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Abstract
Some examples of Appell–Dunkl sequences are shown using determined operators.
Specifically, Appell–Dunkl sequences whose generating functions are of the form
Eα(xt)/(1 ± tm), where the function Eα(xt) is given in terms of Bessel functions.
Particular cases of these examples are also generated by means of the inverse of the
Dunkl operator.
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1 Introduction

An Appell sequence {Pn(x)}∞n=0 is a sequence of polynomials such that

P0(x) = c �= 0,
d

dx
Pn(x) = n Pn−1(x), n ≥ 1. (1.1)

It is well known that Appell sequences may be also defined by means of a generating
function

A(t)ext =
∞∑

n=0

Pn(x)

n! tn, (1.2)
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where A(t) is a function analytic at t = 0 with A(0) �= 0. Typical examples of Appell
polynomials are: {xn}∞n=0 with A(t) = 1; Hermite polynomials (see [1]), {Hen(x)}∞n=0,

with A(t) = e−t2/2; Bernoulli polynomials (see [7, 11]), {Bn(x)}∞n=0, with A(t) =
t/(et − 1); or Euler polynomials (see [7, 11]), {En(x)}∞n=0, with A(t) = 2/(et + 1).
These polynomials have been widely studied in the last two centuries because they
havemany applications to number theory, numerical analysis, combinatorics and other
areas.

In [12], they use an operator of the type

A(D̂) =
∞∑

k=0

ck

k! D̂k, (1.3)

where D̂ = d/dx and {ck}∞k=0 is a sequence of constants in order to obtain several
examples of Appell polynomials. In particular, they get Appell sequences whose gen-
erating functions are ext/(1 ± tm). The cases m = 1 or m = 2 are also studied by
means of some integrals.

If in (1.1) the derivative operator is changed by the Dunkl operator �α defined by

�α f (x) = d

dx
f (x) + 2α + 1

2

(
f (x) − f (−x)

x

)
, (1.4)

where α > −1 is a fixed parameter (see [9, 17]), we obtain the Appell–Dunkl
polynomials, {Pn,α(x)}∞n=0, that satisfy

P0,α(x) = c �= 0, �α Pn,α(x) = θn,α Pn−1,α(x), (1.5)

where themultiplicative constant θn,α (thatwill be defined later) in the place ofn is used
for convenience with the notation. Of course, in the case α = −1/2, the operator �α

is the ordinary derivative and Appell–Dunkl sequences become the classical Appell
sequences. Appell–Dunkl sequences can be also defined by means of a generating
function

A(t)Eα(xt) =
∞∑

n=0

Pn,α(x)

γn,α

tn, (1.6)

with A(t) an analytic function at t = 0, A(0) �= 0, and where Eα(xt) is an analytic
function defined in terms of Bessel functions that plays the role of the exponential in
the classical case (1.2), and the coefficients γn,α will be defined in the next section as
a kind of factorial numbers. The generalizations of Bernoulli and Euler polynomials
to the Dunkl context have been studied in [5, 6, 10, 15], and the extension of Hermite
polynomials can be found in [17]. Appell–Dunkl sequences have been also considered,
for instance, in [2, 3, 8].

There are notmany explicit examples ofAppell–Dunkl polynomials in the literature,
except for those mentioned above. So, the main goal of this paper is to generate some
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examples of this kind of sequences using an operator analogous to (1.3) in the Dunkl
context.

Using the inverse of the Dunkl operator, we are going to generate some examples
of Appell–Dunkl sequences in a different way, in particular, one family where the
polynomials of degree even and odd can be defined bymeans of determined generating
functions in terms of Bessel functions. The even case provides us an example of the
polynomials developed in [4]. A general study about the quadratic decomposition of
Appell sequences has been studied in [14].

The structure of this paper is as follows. In Sect. 2, we see the required definitions
and results of the Dunkl universe. Then, in Sect. 3 we give some families of Appell–
Dunkl polynomials using the corresponding operators. Finally, in Sect. 4 some families
of Appell–Dunkl polynomials, obtained also in Sect. 3, are established with the help
of Dunkl primitives.

2 Dunkl definitions

For α > −1, let Jα denote the Bessel function of order α, and for complex values of
the variable z, let

Iα(z) = 2α�(α + 1)
Jα(i z)

(i z)α
= �(α + 1)

∞∑

n=0

(z/2)2n

n! �(n + α + 1)
= 0F1(α + 1, z2/4)

(the function Iα is a small variation of the so-called modified Bessel function of the
first kind and order α, usually denoted by Iα; see [13, 16], or [18]). Let Gα denote the
function

Gα(z) = z

2(α + 1)
Iα+1(z).

With these two functions, the following analytic function is defined

Eα(z) = Iα(z) + Gα(z), z ∈ C.

For any λ ∈ C, we have

�α Eα(λx) = λEα(λx), (2.1)

and

�αIα(λx) = λGα(λx), �αGα(λx) = λIα(λx). (2.2)

Let us note that, when α = −1/2, we have �−1/2 = d/dx , E−1/2(λx) = eλx ,
Iα(z) = cosh z and Gα(z) = sinh(z).
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From the definition of Eα(z), it is easy to check that

Eα(z) =
∞∑

n=0

zn

γn,α

(2.3)

with

γn,α =
{
22kk! (α + 1)k, if n = 2k,

22k+1k! (α + 1)k+1, if n = 2k + 1,
(2.4)

and where (a)n denotes the Pochhammer symbol

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) = �(a + n)

�(a)

(with a a nonnegative integer); of course, γn,−1/2 = n!. From (2.4), we have

γn,α

γn−1,α
= n + (α + 1/2)(1 − (−1)n) =: θn,α. (2.5)

It also holds that

Iα(z) =
∞∑

k=0

z2k

γ2k,α

, Gα(z) =
∞∑

k=0

z2k+1

γ2k+1,α
. (2.6)

We also define

(
n

j

)

α

= γn,α

γ j,αγn− j,α

that becomes the ordinary binomial numbers in the case α = −1/2. To simplify the
notation, we sometimes write γn = γn,α and θn = θn,α .

Then, a sequence of Appell–Dunkl polynomials, {Pn,α(x)}∞n=0, may be defined as
a sequence that satisfies (1.5) where θn,α is given by (2.5), or as a sequence whose
generating function is (1.6).

The inverse of the derivative operator, d/dx , leads to the concept of primitive of a
function. It is well known that this primitive is unique except by an additive constant.
In the Dunkl case, we could propose that a function F is a Dunkl primitive of f if
�α F = f . It would require that this function, F , was unique except by an additive
constant. This may be reduced to prove that �α F = 0, F ∈ C1(R), if and only if
F is a constant. If the function F is even, as �α F = d

dx F , then �α F = 0 implies
that F is a constant. If F is an odd function and �α F = 0, then F should be of the
form Cx−2α−1 and would not be in C1(R) for α > −1. So, F has to be a constant. As
every function, F , can be expressed uniquely in the way F1 + F2 where F1 is an even
function and F2 is an odd function, and the operator �α transforms an even function
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in an odd function, and vice versa, we can define, for α > −1, the Dunkl integral of
a function f as

∮
f (x) dαx = F(x) + c,

where c ∈ R is a constant.
As �α((·)n+1)(x) = θn+1xn , we have

∮
xn dαx = xn+1

θn+1
+ c, n = 0, 1, 2, . . . ,

and then, for a polynomial p(x) = ∑n
k=0 ak xk , its Dunkl primitive is

∮
p(x) dαx =

n∑

k=0

ak

θk+1
xk+1 + c.

Let us also note that, by (1.5), the Dunkl primitive of the Appell–Dunkl polynomial
Pn,α(x) is Pn+1,α(x)/θn+1 + c.

∮
Pn,α(x) dαx = Pn+1,α(x)

θn+1
+ c, n = 0, 1, 2, . . . .

It is also interesting to note that, from (2.1) with λ = 1, we can write

∮
Eα(x) dαx = Eα(x) + c, (2.7)

and from (2.2)

∮
Iα(x) dαx = Gα(x) + c,

∮
Gα(x) dαx = Iα(x) + c. (2.8)

An analogous to the formula of integration by parts in this context is proved.

Lemma 2.1 Let f and g be two functions in C1(R). Then

∮
�α f (x)g(x) dαx = f (x)g(x)

+2α + 1

2

∮
h(x) dαx −

∮
f (x)�αg(x) dαx (2.9)

where

h(x) = ( f (x) − f (−x))(g(x) − g(−x))

x
.
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Proof Let

A(x) = �α f (x)g(x) = d f (x)

dx
g(x) + 2α + 1

2

f (x) − f (−x)

x
g(x)

and

B(x) = f (x)�αg(x) = f (x)
dg(x)

dx
+ 2α + 1

2
f (x)

g(x) − g(−x)

x
,

so

A(x) + B(x) = d f (x)

dx
g(x) + f (x)

dg(x)

dx
+ (2α + 1)

f (x)g(x)

x

− 2α + 1

2

f (−x)g(x) + f (x)g(−x)

x

= d

dx

(
f (x)g(x)

)
+ 2α + 1

2

f (x)g(x) − f (−x)g(−x)

x

+ 2α + 1

2

f (x)g(x) − f (−x)g(x) − f (x)g(−x) + f (−x)g(−x)

x

= �α( f g)(x) + 2α + 1

2
h(x).

Then, applying the Dunkl integral operator

∮
A(x) dαx +

∮
B(x) dαx = f (x)g(x) + 2α + 1

2

∮
h(x) dαx

and the proof is concluded. ��

3 Appell–Dunkl polynomials

In this section, some sequences of Appell–Dunkl polynomials are generated with the
help of determined operators which are defined as follows.

Let {ck}∞k=0 be a sequence of numbers with c0 �= 0 and A(�α) the operator

A(�α) =
∞∑

k=0

ck

γk
�k

α. (3.1)

This operator can be applied to C∞ functions and assuming also that the series obtained
is convergent. In particular, this is always true for polynomials because the operator
�α applied to a polynomial of degree n generates a polynomial of degree n −1, so the
operator (3.1) applied to polynomials has only a finite quantity on not null summands.

Now, it may be stated the main result of this paper.

123



Some Appell–Dunkl Sequences Page 7 of 18    64 

Theorem 3.1 Let {ck}∞k=0 be a sequence of numbers with c0 �= 0 and let A(�α) be the
operator (3.1). Then the sequence of polynomials {Pn,α(x)}∞n=0 given by

Pn,α(x) = A(�α)xn =
( ∞∑

k=0

ck

γk
�k

α

)
xn

is an Appell–Dunkl sequence of polynomials. Moreover, the generating function of
these polynomials is A(t)Eα(xt) where the analytic function A(t) is given by

A(t) =
∞∑

k=0

ck

γk
tk . (3.2)

Proof We will see that the sequence {Pn,α(x)}∞n=0 satisfies the requirements of Defi-
nition 1.5.

P0,α(x) = A(�α)x0 = c0 �= 0,

and for n ≥ 1,

�α Pn,α(x) = �α

( ∞∑

k=0

ck

γk
�k

α

)
xn =

∞∑

k=0

ck

γk
�k

α�αxn

= θn

( ∞∑

k=0

ck

γk
�k

α

)
xn−1 = θn Pn−1,α(x).

So, they are Appell–Dunkl polynomials.
Taking into account (2.3) and (3.2), the generating function, Gα(x, t), of these

polynomials can be obtained in the following way

Gα(x, t) =
∞∑

n=0

Pn,α(x)
tn

γn
=

∞∑

n=0

A(�α)xn tn

γn
= A(�α)Eα(xt)

=
∞∑

k=0

ck

γk
�k

α Eα(xt) =
∞∑

k=0

cktk

γk
Eα(xt) = A(t)Eα(xt). (3.3)

��

Remark 1 By the definition of �α , (1.4), it is easy to see that

�k
αxn = γn

γn−k
xn−k .
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So, the Appell–Dunkl polynomials can be written as

Pn,α(x) =
n∑

k=0

ck

γk
�k

αxn =
n∑

k=0

ck

γk

γn

γn−k
xn−k =

n∑

k=0

ck

(
n

k

)

α

xn−k . (3.4)

3.1 Generating function E˛(xt)/(1− t)

Let en,α(x) be the nth truncated polynomials of Eα(x), that is,

en,α(x) =
n∑

k=0

xk

γk
. (3.5)

We denote

P(1−)
n,α (x) = γnen,α(x). (3.6)

Then it may be proved the following result.

Theorem 3.2 The sequence {P(1−)
n,α (x)}∞n=0 is an Appell–Dunkl sequence of polynomi-

als whose generating function is

G(1−)
α (x, t) = Eα(xt)

1 − t
.

Moreover, these polynomials satisfy the recurrence relation

P(1−)
n,α (x) − θn P(1−)

n−1,α(x) = xn . (3.7)

Proof We must simply apply Theorem 3.1 to the sequence of numbers ck = γk ,
k = 0, 1, 2, . . . Then substituting ck in (3.4), we have

P(1−)
n,α (x) = γn

n∑

k=0

xn−k

γn−k
= γnen,α(x).

From (3.3), the generating function, G(1−)
α (x, t), for {P(1−)

n,α (x)}∞n=0 is given by

G(1−)
α (x, t) =

∞∑

n=0

P(1−)
n,α (x)

tn

γn
=

∞∑

n=0

( ∞∑

k=0

�k
α

)
xntn

γn

=
∞∑

k=0

�k
α Eα(xt) =

∞∑

k=0

tk Eα(xt).
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Using (3.2) with ck = γk , we obtain

Eα(xt)

1 − t
=

∞∑

n=0

P(1−)
n,α (x)

tn

γn
.

In order to obtain the recurrence relation, note that

( ∞∑

k=0

�k
α − �α

∞∑

k=0

�k
α

)
xn = xn .

So, from the definition of A(�α) with ck = γk

P(1−)
n,α (x) − �α P(1−)

n,α (x) = xn .

Applying the Dunkl operator to P(1−)
n,α (x), (3.7) is obtained. ��

3.2 Generating function E˛(xt)/(1+ t)

We denote by P(1+)
n,α the following polynomial

P(1+)
n,α (x) = (−1)nγnen,α(−x). (3.8)

Theorem 3.3 The sequence {P(1+)
n,α (x)}∞n=0 is an Appell–Dunkl sequence of polynomi-

als whose generating function is

G(1+)
α (x, t) = Eα(xt)

1 + t
.

Moreover, these polynomials satisfy the recurrence relation

P(1+)
n,α (x) + θn P(1+)

n−1,α(x) = xn . (3.9)

Proof Weapply Theorem3.1 to the sequence of numbers ck = (−1)kγk , k = 0, 1, . . ..
Then, substituting ck in (3.4) we have

P(1+)
n,α (x) = γn

n∑

k=0

(−1)k xn−k

γn−k
= (−1)nγnen,α(−x),

where en,α(x) is the nth truncated of Eα(x) defined in (3.5).
From (3.3), the generating function, G(1+)

α (x, t), for {P(1+)
n,α (x)}∞n=0 is given by

G(1+)
α (x, t) = ∑∞

n=0 P(1+)
n,α (x) tn

γn
=

∞∑

n=0

( ∞∑

k=0

(−1)k�k
α

)
xntn

γn
=

∞∑

k=0

(−1)k tk Eα(xt).
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Using (3.2) with ck = (−1)kγk , we obtain

Eα(xt)

1 + t
=

∞∑

n=0

P(1+)
n,α (x)

tn

γn
.

In order to obtain the recurrence relation, note that

( ∞∑

k=0

(−1)k�k
α + �α

∞∑

k=0

(−1)k�k
α

)
xn = xn,

and from the definition of A(�α) with ck = (−1)kγk ,

P(1+)
n,α (x) + �α P(1+)

n,α (x) = xn .

Applying the Dunkl operator to P(1+)
n,α (x), (3.9) is proved. ��

3.3 Generating function E˛(xt)/(1− tm)

We take the sequence {cl}∞l=0 as

cl =
{

γl , l = mk,

0, l �= mk,
k = 0, 1, . . . , (3.10)

where m ∈ N is a fixed number. We denote by P(m−)
n,α (x) the following polynomial

P(m−)
n,α (x) = γn

[n/m]∑

k=0

xn−mk

γn−mk
,

where [n/m] denotes the greatest integer less than or equal to n/m.
Then, we may prove the next result.

Theorem 3.4 The sequence {P(m−)
n,α (x)}∞n=0 is an Appell–Dunkl sequence of polyno-

mials whose generating function is

G(m−)
α (x, t) = Eα(xt)

1 − tm
.

Moreover, these polynomials satisfy the recurrence relation

P(m−)
n,α (x) −

(
n

m

)

α

γm P(m−)
n−m,α(x) = xn . (3.11)
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Proof When we apply Theorem 3.1 with the sequence (3.10), the sequence of Appell–
Dunkl polynomials that appear is P(m−)

n,α (x).
From (3.3), the generating function for {P(m−)

n,α (x)}∞n=0 is given by

G(m−)
α (x, t) =

∞∑

n=0

P(m−)
n,α (x)

tn

γn
=

∞∑

n=0

( ∞∑

k=0

�mk
α

)
xntn

γn

=
∞∑

k=0

�mk
α Eα(xt) =

∞∑

k=0

tmk Eα(xt).

Thus, from (3.2) with cl as in (3.10) we deduce that

Eα(xt)

1 − tm
=

∞∑

n=0

P(m−)
n,α (x)

tn

γn
.

In order to obtain the recurrence relation, note that

( ∞∑

k=0

�mk
α − �m

α

∞∑

k=0

�mk
α

)
xn = xn,

and from the definition of A(�α) with cl as in (3.10),

P(m−)
n,α (x) − �m

α P(m−)
n,α (x) = xn .

Applying m times the Dunkl operator to P(m−)
n,α (x), (3.11) is proved. ��

3.4 Generating function E˛(xt)/(1+ tm)

Analogously, for each m ∈ N, taking {cl}∞l=0 as

cl =
{

(−1)kγl , l = mk,

0, l �= mk,
k = 0, 1, . . . ,

we denote

P(m+)
n,α (x) = γn

[n/m]∑

k=0

(−1)k xn−mk

γn−mk
,

where [n/m] is the greatest integer less than or equal to n/m.
Then, we may prove the next result.
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Theorem 3.5 The sequence {P(m+)
n,α (x)}∞n=0 is an Appell–Dunkl sequence of polyno-

mials whose generating function is

G(m+)
α (x, t) = Eα(xt)

1 + tm
.

Moreover, these polynomials satisfy the recurrence relation

P(m+)
n,α (x) +

(
n

m

)

α

γm P(m+)
n−m,α(x) = xn .

Proof The proof is analogous to Theorem 3.4. ��

4 Appell–Dunkl polynomials arising from certain Dunkl primitives

In this section, we are going to use the inverse operator of�α , introduced in Section 2,
to obtain in a differentway theAppell–Dunkl sequences of polynomials {P(1±)

n,α (x)}∞n=0

and {P(2−)
n,α (x)}∞n=0.

In the classical case (see[12]), an integral of the form

∫
xne±x dx

always results a polynomial of degree n times the corresponding exponential function
e±x . This is due to the formula of integration by parts. In the Dunkl case, it does not
happen because in the analogous formula, (2.9) appears an extra termwith the function
h(x). However, if in (2.9) one of the functions f (x) or g(x) is an even function, the
function h(x) is the null function.

4.1 Appell–Dunkl polynomials from
∮
xnE˛(±x) d˛x

The goal of this subsection is to obtain the sequences of polynomials {P(1±)
n,α (x)}∞n=0

using Dunkl integrals of the form

∮
xn Eα(±x) dαx . (4.1)

Theorem 4.1 Let {P(1−)
n,α (x)}∞n=0 and {P(1+)

n,α (x)}∞n=0 be the sequences of polynomials
defined in (3.6) and (3.8), respectively. Then,

∮
xn Eα(−x) dαx = −Eα(−x)P(1−)

n,α (x) + Cn,α(x) + c, (4.2)
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and

∮
xn Eα(x) dαx = Eα(x)P(1+)

n,α (x) + Dn,α(x) + c, (4.3)

where Cn,α(x) and Dn,α(x) are auxiliary functions and c is a constant, not necessarily
the same at each appearance.

Proof We start taking the function Eα(−x) in the integral (4.1). As we can see in the
introduction of this section, it is very important to know whether the functions that
appear in the integral are even or odd. So, we are going to distinguish whether n = 2k
or n = 2k +1. We begin supposing that n = 2k and applying (2.9) taking into account
(2.7), we obtain

∮
x2k Eα(−x) dαx = −x2k Eα(−x) + θ2k

∮
x2k−1Eα(−x) dαx,

because in this case h(x) = 0. If we apply again (2.9), we have that

h(x) = 2x2k−12Gα(x)

x
= 4x2k−2Gα(x),

and then,

∮
x2k Eα(−x) dαx = −x2k Eα(−x) − γ2k

γ2k−1
x2k−1Eα(−x)

+ γ2k

γ2k−2

∮
x2k−2Eα(−x) dαx

+2(2α + 1)
γ2k

γ2k−1

∮
x2k−2Gα(x) dαx .

Iterating this process 2k times, we can write

∮
x2k Eα(−x) dαx = −Eα(−x)

(
x2k + γ2k

γ2k−1
x2k−1 + · · · + γ2k

γ1
x + γ2k

)

+2(2α + 1)
∮ (

γ2k

γ2k−1
x2k−2 + γ2k

γ2k−3
x2k−4 + · · · + γ2k

γ1

)
Gα(x) dαx .

That is
∮

x2k Eα(−x) dαx = −Eα(−x)P(1−)
2k,α (x) + γ2k Bk,α(x) + c, (4.4)

where

Bk,α(x) = 2(2α + 1)
∮ (

x2k−2

γ2k−1
+ x2k−4

γ2k−3
+ · · · + 1

γ1

)
Gα(x) dαx .
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If we suppose now that n = 2k + 1 and apply (2.9) taking into account (2.7) and
that h(x) = 4x2kGα(x), we have

∮
x2k+1Eα(−x) dαx = −x2k+1Eα(−x) + γ2k+1

γ2k

∮
x2k Eα(−x) dαx

+2(2α + 1)
∮

x2kGα(x) dαx .

Applying (4.4), we obtain

∮
x2k+1Eα(−x) dαx = −x2k+1Eα(−x) + γ2k+1

γ2k

(
−Eα(−x)P(1−)

2k,α (x)

+γ2k Bk,α(x) + c
) + 2(2α + 1)

∮
x2kGα(x) dαx .

(4.5)

Note that

x2k+1 + γ2k+1

γ2k
P(1−)
2k,α (x) = P(1−)

2k+1,α(x).

Then (4.5) can be rewritten as

∮
x2k+1Eα(−x) dαx = −Eα(−x)P(1−)

2k+1,α(x) + γ2k+1Bk+1,α(x) + c.

Therefore, (4.2) is obtained with

Cn,α(x) =
{

γ2k Bk,α(x), n = 2k

γ2k+1Bk+1,α(x), n = 2k + 1
.

Analogously, if we consider (4.1) with Eα(x), applying (2.9) n times, (4.3) is obtained
where Dn,α(x) will be a function similar to Cn,α(x). ��

4.2 Appell–Dunkl polynomials from other Dunkl integrals

In this subsection, the sequence of polynomials {P(2−)
n,α (x)}∞n=0 is obtained by means

of Dunkl integrals.
We define the following sequences of polynomials

Q2k,α(x) =
k∑

j=0

γ2k

γ2k−2 j
x2k−2 j , R2k+1,α(x) =

k∑

j=0

γ2k+1

γ2k+1−2 j
x2k+1−2 j , (4.6)
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and

Sn,α(x) =
{

Q2k,α(x), n = 2k

R2k+1,α(x), n = 2k + 1.
(4.7)

Theorem 4.2 Let {Q2k,α(x)}∞k=0 and {R2k+1,α(x)}∞k=0 be the sequences of polynomials
defined in (4.6). Then, it holds that

∮
x2kIα(x) dαx = Q2k,α(x)Gα(x) − γ2k

γ2k−1
R2k−1,α(x)Iα(x) + c, (4.8)

and
∮

x2k+1Gα(x) dαx = R2k+1,α(x)Iα(x) − γ2k+1

γ2k
Q2k,α(x)Gα(x) + c, (4.9)

where c is a constant, not necessarily the same at each appearance.

Proof We start studying the Dunkl integral

∮
x2kIα(x) dαx . (4.10)

Note thatIα(x) and x2k are both even functions. This factmakes thatwhenweapply the
formula of integration by parts, (2.9), several times to the integral (4.10), the function
h(x) is always the null function. Applying (2.9) twice and taking into account (2.8),
we obtain

∮
x2kIα(x) dαx = x2kGα(x) − γ2k

γ2k−1

∮
x2k−1Gα(x) dαx

= x2kGα(x) − γ2k

γ2k−1
x2k−1Iα(x) + γ2k

γ2k−2

∮
x2k−2Iα(x) dαx .

Iterating this method 2k times, we obtain (4.8).
Now, we take the following integral

∮
x2k+1Gα(x) dαx .

In this case, both functions, x2k+1 and Gα(x), are odd functions. So, the function h(x)

when we apply (2.9) is again the null function. Applying (2.9) 2k + 1 times, it holds
(4.9). ��
Theorem 4.3 Let {Sn,α(x)}∞n=0 be the sequence of polynomials defined in (4.7). Then,

Sn,α(x) = P(2−)
n,α (x). That is, {Sn,α(x)}∞n=0 is an Appell–Dunkl sequence of polyno-

mials whose generating function is

G(2−)
α (x, t) = Eα(xt)

1 − t2
. (4.11)
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Proof Note that by the definition of the polynomials, (4.6),

�α Q2k,α(x) = θ2k R2k−1,α(x), �α R2k+1,α(x) = θ2k+1Q2k,α(x). (4.12)

So, the sequence {Sn,α(x)}∞n=0 is an Appell–Dunkl sequence of polynomials.
Finally, we have to obtain the generating function. If we apply twice the Dunkl

operator to the polynomials Q2k,α(x) and R2k+1,α(x), from (4.12) we find

�2
α Q2k,α(x) = γ2k

γ2k−2
Q2k−2,α(x), �2

α R2k+1,α(x) = γ2k+1

γ2k−3
R2k−1,α(x).

Now, we denote by A2(�α) the operator

A2(�α) =
∞∑

k=0

�2k
α .

If we apply this operator to x2k instead of xn , we obtain that

Q2k,α(x) = A2(�α)x2k =
∞∑

j=0

�2 j
α x2k =

k∑

j=0

γ2k

γ2k−2 j
x2k−2 j .

From (2.2),

�2
αIα(xt) = t2Iα(xt), �2

αGα(xt) = t2Gα(xt). (4.13)

Then, following the same technique than in Theorem 3.1 to obtain the generating
function

G(2−)
α,1 (x, t) =

∞∑

k=0

Q2k,α(x)
t2k

γ2k
=

∞∑

k=0

∞∑

j=0

�2 j
α x2k t2k

γ2k
.

Using (2.6) and (4.13),

G(2−)
α,1 (x, t) =

∞∑

j=0

�2 j
α Iα(xt) =

∞∑

j=0

t2 jIα(xt).

That is,

Iα(xt)

1 − t2
=

∞∑

k=0

Q2k,α(x)
t2k

γ2k
. (4.14)
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Analogously, applying the operator A2(�α) to x2k+1

R2k+1,α(x) = A2(�α)x2k+1 =
∞∑

j=0

�2 j
α x2k+1.

Then, we can take the following generating function

G(2−)
α,2 (x, t) =

∞∑

k=0

R2k+1,α(x)
t2k+1

γ2k+1
=

∞∑

k=0

∞∑

j=0

�2 j
α x2k+1 t2k+1

γ2k+1
.

Using (2.6) and (4.13),

G(2−)
α,2 (x, t) =

∞∑

j=0

�2 j
α Gα(xt) =

∞∑

j=0

t2 jGα(xt).

That is,

Gα(xt)

1 − t2
=

∞∑

k=0

R2k+1,α(x)
t2k+1

γ2k+1
. (4.15)

By joining (4.14) and (4.15), we obtain (4.11). ��
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