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The HA4M dataset: Multi-Modal 
Monitoring of an assembly task 
for Human Action recognition in 
Manufacturing
Grazia Cicirelli   1 ✉, Roberto Marani1, Laura Romeo1, Manuel García Domínguez2, 
Jónathan Heras2, Anna G. Perri   3 & Tiziana D’Orazio1

This paper introduces the Human Action Multi-Modal Monitoring in Manufacturing (HA4M) dataset, 
a collection of multi-modal data relative to actions performed by different subjects building an 
Epicyclic Gear Train (EGT). In particular, 41 subjects executed several trials of the assembly task, which 
consists of 12 actions. Data were collected in a laboratory scenario using a Microsoft® Azure Kinect 
which integrates a depth camera, an RGB camera, and InfraRed (IR) emitters. To the best of authors’ 
knowledge, the HA4M dataset is the first multi-modal dataset about an assembly task containing six 
types of data: RGB images, Depth maps, IR images, RGB-to-Depth-Aligned images, Point Clouds and 
Skeleton data. These data represent a good foundation to develop and test advanced action recognition 
systems in several fields, including Computer Vision and Machine Learning, and application domains 
such as smart manufacturing and human-robot collaboration.

Background & Summary
Human action recognition is an active topic of research in computer vision1,2 and machine learning3,4 and vast 
research work has been carried out in the last decade, as seen in the existing literature5. Moreover, the recent 
wide-spread of low-cost video camera systems, including depth-cameras6, has strengthened the development of 
observation systems in a variety of application domains such as video-surveillance, safety and smart home secu-
rity, ambient assisted living, health-care and so on. However, little work has been done in human action recog-
nition for manufacturing assembly7–9 and the poor availability of public datasets limits the study, development, 
and comparison of new methods. This is mainly due to challenging issues such as between-action similarity, the 
complexity of actions, the manipulation of tools and parts, the presence of fine motions and intricate operations.

The recognition of human actions in the context of intelligent manufacturing is of great importance for var-
ious purposes: to improve operational efficiency8; to promote human-robot cooperation10; to assist operators11; 
to support employee training9,12; to increase productivity and safety13; or to promote workers’ good mental 
health14. In this paper, we present the Human Action Multi-Modal Monitoring in Manufacturing (HA4M) data-
set which is a multi-modal dataset acquired by an RGB-D camera during the assembly of an Epicyclic Gear Train 
(EGT) (see Fig. 1).

The HA4M dataset provides a good base for developing, validating and testing techniques and method-
ologies to recognize assembly actions. Literature is rich in RGB-D datasets for human action recognition15–17 
prevalently acquired in indoor/outdoor unconstrained settings. They are mostly related to daily actions (such 
as walking, jumping, waving, bending, etc.), medical conditions (such as headache, back pain, staggering, etc.), 
two-person interactions (such as hugging, taking a photo, finger-pointing, giving object, etc.), or gaming actions 
(such as forward punching, tennis serving, golf swinging, etc.). Table 1 reports some of the most famous and 
commonly used RGB-D datasets on human action recognition describing their principal peculiarities.
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To the best of the authors’ knowledge, few vision-based datasets exist in the context of object assembly. 
Researchers usually build their own datasets on private video data7,18. Table 2 compares the proposed HA4M 
dataset with existing datasets on assembly action recognition. As shown in Table 2, the proposed HA4M features 
various main contributions:

•	 Data Variety: The HA4M dataset provides a considerable variety of multi-modal data compared to existing 
datasets. Six types of simultaneous data are supplied: RGB frames, Depth maps, IR frames, RGB-to-Depth-
Aligned frames, Point Clouds and Skeleton data. These data allow the scientific community to make consist-
ent comparisons among processing approaches or machine learning approaches by using one or more data 
modalities.

•	 Action Variety: The HA4M dataset presents a wide variety in the action execution considering the high num-
ber of subjects (41) performing the task, the high number of actions (12), the different order followed by the 
subjects to perform the actions, and the interchangeably use of both hands.

•	 Fine-grained Actions: Actions present a high granularity as there is a subtle distinction between parts to be 
assembled and between actions that appear visually similar.

•	 Challenging Issues: The components to be assembled and the actions are very similar and symmetrical. Then 
the action recognition task requires a high level of context understanding and a significant object-tracking  
ability. The environmental scenario of the dataset is realistic and does not change over time, as usually 

Fig. 1  Components involved in the assembly of the Epicyclic Gear Train. The CAD model of the components is 
publicly available at44.

Dataset Sensors Environment Data Modalities Actions

NTU RGB + D 12030,31 Microsoft Kinect v2 Cluttered Indoor RGB Videos, Depth Sequences, 
3D Skeleton Joints, IR Frames

Daily, Medical, Two 
People Interaction

SYSU 3DHOI32 Microsoft Kinect v1 Cluttered Indoor RGB Videos, Depth Sequences, 
3D Skeleton Joints Daily

Drive&Act33 Five NIR cameras and One 
Microsoft Kinect

Static Driving 
Simulator RGB, IR and Depth Data Driver Behaviors

UE-HRI34 Two RGB cameras and one 
3D sensor Cluttered Indoor RGB and Depth Frames Human Robot 

Interaction

MoCa35
Three RGB cameras and 
Vicon Motion Capture 
System

Laboratory RGB, 3D Skeleton Joints Cooking

Grasping Dataset36
GoPro Hero 4 Camera, 
SoftKinetic Camera and 
IMU sensors

Living Room and 
Kitchen RGB, Dept and IMU Data Cooking, Housework

MSR-Action3D37 Microsoft Kinect v1 Cluttered Indoor Depth Sequences, 3D Skeleton 
Joints Daily

MSR Daily ACtivity 3D38 Microsoft Kinect v1 Cluttered Indoor RGB Videos, Depth Sequences, 
3D Skeleton Joints Daily

UT-Kinect39 Microsoft Kinect v1 Cluttered Indoor RGB Videos, Depth Sequences, 
3D Skeleton Joints Daily

RGBD-HuDaAct40 Microsoft Kinect v1 Laboratory RGB Videos, Depth Sequences Daily

Table 1.  Some popular publicly available RGB-D Datasets for 3D Action Recognition. They prevalently collect 
RGB, Depth and 3D skeleton joints information relative to actions from daily activities conducted in indoor 
environments such as office-like, laboratory environments, or living rooms.
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happens in industrial assembly contexts. Therefore, recognizing different actions is very challenging as it 
depends only on tracking the movements of the arms of the operator. In addition, the dataset comprises 
untrimmed videos containing actions performed consecutively in different orders. Temporal action seg-
mentation is crucial in high-level video understanding. So, the proposed dataset can be used to test action  
segmentation as well as action recognition tasks.

Methods
Study design.  In the proposed dataset, a Microsoft Azure Kinect19,20 camera acquires videos during the 
execution of the assembly task. The Azure Kinect camera offers improved accuracy than other affordably RGB-D 
sensors implementing Time of Flight (ToF) principles21, making the Azure Kinect one of the best solution for 
indoor human body tracking in manufacturing scenarios22–24.

The assembly of an EGT involves three phases (Fig. 1): first, the assembly of Block 1 and Block 2 separately 
and then the final building of both blocks. The EGT is made up of a total of 13 components: eight components 
to build Block 1, four components to build Block 2, and a cover to assemble Block 1 and Block 2. Finally, two 
screws fix the two blocks with an Allen key, thus obtaining the EGT. In Fig. 1, the two supports used to facilitate 
the assembly of each block are also shown. Table 3 lists the individual components and the actions necessary 
for assembling Block 1, Block 2 and the whole EGT, respectively. The total number of actions is 12, divided as 
follows: four actions for building Block 1; four actions for building Block 2; and four actions for assembling the 
two blocks and completing the EGT. As can be seen in Table 3, some actions are performed more times as there 
are more components of the same type to be assembled: actions 2 and 3 are executed three times, while action 11 
is repeated two times. Finally, a “don’t care” action (ID = 0) has been added to include transitions or unexpected 
events such as the loss of a component during the assembly.

Acquisition setup.  The experiments took place in two laboratories (one in Italy and one in Spain). The 
acquisition setup is pictured in Fig. 2. A Microsoft Azure Kinect® was placed on a tripod in front of the operator 
at a height h = 1.54 m above the floor and a horizontal distance d = 1.78 m from the far border of the table. The 
camera is tilted down to an angle α = 17 (see Fig. 2b). As shown in Fig. 2a, the individual components to be 
assembled are spread on a table in front of the operator and are placed according to the order of assembly. The 
operator can pick up one component at a time to perform the assembly task standing in front of the table.

Two typical RGB frames captured by the camera in each laboratory are shown in Fig. 3. The working table 
is covered by a uniform tablecloth, while the components are arranged into boxes or spread over the table. In 
Fig. 3, the two supports, fixed on the table to facilitate the assembly of Block 1 and Block 2, are identified by 
arrows. Block components can be white over a black tablecloth or black over a white tablecloth. In both cases, 
the items are well visible over the table.

Study participants.  The HA4M dataset contains 217 videos of the assembly task performed by 41 subjects 
(15 females and 26 males). Their ages ranged from 23 to 60 years. All the subjects participated voluntarily and 
were provided with a written description of the experiment. Additionally, they read and signed an informed 
consent form, conserved at the “Institute of Intelligent Industrial Systems and Technologies for Advanced 
Manufacturing” (STIIMA), of the “National Research Council” (CNR) of Italy. The study and experiments were 
approved by the institutional Ethics Committee of CNR with Notification n. 0013464-2022. The subjects were first 
instructed about the sequence of actions to perform to build the EGT. However, where possible, differences in 
assembly order were allowed. As an example, actions 2 and 3 can be performed three times in sequence (i.e. 2, 2, 
2, 3, 3, 3) or alternatively (i.e. 2, 3, 2, 3, 2, 3). Furthermore, each subject was asked to execute the task several times 
and to perform the actions as preferred (e.g. with both hands), independently of their dominant hand.

Data annotation.  Data annotation concerns the labeling of the different actions in video sequences. 
The annotation of the actions has been manually done by observing the RGB videos frame by frame, and 
cross-checked by two researchers having different backgrounds, engineering or computer science. The start frame 

Dataset Visual Sensors Environment Data Modalities Task

Assembly10141

Eight RGB Cameras mounted on 
a scaffold around a table and four 
monochrome cameras mounted on 
an headset

Laboratory RGB frames, 3D hand poses Assembly and Disassembly 
of toy vehicles

Meccano42 One Intel RealSense SR300 camera 
mounted on an headset Laboratory RGB videos Assembly of a toy 

motorbike

IKEA-ASM43 Three Microsoft Kinect v2
Offices, Labs 
and Family 
Homes

RGB videos, Depth videos, 3D 
Skeleton Joints Furniture Assembly

HA4M Microsoft Azure Kinect Laboratory
RGB frames, Depth maps, IR 
frames, RGB-Depth-Aligned 
frames, Point Clouds, Skeleton Data

Assembly of an EGT

Table 2.  Comparison between the proposed HA4M dataset and existing vision-based datasets on assembly 
actions. For each dataset, information about the cameras used for data acquisition, the type of environment 
where acquisitions were made, the type of provided data and the assembly task are given.
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of each action is identified as the subject begins to move the arm to the component to be grasped. The end frame, 
instead, is recorded when the subject releases the component, so that the next frame becomes the start of the 
subsequent action. The total number of actions annotated in this study is 4124, considering that actions 2 and 3 
are performed three times in each video, whereas action 11 is performed 2 times (see Table 3). Furthermore, the 
“don’t care” action has been annotated 435 times in all the videos.

Once the manual annotation was completed, the wrist joints of both hands were analyzed to further check 
the manual labeling. Referring to Fig. 4, which shows the movement of the right wrist during the first 1000 
frames of a sample video, local points of curvature variation of the x and z coordinates of the wrist joints can 
be considered as the points of action change. These points coincide with the start frame of each action (vertical 
lines in Fig. 4) obtained by manual video annotation. It is worth noticing that the y coordinate does not give 
information for annotation check since it represent the joint height, typically constant and close to the table 
height during all actions.

Data Records
The dataset is publicly available at “https://baltig.cnr.it/ISP/ha4m” and Science Data Bank repository25. The size 
of the entire dataset is about 4.1 TB. and is organized as shown in Fig. 5. The data relative to each subject and 
each video are stored in a folder named “IDUnVm”, where n and m indices refer to the subject identification 
number (n = 1,…,41) and the video identification number, respectively. This folder contains the annotation file 
(“Labels.txt”) and 6 sub-folders named respectively: “Color”, “Color_Aligned”, “Depth”, 
“Infrared”, “Point_Clouds_DepthGeometry” and “Skeletons”. The sub-folders contain the 
RGB frames, the RGB-depth Aligned (RGB-A) frames, the Depth frames, the IR frames, the Point Clouds and 
the Skeleton data, respectively. Before accessing to the data, there is a second level of subfolders, named with the 
serial number of the Azure Kinect camera. For the sake of clarity, this level will be neglected in the next lines 
since each video is acquired by a single camera and, thus, the knowledge of its serial number will not add infor-
mation to the dataset description.

The name of the files contained in each sub-folder is “FrameIDiDeviceTimeStampjus”, where i 
and j refer to the frame number and the timestamp, respectively, whereas “us” is the time unit (microseconds). 
Note that the timestamp is estimated relatively to the specific acquisition device. In the case of “Color” and 
“Color_Aligned” sub-folders, the timestamp is relative to the RGB sensor of the Azure Kinect. On the con-
trary, in the case of “Depth”, “Infrared”, “Point_Clouds_DepthGeometry” and “Skeletons” 
sub-folders, the timestamp in the filenames is relative to the IR sensor. The slight delay between RGB and Depth 
cameras is negligible, as it is on average much lower than the inverse of the frame rate of the camera.

Table 4 gives some details about the data, such as type, dimension, and file format. All the image files (RGB, 
RGB-A, Depth, IR) are in the PNG file format. RGB frames have 2048 × 1536 resolution and three channels of 8 
bits each. Depth frames are grayscale images with 640 × 576 resolution and 16-bit channel depth. Each pixel value 
other than 0 represents the depth distance expressed in mm. IR frames have the same characteristics of Depth 
frames, where each pixel value other than 0 here represents the detected IR value. The RGB-A frames are RGB 
frames projected onto the IR sensor by internal geometrical transformation. Resulting frames have thus 640 × 576 
resolution, equal to the one of the IR and Depth images. In contrast, images are stored with four channels: three 
8-bit channels for the RGB values and an additional 8-bit α channel. α values can be equal to 255 or 0 depending 
on whether the depth information is available. Finally, the Point Cloud files are stored in the PLY file format. 
These are binary little-endian files that can have at most 640 × 576 = 368640 points, depending on the presence 
of the depth information. The files are in system of reference of the IR sensor. The 3D coordinates of the vertices  
are in meters, and the RGB color information is in three 8-bit uchar entries.

Components Actions

Quantity Description Action ID Action Description

Block 1

3 Planet Gear 1 Pick up/Place Carrier

3 Planet Gear 
Bearing 2 Pick up/Place Gear Bearings (×3)

1 Carrier Shaft 3 Pick up/Place Planet Gears (×3)

1 Carrier 4 Pick up/Place Carrier Shaft

Block 2

1 Ring Bear 5 Pick up/Place Sun Shaft

1 Sun Gear 
Bearing 6 Pick up/Place Sun Gear

1 Sun Gear 7 Pick up/Place Sun Gear Bearing

1 Sun Shaft 8 Pick up/Place Ring Bear

EGT

1 Block 1 9 Pick up Block 2 and place it on Block 1

1 Block 2 10 Pick up/Place Cover

1 Cover 11 Pick up/Place Screw (×2)

2 Screws 12 Pick up Allen Key, Turn both screws, Return Allen Key and the EGT

Table 3.  List of components and actions needed to build Block 1, Block 2 and EGT, respectively. First, the 
assembly of Block 1 (action IDs 1 to 4), then Block 2 (action IDs 5 to 8) and finally the EGT (action IDs 9 to 12).
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The files containing the skeleton data at each frame are in TXT format. These files exist only if a human is 
detected on the scene. The files contain 14 columns with the following elements:

•	 Skeleton ID: Azure Kinect Body Tracking SDK can track multiple human bodies in the scene. In our case, 
there is only one person in the scene, so Skeleton ID is usually 1.

•	 Joint ID: the skeleton model includes 32 joints in the range of 0–31. The joint hierarchy flows from the center 
of the body to the extremities, as illustrated in Fig. 6.

•	 Joint Confidence Level: the confidence level can have values equal to 0 if the joint is out of the depth range 
or field-of-view; 0.33 if the joint is occluded but its position is predicted; 0.67 if the joints are visible and cor-
rectly identified. This last value is the maximum confidence level in joint pose returned by the Azure Kinect 
Body Tracking SDK (version 1.1.2).

•	 Joint 3D position: (X, Y, Z) position of the joint in millimeter units. The joint position and orientation are 
estimated in the system of reference of the IR sensor of the Azure Kinect camera.

•	 Joint 3D orientation: the orientation, (Qw, Qx, Qy, Qz), is expressed as a normalized quaternion.
•	 Joint 2D color-space and depth-space: both Depth and RGB cameras are associated with an independent 2D 

coordinate system. So, each joint has 2D position coordinates in both color (x2DColor, y2DColor) and depth 
(x2DDepth, y2DDepth) images, respectively. If the joint is out of color or depth image, the relative coordinates 
assume a value of 0.

Fig. 2  Sketch of the acquisition setup: (a) a Microsoft® Azure Kinect is placed in front of the operator and the 
table where the components are spread over; (b) setup specifications.

Fig. 3  Typical video frames acquired by the RGB-D camera in the (a) “Vision and Imaging Laboratory” of 
STIIMA-CNR in Bari (Italy) and at the (b) “Department of Mathematics and Computer Science”, Universidad 
de La Rioja, Logroño (Spain).
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Figure 7 shows a sample frame for each type of images: RGB, Depth, IR and RGB-A. For completeness, a 
representation of the relative Point Cloud is also pictured.

Each video folder has the “Labels.txt” file, which contains the corresponding manual annotation. This 
file is made of three columns: the first contains the frame number; the second contains the action ID number 

Fig. 4  Check of annotation procedure. The plot reports the trajectories of the (x, y, z) coordinates of the right 
wrist of a right-handed subject in the first 1000 frames of an acquired video. The vertical lines identify the 
start frame of the actions annotated manually. Some relative RGB frames are also displayed. Frames have been 
cropped for visualization purposes.

Fig. 5  Dataset structure for each subject and each video. The name of the folder “IDUnVm” contains the ID 
subject identification number n and the video identification number m. This folder contains the annotation 
file (“Labels.txt”) and 6 sub-folders containing the RGB frames, the RGB-to-Depth-Aligned (RGB-A) 
frames, the Depth frames, the IR frames, the Point Clouds and the Skeleton data, respectively.
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(in the range 0–12); the third has an integer index which refers to the repetition of the current action. This index 
can be 0, 1, or 2, indicating that the current action execution is the first, second, or third, respectively. Repetition 
numbers other than 0 are allowed in case of actions 2, 3 and 11 (see Table 3).

Technical Validation
This section provides a statistical evaluation of the acquired data and an insight into some scientific issues that 
can be explored by using the HA4M dataset.

Data assessment.  This paragraph presents a spatio-temporal analysis of the actions. As a first characteriza-
tion of the data, the variance of action duration is first assessed. Then, a spatial analysis of the 3D position of the 
wrist joints is also explored to further characterize the data. Notice that the “don’t care” action is not considered 
in this evaluation study as it does not contribute to the assembly of the EGT.

Temporal analysis.  Videos were recorded by the Azure Kinect camera at 30 frames per second (fps). Figure 8a,b 
show the mean number of frames with the relative standard deviation for each action over all the recorded vid-
eos. For completeness, Tables 5,6 numerically list time statistics for each action and the videos, respectively, in 
terms of the number of frames and execution time.

As can be seen, actions that require more time have a high variance in execution times. These actions can 
be more complex such as action 9 (assembly of Block 1 and 2), or can involve a longer activity such as action 12 
(screw tightening). Furthermore, the subjects perform the task at their comfortable self-selected speed, so high 
time variance can be noticed among the different subjects. Figure 9 compares the mean number of frames for 
each action evaluated in the videos of two different subjects (number 2 and number 27) and the total dataset. As 
can be noticed, subject 2 executes the actions at a lower speed than subject 27, which, on the contrary, is very fast 

Data Type Dimension Details File Format

RGB 2048 × 1536 3 channels (8-bit) PNG

RGB-A 640 × 576 4 channels (8-bit) PNG

Depth 640 × 576 1 channel (16-bit) PNG

IR 640 × 576 1 channel (16-bit) PNG

Point Cloud max 368640 
points binary-little-endian files PLY

Skeleton 32 joints — TXT

Table 4.  Data information.

Fig. 6  Joint locations and connections relative to the human skeleton extracted using the Microsoft Azure 
Kinect Body Tracking SDK v1.1.219. The skeleton includes 32 joints, numbered from 0 to 31, with the joint 
hierarchy flowing from the center of the body to the extremities.

https://doi.org/10.1038/s41597-022-01843-z


8Scientific Data |           (2022) 9:745  | https://doi.org/10.1038/s41597-022-01843-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

in task execution, even with respect to the total mean. This is mainly due to the different abilities of subjects in 
assembling the EGT or by accidental events, such as the loss and recovery of a component.

Spatial analysis.  The analysis of the spatial movement of both wrists of all subjects is useful for getting informa-
tion about the main direction and spatial displacement of each action. Figure 10a,b show the standard deviation 
of the coordinates (X, Y, Z) of the right wrist joint and the left wrist joint of all subjects and for each action, respec-
tively. As can be noticed, different categories of actions can be identified according to the spatial properties: for 
instance, actions from 1 to 7 mainly evolve along the Z direction, whereas action 8 and 10 along the X direction. 
Finally, actions 9, 11 and 12 present comparable movements along the three directions as these actions require 
more spatial manipulations of the EGT. It is worth noticing that this spatial analysis can be biased by the way the 
subjects performed the tasks, since no precise rules were imposed to have the highest variability of the dataset.  
Accordingly, some subjects used their dominant hand while others used both hands interchangeably.

Scientific issues.  This section discusses some issues that can be explored using the proposed HA4M dataset 
in several application contexts.

Human centered approach in Industry 4.0.  In the last years, the focus of smart manufacturing has been mainly 
on the transformation of manufacturing systems into new models with improved operational properties and 
new technologies. More recently, the focus has changed to a new perspective that puts workers at the center of 
the digital transformation, where technology must facilitate or improve human physical or cognitive abilities 
instead of replacing them26. As a consequence, the scientific community is very active in this domain by study-
ing and developing intelligent systems to monitor workers to determine how they work, their pain points, and 
the challenges they face. So, observing the movements of human operators in the real scenario of an assembly 
task is very important to recognize their capabilities/competencies, especially in collaborative tasks with robots. 
Moreover, one of the main points of smart factory solutions is the inclusion of impaired people or people with 
different manual skills in production processes. The HA4M dataset represents a testbed for analysing the opera-
tive conditions of different subjects having varying skill levels. In the dataset, people with distinct ages and abil-
ities execute complex actions in very different ways. One challenging task is the development of time-invariant 
action recognition methodologies capable of recognizing very different executions of the same actions. The 
spatial and temporal analysis of the actions presented in the previous section demonstrates the high variability 
of the execution of the actions, which is correlated not only to the speed of execution but also to the subjects’ 
ability in handling the EGT parts.

Multi-modal data analysis.  For years, human action recognition literature has been dominated by vision-based 
approaches using monocular RGB videos, making action representations difficult in 3D space. Moreover, 
challenging issues that commonly appear in the scene, such as illumination variations, clutter, occlusions, 

Fig. 7  Sample frames: RGB, depth, IR, RGB-A, and point cloud. Images have been manipulated for 
visualization purposes.

https://doi.org/10.1038/s41597-022-01843-z
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background diversity, must be tackled to have robust recognitions. The development of low-cost technologies 
has made available further sensory modalities to overcome some of the challenges mentioned above27. The 
HA4M dataset provides several types of data such as depth, infrared, or point cloud extracted using the Azure 
Kinect sensor. Therefore, the dataset allows the research in multi-modal data integration to take advantage of the 
peculiarity of each sensor (RGB and IR) and overcome their intrinsic limitations.

Temporal action segmentation.  Literature is rich of works on action recognition methodologies successfully 
applied to short videos analysis. In recent years, the focus has been on temporal segmentation of actions in 
long untrimmed videos28. In Industry 4.0 domain, where collaborative tasks are performed by humans and 
robots in highly varying conditions, it is imperative to recognize the exact beginning and ending of an action. 
The HA4M dataset contains long videos with multiple instances of actions performed in different ways and in 
different orders. Therefore, the analysis of these videos requires the recognition of action sequences. Here, the 

Fig. 8  (a) Mean number of frames and (b) relative standard deviation for each action, estimated on the entire 
dataset.

Action 
ID

Action 
Instances

Min Length 
(frames)

Max Length 
(frames)

Mean Length 
(frames)

Variance 
(frames)

Mean Length 
(sec)

Variance 
(sec)

1 217 8 263 100.23 42.99 3.34 1.43

2 651 22 207 66.29 26.01 2.20 0.86

3 651 25 210 70.27 23.71 2.34 0.79

4 217 63 632 148.57 62.92 4.95 2.09

5 217 48 264 113.88 42.52 3.79 1.41

6 217 37 384 98.47 42.32 3.28 1.41

7 217 38 254 93.67 35.10 3.11 1.16

8 217 54 415 161.23 63.05 5.38 2.09

9 217 114 4984 722.35 682.27 23.66 22.01

10 217 40 843 210.35 116.40 7.01 3.87

11 434 50 918 188.48 115.71 6.28 3.85

12 217 134 1488 443.70 197.60 14.7 6.58

Table 5.  Some statistics about the actions: Action Identification Number (Column 1); Number of the manual 
annotated instances (Column 2); Minimum Length (Column 3), Maximum Length(Column 4), Mean Length 
(Column 5) and Variance (Column 6) of each action in terms of number of frames; Mean Length (Column 7) 
and Variance (Column 8) of each action in seconds.

Min Length 
(frames)

Max Length 
(frames)

Mean Length 
(frames)

Variance 
(frames)

Mean Length 
(sec) Variance (sec)

997 7262 2947.31 1067.12 98.40 36.21

Table 6.  Some statistics about the videos: Minimum Length (Column 1), Maximum Length(Column 2), Mean 
Length (Column 3) and Variance (Column 4) of videos in terms of number of frames; Mean Length (Column 5) 
and Variance (Column 6) of videos in seconds.
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problem of the temporal segmentation of the action aims to capture and classify each action segment into an 
action category.

Human-object interaction.  The analysis of videos of human-object interactions involves understanding human 
movements, recognizing and locating objects, and observing the effects of human movements on those objects29. 
Traditional approaches to object classification and understanding of actions relied on shape features and move-
ment analysis. In the context of assembly tasks, the relationships between movements and handled objects can 
help with action recognition. Sequences of actions that manipulate similar objects (such as inserting the planet 
gear onto the planet gear bearing) can be aggregated to create a higher level of semantic actions. The presence of 
RGB images and point clouds in the HA4M dataset could allow the recognition of tools and parts with pattern 
recognition approaches and their relative manipulation to improve the target of action classification.

Code availability
The dataset has been acquired using the Multiple Azure Kinect GUI software, whose source code and the 
corresponding installer are available at “https://gitlab.com/roberto.marani/multiple-azure-kinect-gui”. This 
software is based on the Azure Kinect Sensor SDK v1.4.1 and Azure Kinect Body Tracking SDK v1.1.219. In 
particular, the Azure Kinect SDK provides an API to record device data in a Matroska (.mkv) file containing 
video tracks, IMU samples, and device calibration. In this work, IMU samples are not considered. The Multiple 
Azure Kinect GUI software processes the Matroska file and returns the different types of data: RGB images, RGB-

Fig. 9  Comparative analysis of the performance of two subjects. Histograms show the mean number of frames 
for each action executed by subject 2 and subject 27 compared with the mean number of frames evaluated over 
the total dataset.

Fig. 10  Standard deviation of the coordinates (X, Y, Z) of (a) right wrist joint and (b) left wrist joint of all 
subjects and for each action.

https://doi.org/10.1038/s41597-022-01843-z
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to-Depth-Aligned (RGB-A) images, Depth images, IR images, and Point Cloud. At the same time, exploiting the 
Azure Kinect Body Tracking SDK, skeletal data are stored in the corresponding TXT files.

Along with the dataset, a Matlab demo code (.m file) is also provided to plot the skeletons onto the corresponding  
RGB images.
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