forecasting models used 55
xplanatory variables, the PV generation forecasting models used 16 variables and the net load forecasting models
direct approach) used 64 variables. The complete dataset was divided in training dataset and testing dataset. The
raining dataset comprised the period from October 2008 to September 2010 (24 months), and the testing dataset
omprised the period from October 2010 to March 2011 (6 months). All the hourly records were used to develop
he short-term forecasting models of the total load and net load (direct approach). In the case of the short-term PV
eneration forecasting models, only the records corresponding to hours with sunlight were used, since for the rest
f the hours the generation is null.

Table 1. Explanatory variables.

Denomination Variables Direct approach Indirect approach

Load PV generation

V1 Temperature (K) × × ×

V2 Global horizontal irradiance (W/m2) × × ×

V3 Wind speed (m/s) × × ×

V4 Wind direction (◦) × ×

V5 Pressure (hPa) × ×

V6 Relative humidity (per unit) × × ×

V7 Total cloud cover (per unit) × × ×

V8 Cloud cover at low levels (per unit) × ×

V9 Cloud cover at mid levels (per unit) × ×

V10 Cloud cover at high levels (per unit) × ×

V11 Visibility (m) × ×

V12 Rainfall (kg/m2) × × ×

V13 Snow (kg/m2) × × ×

V14 European summer time (logical) × ×

V15–V20 Net load (kW) lag_i hourly net demand lagged “i” hours, i = 48,. . . ,168 ×

V21–V26 Load (kW) lag_i hourly load lagged “i” hours, i = 48,. . . ,168 ×

V27 Solar altitude (rad) × ×

V28 Solar azimuth (rad) × ×

V29 Extra-terrestrial solar irradiance (W/m2) × ×

V30–V52 H2, H3,. . . , H24 Hourly dummy variables for the hour of the day × ×

V53–V58 D2, D3,. . . , D7 Hourly dummy variables for day of the week × ×

V59–V69 M2, M3,. . . , M12 Hourly dummy variables for the month of the year × ×

V70 F1 Hourly dummy variable for national, regional or local holiday × ×

4. Results and discussions

First, the total load forecasting models were developed, which are the same for the three scenarios. The optimal
alues of the parameters (or hyperparameters) that define each of the models were selected by the repeated grid-
earch cross-validation technique using 5 repetitions with 5-fold. After the selection of the optimal values of the
119
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parameters, each model was trained using all the data of the training dataset and used to provide the forecasts for
the data of the testing dataset. Table 2 shows the results obtained by the 4 models in the short-term forecasting of
the total load for the testing period. The model that obtained the best results was the CUB model, with the best
error indexes values, and achieving a MAPE of 4.233%. The second one with the best error indexes was the RF
model, with values relatively close to those obtained by the CUB model.

Table 2. Total load forecasting results for the testing period.

Model RMSE (kW) MAE (kW) MAPE (%)

RF 216.748 157.766 4.250
XGB 219.918 162.311 4.370
CUB 211.530 156.244 4.233
SVR 227.295 169.132 4.599

The next models to be developed were those corresponding to scenario 2 (PV penetration level of 17.8%). Net
oad (direct approach) and PV generation forecasting models were developed. From the forecasts of the latter, the
et load (indirect approach) was calculated using (1) for every hour, considering that in the hours without sunlight
he PV generation was null. Note that the total load forecasting models needed to apply Eq. (1) are those developed
or scenario 1 (results in Table 2). Table 3 shows the results obtained by the 4 PV generation forecasting models,
y the 4 STNLF models with the direct approach, and the results obtained with the indirect approach. As is shown
n Table 3, the model that achieved the best forecasting results for the net load with the direct approach was the
UB, with a MAPE value of 5.407%. However, with the indirect approach the RF model achieved better results,
ith a MAPE of 5.104%, as consequence of its better performance in PV generation forecast. The SVR model,
hich presented good results in the forecast of PV generation, achieved worse results in the net load forecast with

he indirect approach than the obtained by RF model as a consequence of the better results obtained by the latter
n forecasting the total load.

Table 3. Forecasting results for scenario 2 (PV penetration level of 17.8%).

Model PV forecasting Net load forecasting (direct) Net load forecasting (indirect)

RMSE (kW) MAE (kW) RMSE (kW) MAE (kW) MAPE (%) RMSE (kW) MAE (kW) MAPE (%)

RF 195.719 145.518 269.807 193.367 5.490 244.389 178.420 5.104
XGB 200.675 154.137 270.327 195.408 5.600 249.503 183.635 5.246
CUB 207.247 150.270 260.659 188.687 5.407 246.888 179.883 5.167
SVR 197.081 139.544 326.411 236.148 6.807 258.494 188.404 5.427

Table 4. Forecasting results for scenario 3 (PV penetration level of 35.6%).

Model PV forecasting Net load forecasting (direct) Net load forecasting (indirect)

RMSE (kW) MAE (kW) RMSE (kW) MAE (kW) MAPE (%) RMSE (kW) MAE (kW) MAPE (%)

RF 392.040 289.600 353.675 242.766 7.781 328.944 227.931 7.331
XGB 403.739 296.477 346.149 239.843 7.685 339.105 235.147 7.582
CUB 405.580 294.002 342.583 236.053 7.637 337.618 231.076 7.427
SVR 402.428 290.934 363.305 251.513 8.077 347.898 239.235 7.652

Afterwards, the forecasting models corresponding to scenario 3 (PV penetration level of 35.6%) were developed
ollowing the same methodology used for scenario 2. Table 4 shows the results obtained by the short-term forecasting
odels, and the results obtained with the direct and indirect approaches. As is shown in Table 4, the model that

chieved the best forecasting results for the net load with the direct approach was again the CUB model, with a
APE value of 7.637%. Also again, with the indirect approach the RF model achieved better results, with a MAPE

f 7.331%.
Comparing the results in Tables 2–4, interesting conclusions can be drawn. The error in the forecast of net load

ncreases with the level of PV penetration. This occurs for both approaches and for the models of the 4 techniques,
lthough the increases in error indexes with the PV penetration level are slightly smaller in the indirect approach.
or example, for the technique that achieves the best results with the direct approach (CUB), the RMSE error

ncreases from 211.53 kW in scenario 1 (without PV generation) to 260.659 kW in scenario 2 and to 342.583 kW
120



A. Falces, C. Capellan-Villacian, M. Mendoza-Villena et al. Energy Reports 9 (2023) 115–122

i
s
m
i
m
s

m
t
(
o
i
n
n

5

s
a
s
v
T
o
u
t
d
f

t
t
a
i
B

D

h

D

A

R

in scenario 3, which represents an increase near to 23% and 62%, respectively. This same technique, in the indirect
approach, presents increases in RMSE in scenarios 2 and 3 close to 17% and 60%, respectively. This increase in
error indexes is a logical consequence of the stochastic nature of PV generation. Similar findings were obtained in
[3] on the increase of the prediction error with increasing PV penetration level, although the authors used synthetic
data instead real data as in our study. The results shown in the previous tables can help to answer the question
posed in the introduction: The indirect approach provides better forecasting results than the direct approach. This
occurs in the two scenarios with PV generation (scenarios 2 and 3) and for the models of the 4 techniques.

The CUB model provides the best forecasting results for the net load with the direct approach. The CUB model
s the best in scenario 1 (net load coincides with total load as there is no PV generation), and it is the best for
cenarios 2 and 3. However, in the indirect approach, the RF model improves the forecasting results of the CUB
odel. This better performance of the RF model is due to its superiority in forecasting PV generation. For example,

n scenario 2, the RMSE value for PV generation forecast of the CUB model is 3.45% higher than that of the RF
odel. Overall, as expected, the errors in the prediction of PV generation in scenario 2 are about half those of

cenario 3 for all models.
Finally, if the results obtained by the best model with the direct approach are compared with those of the best

odel with the indirect approach, the differences are relatively small. For example, for scenario 3, the difference in
he RMSE between the CUB model with the direct approach and the RF model with the indirect approach is 4.14%
342.583 kW vs. 328.944 kW). The same is true if we compare the RMSE and MAPE indexes for the best models
f both approaches in scenarios 2 and 3. This relative similarity of forecasting results obtained with the direct and
ndirect approaches reaffirms with real data the conclusion reported in [5], where the authors suggest that if the
et demand forecasting model includes as explanatory variables all those relevant for solar energy, it might not be
ecessary to obtain a PV production forecast beforehand if the PV capacity remains unchanged.

. Conclusions

This paper presents a comparative study of the results obtained in the forecast of the net load for a power
ubstation with PV generation BTM. The data used in the study correspond to those measured during 30 months in
real substation: hourly values of net load, total load, and PV generation. The hourly data measured at the power

ubstation were completed with a set of explanatory variables that include forecasts of weather variables, dummy
ariables related to the calendar, and variables related to the relative position of the sun with respect to the PV plant.
hree scenarios have been considered, corresponding to PV penetration levels of 0, 17.8% and 35.6%. The forecast
f the net load for the 24 h of the next day is performed using two approaches: the direct approach that consists of
sing a single model that provides as output the net load forecast, and the indirect approach that consists of using
wo forecasting models, one for the load and the other for the PV generation, obtaining the net load forecast as the
ifference of the forecasts of both models. Four popular ML techniques, widely used in load and PV generation
orecasting, have been chosen for the development of the forecasting models needed in the study.

The results obtained for a testing period of 6 months show that the indirect approach provides better forecasts
han the direct approach, however, the forecasting models developed with the direct approach, using those related
o PV generation as explanatory variables, obtain results that are relatively close to those obtained with the indirect
pproach, which confirms conclusions postulated in previous works. This relative similarity of results may be of
nterest to electricity distribution industry players who wish to obtain net load forecasts but have not PV generation
TM data at their disposal.
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