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Abstract
We prove that the fundamental function of any almost greedy basis of Lp , 1 < p < ∞ , 
grows as either (m1∕p)∞

m=1
 or (m1∕2)∞

m=1
.
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1 Introduction

Since Konyagin and Temlyakov’s seminal paper [22] was released, several types 
of bases that can be characterized by combining derived forms of unconditional-
ity and democracy have appeared when studying the thresholding greedy algorithm 
from a functional-analytic point of view. Apart from greedy bases, the most relevant 
types of bases that have emerged within this area of research are almost greedy ones 
and quasi-greedy ones. Almost greediness is a weakened form of greediness and, in 
turn, quasi-greediness is a weakened form of unconditionality. In some sense, the 
role played by quasi-greediness within the study of almost greedy bases runs paral-
lel to the role played by unconditionality within the study of greedy ones. In fact, 
while a basis is greedy if and only if it is unconditional and democratic [22], a basis 
is almost greedy if and only if it is quasi-greedy and democratic (see ([14], Theo-
rem 3.3) and ([6], Theorem 6.3)).

An intrinsic characteristic of democratic bases is its fundamental function. So, 
from a functional analytic point of view, it is very natural to ask in which way the 
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geometry of the space affects the fundamental functions of almost greedy bases and 
greedy ones. As far as greedy bases are concerned, this topic connects with that of 
uniqueness of greedy bases in Banach spaces. Suppose that a Banach space � has 
a greedy basis and that any greedy basis of � is equivalent to a permutation of B . 
Then, obviously, all the greedy bases of � have, up to equivalence, the same fun-
damental function. Within the class of Banach spaces with a unique (up to equiva-
lence and permutation) greedy basis, we must differentiate two disjoint subclasses. 
On the one hand, if � has a unique (semi-normalized) unconditional basis B that is 
democratic, then B also is the unique greedy basis of � . On the other hand, there 
are Banach spaces with non-democratic semi-normalized unconditional bases and a 
unique greedy basis. To the former subclass belong the spaces �1 , �2 , c0 , the Tsire-
lson space T  , and the 2-convexified Tsirelson space T(2) (see [11, 12, 23, 24, 26]). 
To the latter subclass belong certain Orlicz sequence spaces near either to �1 or to �2 
and the separable part of weak �p for 1 < p < ∞ (see [3]). If we broaden the scope 
of the study to nonlocally quasi-Banach spaces, the former subclass enlarges con-
siderably. In fact, given p ∈ (0, 1) , �p , Hardy space Hp(� ) , Lorentz sequence spaces 
�p,q for 0 < q ≤ ∞ , and Orlicz sequence spaces �F for a concave Orlicz function F 
belong to it (see [19, 21, 30]).

There also exist Banach spaces without a unique greedy basis in which all greedy 
bases have the same fundamental function. For instance, the sequence space �p 
for p ∈ (1, 2) ∪ (2,∞) has a continuum of mutually permutatively non-equivalent 
greedy bases (see [15, 29]), and the fundamental function of all of them grows as

More generally, it is known that given 0 < p ≤ ∞ , the fundamental function of any 
super-democratic (that is, democratic and unconditional for constant coefficients) 
basis of �p (we replace �p with c0 if p = ∞ ) is equivalent to �p (see ([5], Proposi-
tion 4.21)). Therefore, the fundamental function of any almost greedy basis of �p is 
equivalent to �p . We draw reader’s attention that any super-democratic basis whose 
fundamental function is equivalent to �∞ is equivalent to the unit vector system 
of c0 . This observation gives that c0 has a unique almost greedy basis. In contrast, 
�2 and �p for 0 < p ≤ 1 , despite having a unique greedy basis, have a continuum 
of mutually permutatively non-equivalent almost greedy bases (see ([15],  Theo-
rem 3.2) and ([8], Corollary 6.2)). As far as quasi-greedy bases are concerned, the 
main structural difference between the spaces �p for p ∈ (0, 1] ∪ {2,∞} and the 
spaces �p for p ∈ (1, 2) ∪ (2,∞) is that, unlike the former, the latter spaces have 
non-democratic quasi-greedy bases (see [9, 13, 16, 31]).

In �p-spaces, the fundamental functions of greedy bases behave like those of 
almost greedy ones. However, a priori, the geometry of the space provides less 
information on the fundamental function of almost greedy bases than that it does 
on the fundamental function of greedy bases. An important example of this situa-
tion is the Lebesgue Lp = Lp([0, 1]) for 1 < p < ∞ . Since any unconditional basis 
of Lp possesses a subbasis equivalent to the unit vector system of �p (see [18]), 
the fundamental function of any greedy basis of Lp grows as �p . In this sense, the 
behavior of greedy bases in Lp , 1 < p < ∞ , runs parallel to that of greedy bases in 

�p ∶= (m1∕p)∞
m=1

.
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�p . This parallelism breaks down when dealing with almost greedy bases. To see 
this, we bring up Nielsen’ paper [27], in which the author constructs a uniformly 
bounded orthogonal system of L2 that is an almost greedy basis for Lp for each 
1 < p < ∞ . Although not explicitly stated by the author, the proof of ([27], Theo-
rem 1.4) gives that the fundamental function of the achieved basis of Lp grows as 
�2 . This fact is not casual: by [4, Proposition 2.5], any quasi-greedy basis Ψ of Lp 
with supn ‖�n‖∞ < ∞ is democratic with fundamental function of the same order 
as �2 . Hence, Lp , 1 < p < ∞ and p ≠ 2 , has almost greedy bases whose fundamen-
tal functions grow differently. As for L2 , we point out that any quasi-greedy basis 
of a Hilbert space is democratic with fundamental function equivalent to �2 (see 
([31], Proof of Theorem 3)). As the case p = 1 is concerned, we bring up [16, Theo-
rem 4.2], which implies that all quasi-greedy bases of L1 and �1 are democratic with 
fundamental function of the same order as �1 . Moreover, by ([15], Theorem 3.2), 
there is a continuum of mutually non-permutatively equivalent quasi-greedy bases 
of L1 . Thus, in some sense, almost greedy bases in L1 and �1 behave similarly. We 
also notice that since L1 has no unconditional basis [24], it has no greedy basis 
either.

Once realized that, for 1 < p < ∞ and p ≠ 2 , there are almost greedy bases of Lp 
with essentially different fundamental functions, the question should be determine 
what functions are possible fundamental functions of an almost greedy basis of Lp . 
The Radamacher type and cotype of the space shed some information in this respect. 
In fact, the fundamental function, say � , of any unconditional for constant coeffi-
cients basis of any Banach space of type r and cotype s satisfies

(see, e.g., ([1], Proof of Lemma 2.5)). In particular, any almost greedy basis of Lp 
satisfies (1) with r = min{2, p} and s = max{2, p} . As above explained, it is known 
that the ends of this range are possible fundamental functions. Oddly enough, as we 
shall prove, these extreme functions are, up to equivalence, all fundamental func-
tions possible for almost greedy bases of Lp.

Theorem 1.1 Let 1 < p < ∞ . If � is the fundamental function of an almost greedy 
basis of Lp , then there is r ∈ {2, p} such that � ≈ �r.

We close this introductory section by briefly describing the structure of the paper. 
Section 3 revolves around the proof of Theorem 1.1. In Sect. 2, we settle the termi-
nology we will use, and we collect some auxiliary results that we will need.

2  Background and terminology

Although we are mainly interested in Banach spaces, as the theory of greedy-like 
bases can be carry out for (not necessarily locally convex) quasi-Banach spaces (see 
[6]), we will state the results we record in this section in this more general frame-
work. All of them are essentially known. Nonetheless, for the reader’s ease, we 

(1)�s ≲ � ≲ �r
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will sketch some proofs. We use standard terminology on Functional Analysis and 
greedy-like bases as can be found in [2] and the aforementioned paper [6]. For clar-
ity, however, we record the notation that is used most heavily.

The symbol 𝛼j ≲ 𝛽j for j ∈ J means that there is a positive constant C < ∞ such 
that the families of non-negative real numbers (�j)j∈J and (�j)j∈J are related by the 
inequality �j ≤ C�j for all j ∈ J . If 𝛼j ≲ 𝛽j and 𝛽j ≲ 𝛼j for j ∈ J we say (�j)j∈J are 
(�j)j∈J are equivalent, and we write �j ≈ �j for j ∈ J.

Let � be a quasi-Banach space over the real or complex scalar field �  , and let 
X = (xn)

∞
n=1

 be a linearly independent sequence that generates the whole space � . 
For a fixed sequence � = (�n)

∞
n=1

∈ 𝔽
ℕ , let us consider the map

The sequence X  is an unconditional basis if and only if S� is well defined on � for 
all � ∈ �∞ , and

If Ku ≤ K < ∞ , we say that X  is K-unconditional. Now, given A ⊆ ℕ , we define the 
coordinate projection onto A (with respect to X  ) as

where �A = (�n)
∞
n=1

 is the sequence defined by �n = 1 if n ∈ A and �n = 0 otherwise. 
It is known (see, e.g., ([6], Theorem 1.10)) that X  is an unconditional basis if and 
only

Set [1,m]
ℤ
= {n ∈ ℤ ∶ 1 ≤ n ≤ m} for m ∈ ℕ . The sequence X  is a Schauder basis 

if and only if it satisfies the weaker condition

A family (fj)j∈J in � is said to be semi-normalized if |||
|||fj
|||
||| ≈ 1 for j ∈ J . For conveni-

ence, we will adopt a definition of basis that implies that only semi-normalized 
Schauder bases become bases. A basis of � will be norm-bounded sequence 
X = (xn)

∞
n=1

 that generates whole space � , and for which there is a (unique) norm-
bounded sequence X∗ ∶= (x∗

n
)∞
n=1

 in the dual space �∗ , called the dual basis of X  , 
such that (xn, x∗n)

∞
n=1

 is a biorthogonal system. A basic sequence will be a sequence in 
� which is a basis of its closed linear span. Notice that, according to our terminol-
ogy, any basic sequence is semi-normalized.

Let X = (xn)
∞
n=1

 and Y = (yn)
∞
n=1

 be bases of quasi-Banach spaces � and �  , 
respectively. We say that X  C-dominates Y if there is a linear map T ∶ � → � such 
that ||T|| ≤ C and T(yn) = xn for all n ∈ ℕ . If the constant C is irrelevant, we simply 

S� = S� [B,𝕏] ∶ span (xn ∶ n ∈ ℕ) → 𝕏,

∞∑

n=1

an xn ↦

∞∑

n=1

�n an xn.

(2)Ku = Ku[B,�] ∶= sup
||𝛾||∞≤1

|||
|||S𝛾

|||
||| < ∞.

SA = SA[X,�] = S�A[X,�],

sup{||||SA|||| ∶ A ⊆ ℕ, |A| < ∞} < ∞.

sup
m∈ℕ

|||
|||S[1,m]ℤ

|||
||| < ∞.
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drop it from the notation. If X  dominates Y and, in turn, Y dominates X  , we say that 
the bases are equivalent.

Given a basis X = (xn)
∞
n=1

 of a quasi-Banach space � , the mapping

is a bounded linear operator from � into c0 , hence for each m ∈ ℕ there is a unique 
A = Am(f ) ⊆ ℕ of cardinality |A| = m such that whenever n ∈ A and j ∈ ℕ ⧵ A , 
either ||an|| >

|||aj
||| or ||an|| =

|||aj
||| and n < j . The mth greedy approximation to f ∈ � 

with respect to the basis X  is

The sequence of operators (Gm)
∞
m=1

 is called thresholding greedy algorithm (TGA 
for short) on � with respect to X  . Other nonlinear operators of interest to us are the 
restricted truncation operators (Rm)

∞
m=1

 . Let

Given A ⊆ ℕ finite, A ⊆ B , � ∈ �
B we set

If � only takes the value 1, we put ��,A = �A . Given f ∈ � , define

where as is customary, sign (⋅) denotes the sign function, i.e., sign (0) = 1 and 
sign (a) = a∕|a| if a ∈ � ⧵ {0} . Given m ∈ ℕ we set

The basis X  is said to be almost greedy if there is a constant C such that

We say that X  is greedy if it satisfies the more demanding condition

The basis X  is said to be quasi-greedy if the TGA with respect to it is uniformly 
bounded. Equivalently, X  is quasi-greedy if and only if there is a constant C ≥ 1 
such that

f ↦ (an)
∞
n=1

∶= (x∗
n
(f ))∞

n=1

Gm(f ) = Gm[X,�](f ) ∶= SAm(f )
(f ).

� = {� ∈ � ∶ |�| = 1}.

��,A = ��,A[X,�] =
∑

n∈A

�n xn.

�(f ) =
(
sign (x∗

n
(f ))

)∞
n=1

,

Rm = Rm[X,�] ∶ � → �, f ↦

(
min

n∈Am(f )

||x
∗
n
(f )||

)
��(f ),Am(f )

.

||||f − Gm(f )
|||| ≤ C||||f − SA(f )

||||, f ∈ 𝕏, m ∈ ℕ, |A| = m.

||||f − Gm(f )
|||| ≤ C

|||||

|||||
f −

∑

n∈A

an xn

|||||

|||||
, f ∈ 𝕏, m ∈ ℕ, |A| = m, an ∈ 𝔽 .

||||f − Gm(f )
|||| ≤ C||f ||, f ∈ 𝕏, m ∈ ℕ.
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In turn, we say that X  is truncation quasi-greedy if the restricted truncation opera-
tors are uniformly bounded, i.e., there is a constant C such that

Semi-normalized unconditional bases are a special kind of quasi-greedy bases, and 
although the converse is not true in general, quasi-greedy basis always retain in a 
certain sense a flavor of unconditionality. For example, any quasi-greedy basis is 
truncation quasi-greedy (see ([6], Theorem 4.13)). In turn, if the basis X = (xn)

∞
n=1

 is 
truncation quasi-greedy, then it is unconditional for constant coefficients (UCC for 
short), that is, there is a constant C ≥ 1 such that whenever A, B are finite subsets of 
ℕ with A ⊆ B and � ∈ �

B we have ||||��,A|||| ≤ C||||��,B|||| . If the basis is UCC, then there 
is another constant C ≥ 1 such that

for all finite subsets A ⊆ ℕ and all choice of signs � and � (see ([6], Lemma 2.2)).
A basis (or basic sequence) X = (xn)

∞
n=1

 of a quasi-Banach space � is said to be 
democratic if there is a constant D ≥ 1 such that

for any two finite subsets A, B of ℕ with |A| ≤ |B| . The lack of democracy of a basis 
B exhibits some sort of asymmetry. To measure how much a basis B deviates from 
being democratic, we consider its upper democracy function, also known as its fun-
damental function,

and its lower democracy function,

Suppose that X  is UCC. Then �l(m) ≲ �u(m) for m ∈ ℕ , hence X  is democratic if 
and only �u(m) ≲ �l(m) for m ∈ ℕ , in which case X  is super-democratic, i.e., there 
is a constant D ≥ 1 such that

for any two finite subsets A, B of ℕ with |A| ≤ |B| , and any signs � and �.
Following [14], we say that a sequence (sm)∞m=1 in (0,∞) has the upper regular-

ity property (URP for short) if there is an integer k > 2 such that

The following lemma is proved more or less explicitly in [14].

||||Rm(f )
|||| ≤ C||f ||, f ∈ 𝕏, m ∈ ℕ.

(3)||||��,A|||| ≤ C||||��,A||||

||||�A|||| ≤ D||||�B||||

�u(m) ∶= �u[B,𝕏](m) = sup
|A|≤m

||||�A||||, m ∈ ℕ,

�l(m) ∶= �l[B,𝕏](m) = inf
|A|≥m

||||�A||||, m ∈ ℕ.

||||��,A|||| ≤ C||||��,B||||

skm ≤
1

2
ksm, m ∈ ℕ.
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Lemma 2.1 Let s = (sm)
∞
m=1

 be an essentially increasing sequence in (0,∞) . Then, s 
has the URP if and only if there is a constant C such that the weight (1∕sm)∞m=1 satis-
fies the Dini condition

A weight will be a sequence w = (wn)
∞
n=1

 of non-negative scalars with w1 > 0 . 
The primitive sequence (sm)∞m=1 of the weight w is defined by sm =

∑m

n=1
wn for all 

m ∈ ℕ . Given 0 < q ≤ ∞ , we will denote by d1,q(w) the Lorentz space consisting of 
all sequences f ∈ c0 whose non-increasing rearrangement of (bn)∞n=1 satisfies

where u = (wn∕sn)
∞
n=1

 . If w = n1∕p−1 , then d1,q(w) = �p,q up to an equivalent 
quasi-norm.

Given a sequence t = (tm)
∞
m=1

 in ℕ , the Marcinkiewicz space m(t) consists of all 
f = (ak)

∞
k=1

∈ 𝔽
ℕ such that

Lemma 2.2 Let w be a weight whose primitive sequence (sm)∞m=1 has the URP. Set 
t = (m∕sm)

∞
m=1

 . Then, there is a constant C such that

Proof Use Lemma 2.1 to pick a constant C such that (4) holds. Fix f = (ak)
∞
k=1

∈ c0 
and m ∈ ℕ . Let (bn)∞n=1 denote the non-increasing rearrangement of f. For any A ⊆ ℕ 
with |A| ≤ m , we have

  ◻

We say that a basis X = (xn)
∞
n=1

 of a quasi-Banach space � is bidemocratic if 
there is a constant C such that

The identity �A[X
∗,�∗](�A[X,�]) = |A| yields that if B is bidemocratic, then both B 

and B∗ are democratic, and

(4)
m∑

n=1

1

sn
≤ C

m

sm
, m ∈ ℕ.

||f ||d1,q(w) = ||||(sn an)
∞
n=1

||||�q(u)
< ∞,

sup
|A|≤m

1

tm

∑

k∈A

||ak|| < ∞.

||f ||m(t) ≤ C||f ||d1,∞(w), f ∈ c0.

∑

k∈A

||ak|| ≤
m∑

n=1

bn ≤

m∑

n=1

1

sn
≤ C

m

sm
.

�u[X,𝕏](m)�u[X
∗,𝕏∗](m) ≤ Cm, m ∈ ℕ.

(5)�u[X
∗,�∗](m) ≈

m

�u[X,�](m)
.



 J. L. Ansorena 41 Page 8 of 14

There is also a connection between bidemocratic bases and truncation quasi-greedy 
ones.

Proposition 2.3 ([6] [Proposition 5.7]) Let X  be a bidemocratic basis of a quasi-
Banach space. Then X  and X∗ are truncation quasi-greedy, hence UCC and 
super-democratic.

Next, we bring up a partial converse of Proposition 2.3.

Proposition 2.4 (cf. [14][Proposition 4.4]) Let X = (xn)
∞
n=1

 be a democratic trunca-
tion quasi greedy basis of a quasi-Banach space � . Suppose that the fundamental 
function of X  has the URP. Then, X  is bidemocratic.

Proof Set t = (m∕sm)
∞
m=1

 , where sm = �u[X,�](m) . Combining ([6], Theorem 8.12) 
with Lemma 2.2, and taking into account the democracy of X  , gives that the unit 
vector system of m(t) C-dominates X  for some constant C. Pick m ∈ ℕ , f ∈ B

�
 and 

A ⊆ ℕ with |A| ≤ m . We have

Taking the supremum on f and A yields the desired inequality.   ◻

We say that a quasi-Banach space � has Rademacher type (respectively 
cotype) r, 0 < r < ∞ , if there is a constant C such that for any finite family (fj)j∈A 
in � , being

we have A ≤ CS (resp., S ≤ CA ). Since the optimal type (resp., cotype) of the scalar 
field is 2, if a nonzero quasi-Banach space � has type (resp., cotype) r, then r ≤ 2 
(resp., r ≥ 2 ). Given 0 < p < ∞ and a measure space (Ω,Σ,�) such that the dimen-
sion of the vector space consisting of al integrable simple functions is infinite, the 
optimal type of Lp(�) is min{2, p} , and its optimal cotype is max{2, p}.

Since any quasi-Banach space with a Rademacher type larger than one is 
locally convex ([20], Theorem 4.1), the following result lies within the theory of 
Banach spaces.

Proposition 2.5 (cf. [14][Proposition 4.1]) Let X  be a UCC basis of a Banach space 
� . Assume that � has type r > 1 . Then � ∶= �u[X,�] has the URP.

Proof Let Tr be the r-type constant of � , and let C be as in (3). Let k, m ∈ ℕ and 
A ⊆ ℕ be such that |A| ≤ k m . Pick a partition (Aj)

k
j=1

 of A with |||Aj
||| ≤ m for all j = 1

,..., k. Since |||
|||�Aj

|||
||| ≤ �(m),

|||
(
�A[X

∗,�∗]
)
(f )

||| ≤
∑

n∈A

||x
∗
n
(f )|| ≤ C

m

sm
.

A ∶= Ave
�j=±1

||||||

||||||

∑

j∈A

�j fj

||||||

||||||
and S ∶=

(
∑

j∈A

|||
|||fj
|||
|||
r

)1∕r

,
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If we choose k large enough, so that CTrk1∕r−1 ≤ 1∕2 , taking the supremum on A we 
obtain we obtain �(km) ≤ k�(m)∕2 .   ◻

Corollary 2.6 Let X  be a democratic truncation quasi-greedy basis of a Banach 
space � . Suppose that � has type r > 1 . Then, X  is bidemocratic.

Proof Just combine Proposition 2.4 with Proposition 2.5.   ◻

3  Greedy‑type bases in Lp‑spaces

It is well known that the basic-sequences structure of Lp for 2 < p < ∞ is quite dif-
ferent from that of Lp for 1 < p < 2 . Among others, Kadets–Pełczyński’s milestone 
paper [18] brought out this asymmetry. As a matter of fact, our route toward proving 
Theorem 1.1 relies on a result from this paper.

Lemma 3.1 ( [18][Corollary 5]) Let 2 ≤ p < ∞ , and let Ψ = (�n)
∞
n=1

 be a weakly 
null sequence in Lp with lim infn

||||�n
||||p > 0 . Then, Ψ has a subsequence equivalent 

to the unit vector system of �r , where r ∈ {2, p}.

A basis X  of a quasi-Banach space � is said to be shrinking if its dual basis X∗ 
generates the whole space �∗ . The space Lp , 1 < p < ∞ , has a shrinking basis. In 
fact, any Schauder basis of any reflexive Banach space is shrinking [17].

Lemma 3.2 Let (�n)
∞
n=1

 be a norm-bounded sequence in a quasi-Banach space � 
with a shrinking basis X = (xj)

∞
j=1

 . Then, there are sequences (nj)∞j=1 and (mj)
∞
j=1

 in ℕ 
such that nj < mj < nj+1 for all j ∈ ℕ , and (�nj

− �mj
)∞
j=1

 is weakly null.

Proof For each j ∈ ℕ , the sequence �j ∶= (x∗
j
(�n))

∞
n=1

 is bounded. By the diagonal 
Cantor technique, passing to a subsequence we can suppose that �j converges for 
every j ∈ ℕ . Set �n = �2n − �2n+1 for all n ∈ ℕ . We have limn x

∗
j
(�n) = 0 for all 

j ∈ ℕ . A standard approximation argument yields limn f
∗(�n) = 0 for every 

f ∗ ∈ �
∗ .   ◻

Lemma 3.3 Let 2 ≤ p < ∞ , and let Ψ = (�n)
∞
n=1

 be a uniformly separated bounded 
sequence in Lp . Then, there are r ∈ {2, p} and sequences (nj)∞j=1 and (mj)

∞
j=1

 in ℕ with 
nj < mj < nj+1 for all j ∈ ℕ such that (�nj

− �mj
)∞
j=1

 is equivalent to the unit vector 
system of �r.

Proof Just combine Lemma 3.1 with Lemma 3.2.   ◻

||||�A|||| ≤ C Ave
�j=±1

||||||

||||||

k∑

j=1

�j�Aj

||||||

||||||
≤ CTr

(
k∑

j=1

|||
|||�Aj

|||
|||
r

)1∕r

≤ CTrk
1∕r�u(m).
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For further reference, we record an elementary result about democracy functions. 
We omit its straightforward proof.

Lemma 3.4 If a basis X  of a quasi-Banach space � has a subbasis equivalent to the 
unit vector system of �r , 0 < r ≤ ∞ , then

Proposition 3.5 Let 2 ≤ p < ∞ , and let Ψ = (�n)
∞
n=1

 be a UCC basic sequence in Lp . 
Then, for either r = 2 or r = p,

Proof By Lemma 3.3 and Lemma 3.4, there are r ∈ {2, p} and (nj)∞j=1 and (mj)
∞
j=1

 in ℕ 
with nj < mj < nj+1 for all j ∈ ℕ such that the basic sequence Φ = (�nj

− �mj
)∞
j=1

 
satisfies

Since Ψ is UCC, �l[Ψ,Lp] ≲ �l[Φ, Lp] . In turn, since �u[Ψ,Lp] is doubling (see, 
e.g., [6, Section 8]), �u[Φ, Lp] ≲ �u[Ψ,Lp] .   ◻

We can also prove Proposition 3.5 using ideas from [4]. Let us detail this alterna-
tive approach.

Lemma 3.6 Let (Ω,Σ,�) be a finite measure space and let 1 ≤ p < ∞ . Suppose that 
Ψ = (�n)

∞
n=1

 is an UCC basic sequence in Lp(�) with ||||�n
||||2 ≈ 1 for n ∈ ℕ . Then, Ψ 

is democratic, and its fundamental function grows as �2.

Proof The proof of ([4], Proposition 2.5) remains valid in this slightly more general 
framework. In fact, all we need to prove ([4], Lemma 2.1) is that the involved basis 
is UCC.   ◻

We will use a gliding-hump-type lemma for Lp-spaces.

Lemma 3.7 Let 0 < q < p < ∞ , let (Ω,Σ,�) be a finite measure space, and let (�k)∞k=1 
be a sequence of positive scalars. For each n ∈ ℕ , let �n ∶ Ω → �  be a measurable 
function. Suppose that supn ||||�n

||||p < ∞ and lim infn
||||�n

||||q = 0 . Then, there is an 
increasing sequence (nk)∞k=1 of positive integers and a sequence (Ak)

∞
k=1

 of pairwise 
disjoint sets in Σ such that

Proof Replacing �n with ||�n
||
p , and passing to suitable subsequence, we can assume 

that p = 1 and limn
||||�n

||||q = 0 . Then, (�n)
∞
n=1

 converges to zero in measure. Apply-
ing ([2], Theorem 5.2.1), and passing to a further subsequence, yields the desired 
result.   ◻

�l[X,�] ≲ �r ≲ �u[X,�].

�l[Ψ,Lp] ≲ �r ≲ �u[Ψ,Lp].

�l[Φ, Lp] ≲ �r ≲ �u[Φ, Lp].

|||
|||�nk

− �nk
�Ak

|||
|||p ≤ �k, k ∈ ℕ.
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In light of Lemma 3.4, we can derive Proposition 3.5 from Lemma 3.8 below.

Lemma 3.8 Let 2 ≤ p < ∞ , and let Ψ = (�n)
∞
n=1

 be a UCC basic sequence in Lp . 
Then, either

or Ψ has a subbasis equivalent to the unit vector system of �p . Moreover, in the case 
when p > 2 , (6) holds if and only if infn ||||�n

||||2 > 0.

Proof We shall consider two opposite situations.

• Suppose that infn ||||�n
||||2 > 0 . Then, (6) holds by Lemma 3.6.

• Suppose that infn ||||�n
||||2 = 0 . Pick a sequence (�k)∞k=1 such that

and

By Lemma 3.7, there is pairwise disjoint sequence (Ak)
∞
k=1

 consisting of measurable 
sets and an increasing sequence (nk)∞k=1 in ℕ such that

where �k = �nk
�Ak

 . We have

whence we infer that Φ ∶= (�k)
∞
k=1

 semi-normalized. Therefore, Φ is a 1-uncondi-
tional basic sequence equivalent to the unit vector system of �p . In turn, by the prin-
ciple of small perturbations (see, e.g., [2, Theorem 1.3.9]), (�nk

)∞
k=1

 is equivalent to 
Φ .   ◻

Let 1 < p < 2 . Since �r is a subspace Lp for every p ≤ r ≤ 2 [28], Lp has, for 
each r ∈ [p, 2] , a greedy basic sequence whose fundamental function grows as �r . 
The situation in the case, where p > 2 is quite different.

Corollary 3.9 Let 2 ≤ p < ∞ , and let � be the fundamental function of a super-dem-
ocratic basic sequence in Lp . Then, either � ≈ �2 or � ≈ �p.

Proof It is a straightforward consequence of Proposition 3.5.   ◻

(6)�l[Ψ, Lp] ≈ �2 ≈ �u[Ψ, Lp]

0 < 𝜖k < c ∶= inf
n

||||�n
||||p, k ∈ ℕ,

∞∑

k=1

𝜖k

(cp − 𝜖
p

k
)1∕p

< 1.

|||
|||�nk

− �k
|||
|||p ≤ �k, k ∈ ℕ,

(cp − �
p

k
)1∕p ≤ ||||�k

||||p ≤
|||
|||�nk

|||
|||p, k ∈ ℕ,
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Our approach also leads to settling the structure of subsymmetric basic sequences 
of Lp , p > 2 . Although this result is probably well known to specialists, we make 
a detour on our route to record it. Recall that a sequence in a Banach space is said 
to be a subsymmetric basis if it is an unconditional basis and it is equivalent to all 
its subsequences. All we need to know about this important class of bases is the 
following.

Lemma 3.10 (see [7] [Lemma 2.2]) Let X = (xn)
∞
n=1

 be a subsymmetric basis of a 
quasi-Banach space. Let (nj)∞j=1 and (mj)

∞
j=1

 in ℕ be sequences in ℕ with nj < mj < nj+1 
for all j ∈ ℕ . Then, (xnj − xmj

)∞
n=1

 is equivalent to X .

Theorem 3.11 Let Ψ be a subsymmetric basic sequence in Lp , 2 ≤ p < ∞ . Then, Ψ is 
equivalent the unit vector system of either �2 or �p.

Proof Just combine Lemma 3.10 with Lemma 3.3.   ◻

A Banach space � is said to be an Lp-space, 1 ≤ p ≤ ∞ , if for every finite-dimen-
sional subspace � ⊆ � there is a further finite-dimensional subspace � ⊆ � ⊆ � 
whose Banach–Mazur distance to �dim(�)

p
 is uniformly bounded. It is known that, in 

the case when 1 < p < ∞ , � is a separable Lp-space if and only if it is isomorphic to 
a non-Hilbertian complemented subspace of Lp (see [25]).

Given 1 ≤ p ≤ ∞ , we denote by p′ its conjugate exponent defined by 
1∕p� = 1 − 1∕p . Given A ⊆ [1,∞] , we set A� = {p� ∶ p ∈ A}.

Corollary 3.12 Let 1 < p < ∞ , and let X  be a bidemocratic basis of an Lp-space � . 
Then, �l[X,�] ≈ �r ≈ �u[X,�] , where either r = p or r = 2.

Proof If 2 ≤ p < ∞ the result follows from combining Proposition 2.3 with Corol-
lary 3.9. Assume that 1 < p < 2 . Then, by Proposition 2.3, X∗ is a super-democratic 
basis of a Banach space isomorphic to a subspace of L∗

p
 . Since L∗

p
 is isometrically 

isomorphic to Lp′ , there is s ∈ {2, p�} such that �u[X
∗,�∗] ≈ �s . Consequently, by 

Equation (5), �u[X,�] ≈ �r for some r ∈ {2, p�}� = {2, p} .   ◻

Now, we obtain Theorem  1.1 as a consequence of the following more general 
result.

Theorem 3.13 Let 1 < p < ∞ , and let � be the fundamental function of a super-dem-
ocratic basis of an Lp-space. Then, � ≈ �r , where either r = p or r = 2.

Proof Just combine Corollary 2.6 with Corollary 3.12.   ◻

We close the paper by exhibiting an application of Theorem 1.1. Let �  be a sym-
metric space, i.e., a quasi-Banach space 𝕐 ⊆ 𝔽

ℕ for which the unit vector system is 
a symmetric basis. We say that a quasi-Banach space � with a basis X  embeds in �  
via X  , and we write 

�

X

↪�
 , if X  dominates unit vector system of �  . In the reverse 
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direction, we say that �  embeds in � via X  , and we write 
�

X

↪�
 , if the unit vector 

system of �  dominates X  . Let �1 and �2 be symmetric spaces whose unit vector sys-
tems have equivalent fundamental functions. Squeezing the Banach space � as

is a condition that guarantees in a certain sense the optimality of the compression 
algorithms with respect to the basis X  . Besides, such embeddings serve in some 
situations as a tool to derive other properties of the basis X  . We refer the reader to 
[6, Section 9] for details.

Corollary 3.14 Let Ψ be an almost greedy basis of Lp , 1 < p < ∞ . Then, there are 
r ∈ {2, p} and 1 < q < s < ∞ such that

Proof Combine Theorem 1.1 with ([10], Theorem 1.1).   ◻
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